当前位置:文档之家› 数控刀具和切削用量的使用

数控刀具和切削用量的使用

数控刀具和切削用量的使用
数控刀具和切削用量的使用

数控刀具和切削用量的使用

专业:机械制造及自动化

班级:

姓名:

关键词刀具 ; 加工;

刀具及切削用量的确定在数控加工中的合理选用

摘要:刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控加工的效率,而且直接影响加工质量。本文从数控加工中刀具的分类与特点入手,分类说明在数控自动编程中,刀具合理选用的重要意义。

关键词:刀具;编程;数控加工;合理选用

当今,几乎所有的CAD/CAM软件包都提供自动编程的功能,这些软件一般在编程界面中提示工艺规划的有关问题,如刀具选择、加工路径规划、切削用量设定等,编程人员只需设置有关的参数,就可以自动生成NC程序并传输至数控机床加工完成。显然,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控技术加工的特点,正确选择刀具及切削用量。

一、数控加工常用刀具的种类及特点

数控加工刀具必须适应数控加工的高速、高效和自动化程度高的特点。包括通用刀具、通用连接刀柄及少量专用刀柄(刀柄要联结刀具并安装在机床动刀头上)。

1.数控刀具的分类方法

根据刀具结构可分为整体式、镶嵌式、特殊型式(如复合式刀具、减震式刀具等);若采用焊接或机夹式联结,机夹式又可分为不转位和可转位两种;根据刀具的材料可分为高速钢刀具、硬质合金刀具、金刚石刀具、其他材料刀具(如立方氮化硼刀具、陶瓷刀具等);按切削工艺上可分为车削刀具(分外圆、内孔、螺纹、切割刀具等)、钻削刀具(包括钻头、绞刀、丝锥等)、镗削刀具、铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。

2.数控刀具与普通机床上所用刀具相比,主要有以下特点:

(1)刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;(2)互换性好,便于快速换刀;(3)寿命高,切削性能稳定、可靠;(4)刀具的尺寸便于调整,以减少换刀调整时间;(5)刀具应能可靠地断屑或卷屑,以利于切屑的排除;(6)系列化、标准化,以利于编程和刀具管理。

3.数控加工刀具的选择

刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料、加工工序、切削用量以及其他相关因素,正确选用刀具及刀柄。刀具选择总的原则是安装调整方便、刚性好、耐用度和精度高。注意在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。

在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀。因此必须采用标准刀柄,以便使钻、镗、扩、铣等工序的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法及调整范围,以便在编程时确定刀具的经向和轴向尺寸。

在经济型数控机床的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:(1)尽量减少刀具数量;(2)一把刀具装夹后,应完成其所能进行的所有加工步骤;(3)粗精加工的刀具应分开使用(即使是相同尺寸规格的刀具);(4)先铣后钻;(5)先进行曲面

精加工,后进行二维轮廓精加工;(6)应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

二、加工过程中切削用量的确定

1.合理选择切削用量的原则

粗加工时,一般以提高生产率为主,同时也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。

2.具体要考虑的因素

(1)切削深度t。在机床、工件和刀具刚度允许的情况下,t就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。(2)切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控机床的加工过程中,一般L的取值范围为:L=(0.6~0.9)d。(3)切削速度V。另外,切削速度与加工材料也有很大关系,如用立铣刀铣削合金钢时,V可采用8m/min左右;而用同样的立铣刀铣削铝合金时,V可选用20m/min以上。(4)主轴转速n(r/min)。主轴转速一般根据切削速度V来选定。计算公式为:V=Πnd/1000。数控机床的控制面板上一般备有主轴转速倍调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。(5)进给速度VF。VF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。VF的增加也可以提高生产效率。加工表面粗糙度要求低时,VF可选择得大些。在加工过程中,(转第069页) (接转第070页) Vf 也可通过机床控制面板上的倍调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能的限制。

三编程中细节问题处理

1、注意G04的合理使用

G04为暂停指令,其作用是刀具在一个指令的时间内暂停止加工。该指令由于不做实际的切削运动,常常被忽略。但它在对于保证加工精度及在切槽、钻孔改变运动等方面都有很好的好处,常用于以下几种情况

(1)切槽、钻孔时为了保证槽底、孔底的的尺寸及粗糙度应设置G04命令。

(2)当运行方向改变较大时,应在该改变运行方向指令间设置G04命令。

(3)当运行速度变化很大时应在其运行指令改变时设置G04命令。

(4)利用G04进行断削处理,根据粗加工的切削要求,可对以连续运动轨迹进行分段加工安排,每相邻加工段中间用G04指令将其隔开。加工时,刀具每进给一段后,即安排所设定较短的延时时间(0.5秒)实施暂停,紧接着在进给一段,直至加工结束。其分段数的多少,视断削要求而定,当断削不够理想时,要增加分段数。

2、粗精加工分开编程

为了提高零件的精度并保证生产效率,车削工件轮廓的最后一刀,通常由精车刀来连续加工完成,因此,粗精加工应分开编程。并且,刀具的进、退位置要考虑妥当,尽量不要在连续的轮廓中切入切出或换刀及停顿,以免因切削力的突然变化而造成弹性变形,致使光滑连接的轮廓上产生划伤、形状突变或滞留刀痕等疵病。

