当前位置:文档之家› ABB机器人零点校准方法

ABB机器人零点校准方法

ABB机器人零点校准方法
ABB机器人零点校准方法

F l e x P e n d a n t的操作方式

1、操作FlexPendant时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示

图12

2、手持操作器主要部件如图13所示

图13

3、控制柜上的主要按钮和端口如图14所示

图14

4、控制柜上钥匙开关的位置于意义如图15所示

图15注:手动全速模式不建议使用

校准机器人零点位置的具体方法

注:需要点击操作的地方都做了浅红色标记

第一步:

选择手动操纵(参看图1,首先把钥匙开关打到手动位置)

方法:1>点击ABB2>点击手动操纵

图1

第二步:选择动作模式(参看图2和图3)

方法:1>点击动作模式2>点击轴1-3或者轴4-6

3>点击确定

第三步:选择工具坐标(参看图2和图4)

方法:1>点击工具坐标2>点击tGripper3>点击确定

图2图3

第四步:选择移动速度(参看图2和图5)

方法:1>点击增量2>点击中或者小3>点击确定

图4图5 第五步:手动移动机器人各轴到机械零点位置(参看图2)

方法:此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意:

如果先前选择轴1-3则

1>操纵杆上下移动为2轴动作

2>操纵杆左右移动为1轴动作

3>操纵杆顺/逆时针旋转为3轴动作

如果先前选择轴4-6则

1>操纵杆上下移动为5轴动作

2>操纵杆左右移动为4轴动作

3>操纵杆顺/逆时针旋转为6轴动作

1>左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面)

2>右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点图6 A(六轴机器人)

图6B(四轴机器人)

移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。

机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。

第六步:更新转数计数器(参看图1,此时可以示教器使能开关)

方法:1>点击ABB2>点击校准3>点击ROB_1(参看图7)

图7图8

4>点击转数计数器(参看图8)

5>点击更新转数计数器…(会弹出一个警告界面)

6>点击是

7>点选显示转数计数器未更新所有轴,显示转数计数器已更新的轴不用选择(参看图9)8>点击更新(会弹出一个警告界面如图10)

图9

9>点击更新(会弹出一个进度窗口然后等待)

图10

最后显示更新以后的状态如图11所示

10>点击关闭(更新完毕)

图11 第七步:重新启动机器人方法:1>点击ABB2>点击重新启动3>点击热启

ABB机器人零点校准方法

FlexPendant 的操作方式 1、操作 FlexPendant 时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图 13 3、控制柜上的主要按钮和端口如图14所示 图 14 4、控制柜上钥匙开关的位置于意义如图15所示 图15 注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法: 1> 点击 ABB 2> 点击手动操纵

图 1第二步:选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 - 3 或者轴4 - 6 3> 点击确定 第三步:选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击 tGripper 3> 点击确定 图2图3第四步:选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小 3> 点击确定 图 4 图 5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意: 如果先前选择轴1 - 3 则 1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 - 6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 图 6 A(六轴机器人) 图 6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击 ABB 2> 点击校准 3> 点击 ROB_1 (参看图7)

LC-MS自校准方法

Bruker Esquire HCT PLUS 大容量离子阱LC/MSn 液相色谱-质谱联用仪自校准方法 本规程参照国际法制计量组织(OIML)技术工作导则第二部分:OIML国际建设和国际文件起草与表述规程、JJG1002-1998国家计量检定规程编写和GB3100-93国际单位制及其应用编写的。 1.范围 本规程适用于新安装、使用中和调试后的液相色谱-质谱联用仪的自校准方法。 2.计量单位 本规程中的计量单位一律采用国家颁布的法定计量单位及其符号。 3.计量要求 质谱:质量范围50~3000m/z 质量稳定性:标样的离子,在仪器工作4h后,其漂移应在±0.5u以下 分辨本领:R=m/Δm 灵敏度:MS灵敏度:把溶在溶剂中的标样,用注射器进样,标样的目标离子信噪比大于10:1;MS/MS灵敏度:标样的目标二级离子信噪比大于10:1 液相色谱:可按要求做各种配比的流动相变化 流动相:甲醇、乙腈、水均应为色谱级,使用前应需过滤、脱气。 5.技术要求 5.1 外观要求 仪器应有下列标志:仪器名称、型号、制造厂名、生产日期及仪器编号等;仪器主机、色谱仪、计算机、检测器、真空部件等各部件必须完好无损;仪器各参数选择和按键形状、标记应清晰无误,并易于操作,仪器启动后应无异常噪声在。 5.2 安装条件 仪器及所有紧固良好,连接线应连接良好,活动部件应平稳适宜,气路系统应可靠密封,不泄漏,仪器的各旋钮及功能应能正常工作。 5.3 环境 室内环境:应清洁无尘,无易燃、易爆、腐蚀性气体,室内排风良好,不应放置与测定无关的其它杂物。温度:10~30℃,相对湿度:≤85% 电源:电压220±10v 频率50HZ

机器人零点标定方法

机器人零点标定方法 设备维修技术档案系列资料一.哪些情况需要标定零点: 零点是机器人坐标系的基准,没有零点,机器人就没有办法判断自身的位置。 机器人在如下情况下要重新标定零点: 1.进行更换电机、机械系统零部件之后。 2.超越机械极限位置,如机器人塌架。 3.与工件或环境发生碰撞。 4.没在控制器控制下,手动移动机器人关节。 5.整个硬盘系统重新安装。 6.其它可能造成零点丢失的情况。 二.零点标定: 按下面方法可以标定零点: *千分表:手工检测,输入数据的方法。 *EMT:电子仪表自动标定记录的方法。 我们这里只介绍EMT方法。 1.机器人切换到手动方式T1。 2.用左上角第一个软键切换工作方式到出现“+/-”号加手形图标为止。 3.左手扣住左侧底面使能杆,屏幕右侧将出现纵列布置的A1-A6图标。 4.按右侧对应轴的“+”或“-”软键,移动要标定的轴到零点前预停位置,使得机械臂关节两侧刻槽对准。 5.把EMT安装到对应轴指定的仪表零点触头安装底座位置。6.EMT电缆插头连接到机器人X32插口。 7.此时,如预停位置正确,则EMT右侧两个灯同时点亮。不亮时,可以用手动操作重新微调位置。 8.按软键SETUP(设定)。 9.在下级菜单中选择MASTER(管理,这里指标定零点)。10.在下级菜单中选择EMT,回车。屏幕显示出准备标定的机器人轴号:

如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 11.按软键MASTER,显示信息“Start key required(需要按启动键)”。 12.扣住使能杆,按软键Program start forwards(程序正向启动,即左侧硬键盘的“+”号外套顺时针箭头)。对应轴在程序控制下移动。当EMT检测到参考点(参考刻槽),移动停止,零点位置被记录到计算机,对应轴标定显示被清除。 ***注意: 1)标定一定要从低轴号开始,否则系统将报警。 2)A1、A6轴关节的一侧刻度槽改成螺钉或突起标记,和其它轴不同,要注意。 三.反标定: 一个不可靠的零点也可以删除。步骤是: 1.按软键SETUP(设定)。 2.在下级菜单中选择MASTER(管理,这里指零点标定)。3.在下级菜单中选择EMT,回车。屏幕显示出准备删除零点的机器人轴号: 如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 4.按软键UNMASTER,对应轴的零点被删除。该轴可以重新标定零点。 生产部设备工装科陈刚 2003/8/21 修改:2005/7/24

自校零和自校准技术

新型传感器论文题目:自校零和自校准技术

摘要 本文从原理上分析论证了自校准与自校零技术;重点论述了实时在线校准技术的实现方法,从校准的定义出发,引申出了仪器仪表自校准的概念,并对自校准实现的基本原理和过程进行了分析,提出了自校准设计过程中几个关键点,以及这些关键点对自校准的影响。 关键词:传感器;电信号;自校零技术;自校准技术

第一章引言 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 进行自校准的目的,其一,不必将测试仪器仪表脱离原有的环境专门送至校准机构进行校准,在误差精度满足的前提下,提高便利性,同时保证环境的一致性;其二,某些电测仪器设备集成在大型设备中,不容易拆卸,若能够自校准,将更加方便;其三,单片机等控制器及校准电路为自校准的实现成为了可能,可实现自动化,不用进行人工校准。 本文主要针对传感器的自校零技术和自校准技术进行论述。通过对这方面的了解与学习,希望可以在现有的技术水平上进行改进,使其有更好的性能,能更准确地工作,更好地为我们所用。