3、编程时常取零件要求尺寸的中值作为编程尺寸依据。如果遇到比机床所规定的最小编程单位还要小的数值时,应尽量向其最大实体尺寸靠拢并圆整。如图纸尺寸为? 80+00、026则编程时写X80.013。

4、编程时尽量符合各点重合的原则。也就是说,编程的原点要和设计的基准、对刀点的位置尽量重合起来,减少由于基准不重合所带来的加工误差。

5、巧利用切断刀倒角。对切断面带一倒角的零件,在批量车削加工中比较普遍,为了便于切断并避免掉头倒角,可巧利用切断刀同时完成车倒角和切断两个工序,效果较好。同时切刀有两个刀尖,在编程中要注意使用哪个刀尖及刀宽问题,防止对刀加工时出错。

总之,数控车床的编程总原则是先粗后精、先进后远、先内后外、程序段最少、走刀路线最短,这就要求我们在编

硬质合金高速切削铝合金时刀具材料和切削用量的选择

中国西部科技
2010年01月(下旬)第09卷第03期 总 第200期
硬质合金高速切削铝合金时刀具材料 和切削用量的选择
刘楚玉 熊建武 周 进
(湖南铁道职业技术学院,湖南 株洲 412001) 摘 要:硬质合金是切削有色金属的主要刀具材料之一。本文阐述了硬质合金高速切削加工铝合金时硬质合金刀具材 料、切削用量的选择。 关键词:硬质合金;铝合金;高速切削;刀具材料;切削用量 The Choice of Cutting-tool Material of Cemented Carbide and Cutting Dosage When Aluminum Metal Alloy Be High-speed Cutted with Cemented Carbide LIU Chu-yu ,XIONG Jian-wu ,ZHOU Jin (Hunan Railway Professional-Technology College,Hunan 412001,China) Abstract:The cemented carbide is one kind of cutting-tools to cut the color metals.This paper elaborated the characteristic of cemented carbide cutting-tools,the choice of cutting-tool material of cemented carbide and cutting dosage when aluminum metal alloy be high speed cutted with cemented carbide. Key words:Cemented carbide;The aluminum alloy;High speed cutting;Cutting-tool material;Cutting dosage

K类和M类硬质合金刀具适合于高速切削加工铝合金
磨性、抗弯强度和抗崩刃性,而且高温硬度也将提高。超 细晶粒硬质合金比同样成分的普通硬质合金的硬度可提高 2HRA以上,抗弯强度可提高600~1500MPa。超细晶粒硬质 合金含w(C)为9%~15%,硬度达到90~93HRA,抗弯强度 O 达2000~3500MPa。早期,超细晶粒多用于K类合金,近年 来M类和P类也向晶粒细化方向发展。目前,各国都研制出 了多种牌号的细晶粒和超细晶粒硬质合金。我国生产的细 晶粒硬质合金有YS2、YM051及YD05等牌号。株洲硬质合金 厂等企业对超细晶粒硬质合金也实现了批量生产。 ISO(国际标准化组织)将切削用硬质合金分为三类: ①K类,包括K10~K40,相当于我国的YG类(主要成分为 WC-C O)。②P类,包括P01~P50,相当于我国的YT类(主要 成分为WC-TIC-CO)。③M类,包括M10~M40,相当于我国的 YW类(主要成分为WC-TIC-TaC(NbC)-C)。 O 1.2 硬质合金刀具的特性 与其他刀具相比,硬质合金刀具的特性如下:(1)高 硬度:硬质合金刀具是由硬度和熔点很高的碳化物(称硬 质相)和金属粘结剂(称粘接相)经粉末冶金方法而制成 的,其硬度达89~93HRA,远高于高速钢,在5400C时硬度仍 可达82~87HRA,与高速钢常温时硬度(83~86HRA)相同。 硬质合金的硬度值随碳化物的性质、数量、粒度和金属粘 接相的含量而变化,一般随粘接金属相含量的增多而降 低。(2)抗弯强度和韧性:常用硬质合金的抗弯强度在 900~1500MPa范围内。金属粘接相含量越高,则抗弯强度 也就越高。硬质合金是脆性材料,常温下其冲击韧度仅为 高速钢的1/30~1/8。(3)导热系数:由于TiC的导热系数
1.1 硬质合金刀具的种类 按主要化学成分区分,硬质合金可分为碳化钨基硬质 合金和碳(氮)化钛(TiC(N))基硬质合金。碳化钨基硬 质合金包括钨钴类(YG)、钨钴钛类(YT)和添加稀有碳 化物类(YW)三类,它们各有优缺点,主要成分为碳化钨 (WC)、碳化钛(TiC)、碳化钽(TaC)、碳化铌(NbC) 等 , 常 用 的 金 属 粘 接 相 是 CO。 在 YT类 硬 质 合 金 中 加 入 TaC(NbC)可提高其抗弯强度、疲劳强度、冲击韧度、高温 硬度、高温强度、抗氧化能力和耐磨性。常用牌号有YW1和 YW2( 国 际 上 为 M类)。YW类合金兼具YG、YT类合金的性 能,综合性能好,它既可用于加工钢料,又可用于加工铸 铁和有色金属,常被称为通用合金。碳(氮)化钛基硬质 合金是以TiC为主要成分(有些加入了其他碳化物或氮化 物)的硬质合金,常用的金属粘接相是MO 和Ni。 按晶粒大小区分,硬质合金可分为普通硬质合金、细 晶粒硬质合金和超细晶粒硬质合金。硬质合金晶粒细化 后,硬质相尺寸小,增加硬质相晶粒表面积、晶粒间的结 合力,粘接相更均匀地分布在其周围,可以提高硬质合金 的硬度与耐磨性;如果适当提高钻含量,还可以提高抗弯 强度。超细晶粒硬质合金是由晶粒极小的WC粒子和C粒子构 O 成,是一种高硬度、高强度兼备的硬质合金,它具有硬质 合金的高硬度和高速钢的强度。普通硬质合金晶粒度为3~ 5μm,一般细晶粒硬质合金的晶粒度为1.5μm左右,亚微 细粒合金为0.5~1μm,而超细晶粒硬质合金WC的晶粒度在 0.5μm以下。晶粒细化后,不但可以提高合金的硬度、耐
收稿日期:2009-12-14 修回日期:2010-01-05 基金项目:2006年湖南省高等学校研究项目(编号06D062)和湖南铁道职业技术学院课题(编号K2006016)资助。 作者简介:刘楚玉(1965-),男,湖南株洲籍,本科,讲师、高级技师,研究方向为机械设计与制造。 熊建武(1964-),男,湖南安化籍,工学硕士,教授、高级工程师,研究方向为机械设计与制造。
14