第二章自校零技术 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 2.1自校零的原因 因为仪器存在误差且误差很可能随环境而变化,所以就需要设计一种自校正装置,使得传感器的参数发生漂移时能够实现自我的补偿与校准,从而使得测量结果更加精确。 以线性系统为例,假设一传感器系统经标定实验得到的静态输出(y)—输入(x)特性如下: y=a 0+a 1x 式中:a 0——零位值,即当输入x=0 时之输出值; a 1——灵敏度,又称传感器系统的转换增益。 对于一个理想的传感器系统,a 0与a 1应为保持恒定不变的常量。但是实际上,由于各种内在和外来因素的影响,a 0 , a 1都不可能保持恒定不变。譬如,决定放大器增益的外接电阻的阻值就会因温度变化而变化,因此就会引起放大器增益改变,从而使得传感器系统总增益改变,也就是系统总的灵敏度发生变化。设a 1=S+Δa 1, 其中S 为增益的恒定部分,Δa 1为变化量;又设a 0=P+Δa 0,P 为零位值的恒定部分,Δa 0为变化量,则 x a S a P y )()(10?++?+= 式中:Δa 0——零位漂移; Δa 1——灵敏度漂移。 2.2传感器的实时在线自校准 2.2.1实时测量零点 实时测量零点有两种方法,方法一:不含传感器自校,如图2.1所示;方法二:含传感器自校,如图2.2所示。

校准机器人零点位置的具体方法

校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置)方法: 1> 点击ABB 2> 点击手动操纵 图 1 第二步: 选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 -3 或者轴4 -6 3> 点击确定 第三步: 选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击tGripper

图 2 图 3 第四步: 选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小

图 4 图 5 第五步: 手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系注意: 如果先前选择轴1 -3 则

1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 -6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色 胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各 自机械绝对零点

图 6

移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步: 更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击ABB 2> 点击校准 3> 点击ROB_1 (参看图7) 图7 4> 点击转数计数器(参看图8) 5> 点击更新转数计数器…(会弹出一个警告界面) 6> 点击是

常用玻璃量器的自校准方法

深圳市龙岗区环境监测站 作业指导书 标题:常用玻璃量器的自校准方法

文件编号:LGHJ/ZY-ZB-09(第A版,第0次修订)第1页共4页 1、目的 对常用玻璃量器进行自校准,使其适合准确度要求较高的分析工作。 2、范围 适用于本站实验室在下列情况中使用的滴定管、吸管、量瓶等玻璃量器的自校准:2.1为满足实验分析中需要准确定量的玻璃量器进行自校准。 2.2在实验过程中,对玻璃量器的标称值有怀疑时要对所用玻璃量器进行自校准。 3、职责 3.1质保人员对分析中准确定量的玻璃量器进行自校准,并对校准结果进行判定、 编写自校准报告。 3.2科室主任负责审核和签发自校报告。 4、技术要求与检定条件:见《常用玻璃量器检定规程》JJG196-1990。 5、校准程序 5.1玻璃量器的校准采用衡量法。 5.2清洗被检量器:量器用重铬酸钾洗液和等量的浓硫酸混合剂或清洁剂进行清洗,然后用水冲净,器壁上不应有挂水等沾污现象。液面下降或上升时与器壁接触处形成正常弯液面。 5.3洗净的量器应提前放入工作室,使其与室温尽可能接近。 5.4取一只容量大于被检量器的洁净有盖称量杯(如果检定量瓶则取一只洁净干燥 的待检量瓶),进行空称量平衡。 5.5滴定管的校准 5.5.1活塞密合性检查 在活塞不涂凡士林的清洁滴定管中加蒸馏水至零标线处,放置20分钟后,漏水量应不超过1小格。 5.5.2校准操作:滴定管的活塞两端涂好凡士林(以能达到润滑的目的为准,万勿沾污塞孔!),加蒸馏水到零标线处,记录水温。以滴定的速度放出0~10毫升水(相差不要超过±0.1毫升)于已称量的称量杯中,再准确称量至0.001克。两次称量之差即为放出水的质量。同法,依次称出0~20、0~30…毫升等分度线间水的质量,按实

爱普生机器人原点校准方法

EPSON机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用, 需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图: 2.点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图:

— 3.手动将机械手调整到脉冲零点位置;如下图所示: +Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:( U轴0位,丝杆端面对应外套上的指针;丝

—杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手 伺服马达刹车;接着点击“motor off”按钮,即关闭机械手;具体如图: 4. 保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在 软件中打开命令窗口(ctrl+M)中输入: Encreset 1 按回车 Encreset 2按回车 Encreset 3按回车 Encreset 3,4按回车 如图: 5. 保持机械手目前手动零点位置不动,重启控制器,具体操作如图:

测厚仪自校准方法

超声波测厚仪自校准方法 1.目的 为了保证超声波测厚仪的正确使用及测量结果的准确可靠,特制定本自校准方法。 2.依据 超声波测厚仪使用手册等 3. 校准方法 3.1 采用台阶试块,分别在厚度接近待测厚度的最大值和待测厚度的最小值(或待测厚度最大值的1/2)进行校准。 3.1.1试块的基本要求和尺寸见附图。3.1.2 测定曲面工件厚度时,应使用同一曲率的试块,或者对平面试块加以修正。 3.2 将探头置于较厚试块上,调整声速,使得测厚仪显示读数接近已知值。 3.3 将探头置于较薄试块上,调整零位,使得测厚仪显示读数接近已知值。 3.4 反复调整,使得量程的高低两端都得到正确读数,仪器即告调整完毕。 3.5 如果已知材料声速,则可预先调好声速,然后在仪器附带的试块上,调节零位,使得仪器显示为试块的厚度,仪器即告调整完毕。 4.记录 校准过程应做好记录工作,记录至少包括仪器型号、探头、试块、耦合剂、校核人员、测定日期。记录格式见“超声波测厚仪自校准记录表”(SDTJ/JH-01-01)。 编制: 审核: 批准:

附图: 6.3

超声波测厚仪自校准记录表 SDTJ/JH-01-01

超声波测厚仪自校准、期间核查记录表填写说明 1、设备名称:超声波测厚仪 2、设备型号:进行自校准或核查的超声波测厚仪本身的型号;如:TT120、TT100等 3、本院编号:进行自校准或核查的超声波测厚仪在本单位内部的仪器编号 4、出厂编号:进行自校准或核查的超声波测厚仪出厂时生产厂家给定的编号 5、声速:对超声波测厚仪进行自校准或核查时,根据标准块的材质选定的超声波声速,例如:当 标准块的材质为碳钢时超声波测厚仪的声速应为v=5790m/s;当标准块的材质为不锈钢时 超声波测厚仪的声速应为v=5900m/s 6、标准块厚度:对超声波测厚仪进行自校准或核查时所使用的标准试块的实际厚度 7、显示值:进行自校准或核查的超声波测厚仪对标准块进行测厚时超声波测厚仪所显示的标准块厚度 值 8、允许误差:根据标准块实际厚度,运用允许误差计算公式计算得到的数值 9、实际误差:标准块厚度与显示值的差值 10、备注:对超声波测厚仪进行自校准或核查的结果 11、说明:对超声波测厚仪进行自校准或核查过程中需要特别说明的问题 12、校准人:对超声波测厚仪进行自校准或核查的操作者姓名 13、年月日:对超声波测厚仪进行自校准或核查的时间

爱普生机器人原点校准方法

爱普生机器人原点校准 方法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

E P S O N机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用,需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 2.点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 3.手动将机械手调整到脉冲零点位置;如下图所示:

+Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:(U轴0位,丝杆端面对应外套上的指针;丝杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手伺服马达刹车;接着点击“motoroff”按钮,即关闭机械手;具体如图: 4.保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在软件中打开命令窗口(ctrl+M)中输入: Encreset1按回车 Encreset2按回车

自校准方法编写规定

1 目的 对检测设备自校准方法的编制进行控制,保证自校准方法正确实用、满足自校准工作要求。 2 范围 适用于本实验室检测工作使用中或修理后的、目前尚无计量检定规程需要并且有可能进行自校准的检测设备自校准方法的编审。 3 职责 3.1质控室负责组织编制自校准方法,并监督执行; 3.2相关室主任负责组织对自校准方法进行实验验证; 3.3技术负责人批准自校准方法。 4 要求 4.1每种自校准设备编写一个自校准方法。 4.2自校准方法编写格式要求。 4.2.1自校准方法的编号如下: 顺序号 4.2.2自校准方法的文件名称为:□□□自校准方法,其中□□□为检测设备名称。 4.3自校准方法内容要求。 4.3.1目的 编制自校准方法的目的。 4.3.2适用范围 说明自校准方法适用的检测设备种类和型号。 4.3.3职责 规定相关责任人的责任。 4.3.4概述 对检测设备的结构、原理及主要用途作简单介绍。