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

刀具切削用量的选用

刀具切削用量的选用 刀具切削用量的选用 所谓切削用量是指切削速度、进给速度(进给量)和吃刀量三者的总称。 1、切削用量的选用原则 粗加工时,根据刀具切削性能选择;精加工时,根据零件的加工精度和表面质量选择。 合理的切削用量是指充分利用刀具的切削性能和机床的性能,在保证加工质量的前提下,获得高生产率和低加工成本的切削用量。不同的加性质,对切削加工的要求是不一样的。因此,在选择切削用量时,考虑的侧重点也有所区别。 粗加工时,应尽量保证较高的金属切除率和必要的刀具寿命。因此,选择切削用量时应首先选择尽可能大的被吃刀量a;其次,根据机床动力和刚性的限制条件,选取尽可能大的进给量f;最后根据刀具寿命要求,确定适合的切削速度v 。 精加工时,首先根据粗加工的余量确定被吃刀量 a ;其次,根据已加工表面的粗糙度要求,选取合适的进给量f;最后在保证刀具寿命的前提下,尽可能选取较高的切削速度v 。 2、切削用量的选取方法 平行于铣刀轴线的吃刀量为被吃刀量,垂直于铣刀轴线的吃刀量为侧吃刀量(a )。 (1)被吃刀量a 的选择粗加工时,除留下精加工余量外,一次走到尽可能切除全部余量。在加工余量过大、工艺系统刚性较低、机床功率不足、刀具强度不够等情况下,可分多次走刀。切削表面有硬皮的的铸件时,应尽量使 a 大于硬皮层的厚度,以保护刀尖。 精加工的加工余量一般较小,可一次切除。 在中等功率机床上,粗加工的被吃刀量可达8~10mm;半精加工的被吃刀量取0.5~5mm;精加工的被吃刀量取0.2~1.5mm。 (2)进给速度(进给量)的确定进给速度是数控机床切削用量中的重要参数,主要根据零件的加工精度和表面粗糙度要求以及

切削用量的选择 1

切削用量的选择 选择合理的切削用量,要综合考虑生产率、加工质量和加工成本。一般地,粗加工时,由于要尽量保证较高的金属切除率和必要的刀具耐用度,应优先选择大的背吃刀量,其次选择较大的进给量。最后根据刀具耐用度,确定合适的切削速度。精加工时,由于要保证工件的加工质量,应选用较小的进给量和背吃刀量,并尽可能选用较高的切削速度。 (1)背吃刀量的选择 粗加工的背吃刀量应根据工件的加工余量确定,在保留半精加工余量的前提下,应尽量用一次走刀就切除全部粗加工余量;当加工余量过大或工艺系统刚性过差时,可分二次走刀。第一次走刀的背吃刀量,一般为总加工余量的2/3—3/4。在加工铸、锻件时,应尽量使背吃刀量大于硬皮层的厚度,以保护刀尖。半精、精加工的切削余量较小,其背吃刀量通常都是一次走刀切除全部余量。 (2)进给量的选择 粗加工时,进给量的选择主要受切削力的限制。在工艺系统刚度和强度良好的情况下,可选用较大的进给量值。表1.4 为粗车时进给量的参考值。由于进给量对工件的已加工表面粗糙度值影响很大,一般在半精加工和精加工时,进给量取得都较小。通常按照工件加工表面粗糙度值的要求,根据工件材料、刀尖圆弧半径、切削速度等条

件来选择合理的进给量。当切削速度提高,刀尖圆弧半径增大,或刀具磨有修光刃时,可以选择较大的进给量,以提高生产率。 表 1.4 硬质合金及高速钢车刀粗车外圆和端面时的进给量 注:1.加工断续表面及有冲击的加工时,表内的进给量应乘系数K=0.75~0.85。 2.加工耐热钢及其合金时,不采用大于1.0 mm/r 的进给量。 3.加工淬硬钢时,表内进给量应乘系数K=0.8(当材料硬度为44~56HRC)或K=0.5(当硬度为57~62HRC时)。

量具的选择和切削用量的确定

具的选择和切削用量的确定 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD 的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。

重型车床刀具及切削用量

重型车床刀具及切削用量的选择 1.引言 重型机械加工行业的特点是被加工件的尺寸很大,重量很重(有的可达上百吨),因此重型加工用卧式车床的回转直径可达到6米,立式车床更可达到10余米。与普通切削加工相比,由于重型切削加工具有切削深度大、切削速度低、进给速度慢等特点,因此其加工工艺与普通的机械切削加工工艺有很大不同,这些工艺问题包括刀具的选择、刀具的安装、切削用量的选择以及工件的装夹等各个方面。本文对重型车床切削加工不同加工阶段的特点分别作如下论述。 2.刀具的选择 机械加工中常用的刀具材料主要有高速钢、硬质合金、立方氮化硼(cbn)、陶瓷等。由于重型切削的特点(切削深度大,余量不均,表面有硬化层),刀具在粗加工阶段的磨损形式主要是磨粒磨损。由于切削温度高,尽管切削速度处于积屑瘤发生区,但高温可以使切屑与前刀面的接触部位处于液态,减小了摩擦力,抑制了积屑瘤的生成,所以刀具材料的选择应要求耐磨损、抗冲击,刀具涂层后硬度可达80hrc,具有高的抗氧化性能和抗粘结性能,因而有较高的耐磨性和抗月牙洼磨损能力。硬质合金涂层具有较低的摩擦系数,可降低切削时的切削力及切削温度,可以大大提高刀具耐用度(涂层硬质合金刀片的耐用度至少可提高1倍)等优点,但由于涂层刀片的锋利性、韧性、抗剥落和抗崩刃性能均不及未涂层刀片,故不适用高硬度材料和重载切削的粗加工。陶瓷类刀具硬度高,但抗弯强度低,冲击韧性差,不适用于余量不均的重型切削,cbn刀具同样也存在这个问题。综合以上分析,只有硬质合金刀具适合于重型切削的粗加工。硬质合金分为钨钴类(yg)、钨钴钛类(yt)和碳化钨类(yw)。加工钢料时,由于金属塑性变形大,摩擦剧烈,切削温度高,yg类硬质合金虽然强度和韧性较好,但高温硬度和高温韧性较差,因此在重型切削中很少应用。与之相比,yt类硬质合金刀具适于加工钢料,由于yt类合金具有较高的硬度和耐磨性,尤其是具有高的耐热性,抗粘结扩散能力和抗氧化能力也很好,在加工钢料时刀具磨损较小,刀具耐用度较高,因此yt类硬质合金是重型加工时较常用的刀具材料。然而在低速切削钢料时,由于切削过程不太平稳,yt类合金的韧性较差,容易产生崩刃,而且在加工一些高强度合金材料时,它的耐用度下降很快,无法满足使用要求。如电站用机械产品工作于高温、高压、高转速的环境中,对材料(如26cr2ni4mov、mn18cr18)机械性能的要求非常高;而一些高硬度轧辊,表面硬度在淬火后可达hs90,yt类刀具在加工此类产品时就无法胜任,在这种情况下应选用yw类刀具或细晶粒、超细晶粒合金刀具(如643等)。细晶粒合金的耐磨性好,更适用于加工冷硬铸铁类产品,效率较yw类刀具可提高一倍以上。 精加工阶段同样要求刀具耐磨损,但是精加工阶段的磨损形式是以粘蚀磨损为主,这时的切削速度虽然有了很大提高(可达到40m/r),但由于工件材质等原因,仍然会产生积屑瘤,当积屑瘤增长到一定高度时会从刀具上剥离,将接触部位的刀具材料带走一部分,形成刀具的磨损。同时,剥离的积屑瘤会扎进工件表面,形成硬点,降低加工表面质量。因此,如果精加工时仍然采用普通硬质合金刀具,则刀具磨损非常快,换刀次数增多,不仅影响加工效率,也易在工件表面形成接刀痕迹,影响外观质量。解决这个问题的办法就是改变刀具材料。在实际加工中发现涂层刀具比较适合重型切削的精加工,刀具的涂层减小了切屑与刀面间的摩擦,减少了积屑瘤的发生,降低了刀具的磨损,延长了刀具的寿命。实际加工中,我们采用瓦尔特公司的涂层硬质合金刀片,在加工45cr4nimov支撑辊时,刀具耐用度提高了一倍;但使用陶瓷刀具未达到预期效果,当切削速度达到100m/min时,刀片的磨损显著加快,这是因为陶瓷刀具与金属材料之间由于亲和作用加剧了刀具的磨损。高速钢刀具在精加工阶段得到了广泛的应用,由于高速钢刀具的锋锐性较好,经常用于精加工阶段的光整工序以去除微小余量,目前来看,其它刀具还无法完全取代高速钢刀具的作用。 3.刀具角度的选择

夹具、刀具的选择及切削用量的确定

夹具、刀具的选择及切削用量的确定 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、夹具的选择、工件装夹方法的确定 1.夹具的选择 数控加工对夹具主要有两大要求:一是夹具应具有足够的精度和刚度;二是夹具应有可靠的定位基准。选用夹具时,通常考虑以下几点: 1)尽量选用可调整夹具、组合夹具及其它通用夹具,避免采用专用夹具,以缩短生产准备时间。 2)在成批生产时才考虑采用专用夹具,并力求结构简单。 3)装卸工件要迅速方便,以减少机床的停机时间。 4)夹具在机床上安装要准确可靠,以保证工件在正确的位置上加工。 2.夹具的类型 数控车床上的夹具主要有两类:一类用于盘类或短轴类零件,工件毛坯装夹在带可调卡爪的卡盘(三爪、四爪)中,由卡盘传动旋转;另一类用于轴类零件,毛坯装在主轴顶尖和尾架顶尖间,工件由主轴上的拨动卡盘传动旋转。 数控铣床上的夹具,一般安装在工作台上,其形式根据被加工工件的特点可多种多样。如:通用台虎钳、数控分度转台等。

3.零件的安装品质新空间 数控机床上零件的安装方法与普通机床一样,要合理选择定位基准和夹紧方案,注意以下两点: 1)力求设计、工艺与编程计算的基准统一,这样有利于编程时数值计算的简便性和精确性。2)尽量减少装夹次数,尽可能在一次定位装夹后,加工出全部待加工表面。 二、刀具的选择及对刀点、换刀点的设置 1.刀具的选择 与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要刚性好、精度高,而且要求尺寸稳定,耐用度高,断屑和排屑性能好;同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。(1)车削用刀具及其选择数控车削常用的车刀一般分尖形车刀、圆弧形车刀以及成型车刀三类。 1)尖形车刀尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如90°内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。 尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。2)圆弧形车刀圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该圆弧的圆心上。 圆弧形车刀可以用于车削内外表面,特别适合于车削各种光滑连接(凹形)的成型面。选择车刀圆弧半径时应考虑两点:一是车刀切削刃的圆弧半径应小于或等于零件凹形轮廓上

数控机床加工的切削用量

数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。 1. 数控车床切削用量 1)切削深度a p 在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。 切削深度ap 计算公式:a p = 式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc ① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。 切削速度Vc 计算公式: Vc= 式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min 表1 硬质合金外圆车刀切削速度参考表 2 m w d d

注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。 ②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。下列为一般数控车床车螺纹时主轴转速计算公式: n≤–k 式中:p—工件螺纹的螺距或导程,单位mm。k—保险系数,一般为80。 3)进给速度 进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。 ⑴确定进给速度的原则 ①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。 ②切断、车削深孔或精车时,选择较低的进给速度。 ③刀具空行程尽量选用高的进给速度。 ④进给速度应与主轴转速和切削深度相适应。 ⑵进给速度V f的计算V f = n f 式中:n—车床主轴的转速,单位r/min。f—刀具的进给量,单位mm/r。 表2为硬质合金车刀车粗车外圆和端面进给量参考表,表3为按表面粗糙度选择进给量参考表。 表2 硬质合金车刀粗车外圆及端面进给量参考表

数控加工中切削用量的合理选择

数控加工中切削用量的合理选择 【摘要】文章介绍了切削用量的三要素,并对数控机床加工时切削用量的合理选择进行了详细阐述,为数控机床编程与操作人员提供参考。 【关键词】切削用量;加工质量;刀具耐用度;选择原则。 前言:数控加工中切削用量的原则是,粗加工时,一般以提高生产率为主, 但也应考虑经济和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。切削用量是表示机床主运动和进给运动大小的重要参数。切削用量的确定是数控加工工艺中的重要内容,切削用量的大小对加工效率、加工质量、刀具磨损和加工成本均有显著影响 一、切削用量的选择原则 数控加工中选择切削用量,就是在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。 (一) 加工质量:加工质量分为加工精度和加工表面质量。 ⒈加工精度是指零件加工后实际几何参数(尺寸、形状和位置)与理想几何参数相符的程度。符合程度愈高,加工精度愈高。实际值与理想值之差称为加工误差,所谓保证加工精度,即指控制加工误差。 ⑴尺寸精度:加工表面的实际尺寸与设计尺寸的尺寸误差不超过一定的尺寸公差范围。在国标中尺寸公差分20级(IT01、IT0、IT1~IT18)。尺寸精度的获得方法: ①试切法:试切——测量——调整——再试切。用于单件小批生产。 ②调整法:通过预调好的机床、夹具、刀具、工件,在加工中自行获得尺寸精度。用于成批大量生产。 ③尺寸刀具法:用一定形状和尺寸的刀具加工获得。生产率高,但刀具制造复杂。 ④自动控制法:用一定装置,边加工边自动测量控制加工。切削测量补偿调整。 ⑵几何形状精度:加工表面的实际几何要素对理想几何要素的变动量不超过一定公差范围。在国标中形状公差有六项:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。几何形状精度的获得方法: 成形运动法 ①轨迹法:利用刀具与工件间的相对运动轨迹来获得形状。 ②成形法:利用成形刀具加工获得表面形状。 ③展成法:利用刀具与工件相对运动使工件被刀具切削成一定形状的包络线。 非成形运动法:人工修配、样板加工、划线加工等。 ⑶相互位置精度:加工表面的实际几何要素对由基准确定方向或位置的理想几何要素的变动量。在国标中位置公差有八项:平行度、垂直度、倾斜度、同轴度、对称度、位置度、圆跳动、全跳动。相互位置精度的获得主要由机床精度、

数控机床加工的切削用量

单元4 数控机床加工的切削用量 教学目的 1、了解数控机床的运动(主运动、进给运动); 2、了解数控机床加工刀具的角度及其作用; 3、了解数控机床加工中有关切削层的参数及其作用; 4、了解数控机床加工中的切削用量及其选用原则。 5、掌握常用不同材料零件在粗加工、半精加工和精加工时的切削用量选用; 教学重点 1、数控机床加工刀具的角度及其作用; 2、数控加工中粗加工、半精加工和精加工时的切削用量选择; 教学难点 1、刀具的角度及其作用; 2、切削用量选用 教学方法 讲练结合 教学内容 一、车削加工与刀具 1. 车削加工原理 在普通车床和一般数控车床上,可以进行工件的外表面、端面、内表面以及内外螺纹的加工。对于车削中心,除上述各种加工外,还可进行铣削、钻削等加工。从上述介绍可以看出:在切削过程中,刀具和工件之间必须具有相对运动,这种相对运动称为切削运动。根据切削运动在切削过程中的作用不同可以分为主运动、和进给运动。各种机床的主运动和进给运动参见下表。 各种机床的主运动和进给运动 主运动是指机床提供的主要运动。主运动使刀具和工件之间产生相对运动,从而使刀具的前刀面接近工件并对工件进行切削。在车床上,主运动是机床上主轴的回转运动,即

车削加工时工件的旋转运动。 2)进给运动 进给运动是指由机床提供的使刀具与工件之间产生的附加相对运动。进给运动与主运动相配合,可以形成完整的切削加工。在普通车床上,进给运动是机床刀架(溜板)的直线移动。它可以是纵向的移动(与机床主轴轴线平行),也可以是横向的移功(与机床主轴轴线垂直),但只能是一亇方向的移动。在数控车床上,数控车床可以同时实现两亇方向的进给,从而加工出各种具有复杂母线的回转体工件。 在数控车床中,主运动和进给运动是由不同的电机来驱动的,分别称为主轴电机和坐标轴伺服电机。它们由机床的控制系统进行控制,自动完成切削加工。 2. 切削用量 切削用量是指机床在切削加工时的状态参数。不同类型的机床对切削用量参数的表述也略有不同,但其基本的含义都是一致的,如下图所示。 车削加工中切削用量示意图 (1)切削速度(c v ) 切削刃上的切削点相对于工件运动的瞬时速度称为切削速度。切削速度的单位为(m/min )米/ 分。在各种金属切削机床中,大多数切削加工的主运动都是机床主轴的运动形成,即都是回转运动。切削速度与机床主轴转速之间进行转换的关系为: 1000dn v c π= ………………… 4-1 式中:c v ——切削速度 (m/min) d ——工件直径 (mm) n ——主轴转速 (r/min) (2) 进给量(f ) 不同种类的机床,进给量的单位是不同的。对于普通车床,进给量为工件(主轴)每转过一转,刀具沿进给方向上相对于工件的移动量,单位为mm/r ;对于数控车床,由于其控制原理与普通车床不同,进给量还可以用进给速度 f v (单位为 mm/min )来表达,即:刀具在单位时间内沿着进给方向上相对于工件的位移量。其它类型的机床则根据其结构不同,进给量的单位表达还可以为刀具或工件每转的位移量( mm/r ,使用多齿刀具的机床)。在车削加工时,进给速度f v 是指切削刃上选定点相对于工件进给运动的瞬时速度。它与进给量之间的关系为: f n v f ?= ……………………4-2

第十一章 切削用量的制定

第十一章切削用量的制定 切削用量的制定直接影响生产效率和加工成本。学习本章后应能够根据具体条件和要求,正确地选择切削用量。 11.1 必备知识和考试要点 1.了解切削用量的制定原则。 2.掌握粗加工时切削用量的选择方法。 3.明确限制选择切削用量的因素和解决办法。 11.2 典型范例和答题技巧 [例11.1] 选择切削用量的原则是什么?从刀具耐用度出发时,按什么顺序选择切削用量?从机床动力出发时,按什么顺序选择切削用量?为什么? [答案] 选择切削用量的原则是:首先选取尽可能大的背吃刀量αp,其次要在机床动力和刚度允许,又能满足加工表面粗糙度的前提下,选取尽可能大的进给量厂,最后根据确定的刀具耐用度选取或计算切削速度v。 以刀具耐用度选择切削用量时,选择的顺序应为αp—f—v。其理由可从刀具耐用度表达式T=C T/v X f Yαp Z中,由于X>Y>Z,即切削速度v对刀具耐用度影响最大,其次是进给量f,背吃刀量αp的影响最小。按这个顺序选择切削用量,得到的生产率最高。如果生产率不变,按这个顺序选择切削用量,刀具耐用度最高。 根据机床动力选择切削用量时,选择的顺序应为.f—v—αp. 其理由从机床功率的计算 公中,由于 1=X Fz>Y Fz>n Fz; 当nF z=0时,影响切削功最小的是f,其次是v与αp;当nF z<0时,通常X,>1十nF,影响切削功率最小的是f,其次是v,最后是αp所以,从机床动力考虑,理论上首先应按影响功率最小的f、其次v、最后αp的顺序选择切削用量。但实际上,考虑αp取小值时,会增加走刀次数,从而增加了辅助工时,因此生产中一般仍按αp—f—v的顺序选择切削用量,即先选择尽可能大的αp,其次选择尽可能大的f, 最后确定v。 [例11.2] 粗加工时进给量选择受哪些因素限制?当进给量受到表面粗糙度限制时,有什么办法增加进给量,而保证表面粗糙度要求? [答案] 粗加工时切削力很大,合理的进给量应是工艺系统所能承受的最大进给量。最大进给量主要受以下因素限制:(1)机床进给机构的强度;(2)车刀刀杆的强度和刚度; (3)工件装夹刚度;(4)硬质合金或陶瓷刀片的强度。 半精加工和精加工时,进给量的选择受到表面粗糙度的限制。此时为减小加工表面粗糙度,可适当增大刀尖圆弧半径γε、减小副偏角κr9,采用修光刃等办法。此外,可增大前角γo,提高刀具刃磨质量,选用有效的切削液等措施,以减小积屑瘤和鳞刺的不利影响。 [例11.3] 如果选定切削用量后发现超过机床功率时,应如何解决? [答案] 理论上影响机床功率大小的因素排列顺序是αp—v—f,所以,选定的切削用量超过机床功率时,也应按上述顺序减小切削用量。但考虑减小αp,会增加走刀次数,增加辅助工时,所以在不希望增加走刀次数的情况下,首先应适当降低v,然后再考虑减小f。 [例11.4] 制定切削用量时,影响切削速度的因素有哪些?解释其原因。 [答案] 制定切削用量时,依次选择背吃刀量αp和进给量f后,可用计算或查表来选择切削速度v。从公式和表格中可以看出影响切削速度的因素有:(1)背吃刀量αp、进给量f与速度v成反比例关系,即粗加工时,由于αp和f均较大,故应选择较低的v;精加工时,αp 和f均较小,故应选择较高的v。(2)工件材料的性能影响切削速度v。 工件材料强度、硬度较高时,应选较低的v,反之则选较高的v;工件材料加工性愈差,则v也选得愈低。(3)刀具材料的性能影响切削速度v。刀具材料切削性能愈好,v可选得愈

数控加工中刀具的选择原则和切削用量

数控加工中刀具的选择原则和切削用量 作者:佚名来源:不详发布时间:2008-3-9 0:57:41 发布人:admin 减小字体增大字体 摘要:现代刀具显著的特点是结构的创新速走加快。随着计算机应用领域的不断扩大,机械加工也开始运用数拉技术,这时刀具选择与切削用量提出了更高的要求。本文就扣何确定数控加工中的刀具选择与切削用全进行了探讨。 关键词:数控技术;机械加工;刀具选择 一、科学选择数控刀具 1、选择数控刀具的原则 刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要冈牲好、精度高,而且要求尺寸稳定,耐用度高,断和排性能坛同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。 2、选择数控车削用刀具 数控车削车刀常用的一般分成型车刀、尖形车刀、圆弧形车刀以及三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如900内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。 二是圆弧形车刀。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该

金刚石刀具切削铝合金时刀具材料和切削用量的选择

熊建武周进陈湘舜 (湖南铁道职业技术学院机电工程系,湖南株洲 412001) 摘要:金刚石是切削有色金属的优选刀具材料。本文阐述了金刚石刀具材料的特性,切削加工铝合金时PCD刀具材料粒度和复合片厚度、几何角度、切削用量的选择。 关键词:金刚石;刀具材料;粒度;切削用量;选择 The Choice of the Material and the Cutting Parameter when Aluminum Alloy Cutted by Diamond Cutting-tools XIONG Jian-wu,ZHOU Jin,CHEN Xiang-shun (Department of Machine and Electricity Enginerring,Hunan Railway Professional-Technology College,Zhuzhou 412001 China) Abstract:Diamond is the best material of cutting-tools to cut nonferrous metals.This paper discussed the specific property of diamond cutting-tools,the choice of the size and thickness of PCD cutting-tools,the choice of degree of cutting-tools and cutting parameter,when the aluminum alloy cutted by diamond cutting-tools. Key words:diamond;material of cutting-tools;size;cutting parameter;choice 1 金刚石刀具材料的特性适合于切削加工铝合金 金刚石的热稳定性比较差,切削温度达到8000C时,其硬度就会大大降低。金刚石刀具不适合于加工钢铁类材料,因为,金刚石与铁有很强的化学亲合力,在高温下铁原子容易与碳原子相互作用使其转化为石墨结构,刀具极容易损坏。金刚石刀具主要适合于加工非金属材料、有色金属及其合金。采用单晶金刚石刀具,在超精密车床上可实现镜面加工。 单晶金刚石刀具是目前超精密切削加工领域中最主要的刀具,其刃口可磨得非常锋利,刃口钝圆半径可达20~30nm,加工工件表面粗糙度极小,可达Ra为0.01μm的镜面水平,且刀具寿命很高,刃磨一次可以使用几百个小时。目前,单晶金刚石刀具广泛应用于加工计算机磁盘基片、录像机磁鼓、激光反射镜、各种天文望远镜、显微镜、光学仪器。 聚晶金刚石(PCD)刀具主要用于加工耐磨有色金属及其合金和非金属材料,与硬质合金刀具相比,能在很长的切削过程中保持锋利刃口和切削效率,使用寿命远远高于硬质合金刀具。PCD刀具应用领域分布为:车削占37.6%、镗削占27.1%、面铣占20%、铰削占14.1%、钻削占1.2%。目前,PCD刀具已经广泛应用于汽车、摩托车、航空航天工业、国防工业中一些难加工的有色金属及其合金零部件的高速精密加工。据统计,在PCD刀具的使用领域中,汽车、摩托车占53%,飞机占10%,木材及塑料加工占26%,其他占11%。

切削用量的合理选择

切削用量的合理选择 切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。在确定了刀具几何参数后,还需选定合理的切削用量参数才能进行切削加工。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、转矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。选择合理的切削用量时,必须考虑合理的刀具寿命。 切削用量的选择原则 切削用量与刀具使用寿命有密切关系。在制定切削用量时,应首先选择合理的刀具使用寿命,而合理的刀具使用寿命则应根据优化的目标而定。一般分最高生产率刀具使用寿命和最低成本刀具使用寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 粗车切削用量的选择 对于粗加工,在保证刀具一定使用寿命前提下,要尽可能提高在单位时间内的金属切除量。在切削加工中,金属切除率与切削用量三要素绝保持线性关系,即其中任一参数增大一倍。都可使生产率提高一倍。然而由于刀具使用寿命的制约,当任一参数增大时,其他二参数必须减少。因此,在制定切削用量时,三要素的最佳组合,此时的高生产率才是合理的。由刀具寿命经验公式知,切削用量各因素对刀具使用寿命的影响程度不同,切削速度对使用寿命的影响最大,进给量次之,被吃刀量影响最小。所以在选择粗加工切削用量时,当确定刀具使用寿命合理数值后,应首先考虑增大被吃刀量,其次增大进给量,然后根据使用寿命、被吃刀量和进给量的值计算出切削速度,这样既能保持刀具使用寿命,发挥刀具切削性能,又能减少切削时间,提高生产率。被吃刀量应根据加工余量和加工系统的刚性确定。 精加工切削用量的选择 选择精加工或半精加工切削用量的原则是在保证加工质量的前提下,兼顾必要的生产率。进给量根据工件表面粗糙度的要求来确定。精加工时的切削速度应避开积屑瘤区,一般硬质合金车刀采用高速切削。 大件精加工时,为保证至少完成一次走刀,避免在切削时中途换刀,刀具使用寿命应按零件精度和表面粗糙度来确定。 切削用量制定 目前许多工厂是通过切削用量手册、

数控车床编程如何确定切削用量与进给量

数控车床编程如何确定切削用量与进给量 在编程时,编程人员必须确定每道工序的切削用量。选择切削用量时,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。 上述诸因素中以切削速度、切削深度、切削进给率为主要因素。 切削速度快慢直接影响切削效率。若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。决定切削速度的因素很多,概括起来有: (1)刀具材料。刀具材料不同,允许的最高切削速度也不同。高速钢刀具耐高温切削速度不到50m/min,碳化物刀具耐高温切削速度可达100m/min以上,陶瓷刀具的耐高温切削速度可高达1000m/min。 (2)工件材料。工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。 (3)刀具寿命。刀具使用时间(寿命)要求长,则应采用较低的切削速度。反之,可采用较高的切削速度。 (4)切削深度与进刀量。切削深度与进刀量大,切削抗力也大,切削热会增加,故切削速度应降低。 (5)刀具的形状。刀具的形状、角度的大小、刃口的锋利程度都会影响切削速度的选取。 (6)冷却液使用。机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。 上述影响切削速度的诸因素中,刀具材质的影响最为主要。 切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。这样可以减少走刀次数。 主轴转速要根据机床和刀具允许的切削速度来确定。可以用计算法或查表法来选取。 进给量f(mm/r)或进给速度F(mm/min)要根据零件的加工精度、表面粗糙度、刀具 和工件材料来选。最大进给速度受机床刚度和进给驱动及数控系统的限制。 编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。当然也可以凭经验,采用类比法去确定切削用量。不管用什么方法选取切削用量,都要保证刀具的耐用度能完成一个零件的加工,或保证刀具耐用度不低于一个工作班次,最小也不能低于半个班次的时间。 浅谈模具浇注系统设计的几个原则 1、流程应尽量短在满足成型和排气要求的前提下系统长度应尽量短,各段应尽量平直,以使塑料熔体在模具中的流程尽量短而且不发生弯曲,从而可减小注射压力和熔体的热量损失,并缩短熔体充模时间。

相关主题
文本预览
相关文档 最新文档