4.3.5技术要求 4.3. 5.1设备外观要求,包括对设备标志、成套完整性、各种开关、电源线等的要求。4.3.5.2技术指标的要求全面、详细。 4.3.6校准条件 包括设备外观及环境条件、仪器安装要求、校准设备、校准标准物质。根据实验室程序文件《实现测量可溯源性程序》(HSJC-PF-223-2009)要求,自校准应有经检定合格的计量器具或可港源标准物质作为依据。 4.3.7自校准项目和自校准方法 应包括设备一般检查和各项性能检查。 4.3.8自校准周期 规定设备自校准周期。 4.3.9支持性文件 列出自校准方法中直接引用和必须配合使用的文件名称和编号。 4.4自校准方法实验验证 操作人员对设备进行自校准,出具自校准报告,主任审核自校准报告。 5 相关文件 5.1 HSJC-PF-203-2009《管理体系文件控制和维护程序》 5.2 HSJC-PF-223-2009《实现测量可溯源程序》 5.3 HSJC-PF-222-2009《仪器设备的控制与管理程序》 5.4 HSJC-PF-217-2009《检测方法及方法确认程序》 6 运行记录 6.1《检测设备自校准方法文稿》 6.2《检测设备自校准实验原始记录和实验报告》 6.3《检测设备自校准不确定度分析(必要时)》 6.4记录表HSJC-ZK-307-2009/01《检测设备自校准方法审批表》

机器人的零点问题

机器人的零点问题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一,为什么要Mastering(零点复归) 零点复归机器人时需要将机器人的机械信息与位置信息同 步,来定义机器人的物理位置。必须正确操作机器人来进行零 点复归。通常在机器人从FANUC Robotics出厂之前已经进行了 零点复归。但是,机器人还是有可能丢失掉原点数据,需要重 新进行零点复归 机器人通过闭环伺服系统来控制机器人各运动轴。控制器 输出控制命令来驱动每一个马达。而马达上装配的称为串行 脉冲编码器的反馈装置将把信号反馈给控制器。在机器人操 作过程中,控制器不断的分析反馈信号,修改命令信号,从 而在整个过程中一直保持正确的位置和速度。控制器必须“知 晓”每个轴的位置,以使机器人能够准确地按原定位置移动。 控制器通过比较操作过程中读取的串行脉冲编码器的信号与 机器人上已知的机械参考点信号的不同来达到这一目的 零点复归过程就是读取已知的机械参考点的串行脉冲编码器信 号的过程。这样的零点复归数据与其他用户数据一起保存在控制器备份中,并在未连接电源时由电池能源保持数据。当控制器在正常条件下关闭电源时,每个串行脉冲编码器的当前数据将保持在脉冲编码器中,由机器人上的后备电池提供能源(对P系列机器人来说,后备电池可能位于控制器上)。当控制器重新上电时,控制器将请求从脉冲编码器读取数据。当控制器收到脉冲编码器的读取数据

时,伺服系统才可以正确操作。这一过程可以称为校准过程(也就是说校准过程是机器人自身进行)。校准 在每次控制器开启时自动进行。如果控制器未连接电源时断开了脉冲编码器的后备电池,则上电时校准操作将失败,机器人唯一可能做的动作只有关节模式的手动操作。要还原正确的操作,必须对机器人进行重新零点复归与校准。 因为Mastering的数据出厂时就设置好了,所以,在正常情况下,没有必要做Masteing,但是只要发生以下情况之一,就必须执行Mastering。 机器人执行一个初始化启动; SRAM(CMOS)的备份电池的电压下降导致Mastering数据丢失;APC的备份电池的电压下降导致APC脉冲记数丢失; 在关机状态下卸下机器人底座电池盒盖子; 更换马达; 机器人的机械部分因为撞击导致脉冲记数不能指示轴的角度; 编码器电源线断开; 更换SPC; 机械拆卸 警告:如果校准操作失败,则该轴的软件移动限制将被忽略 ,并允许机器人超正常的移动。所以在未校准的条件下移动 机器人需要特别小心,否则将可能造成人身伤害或者设备损 坏。

仪器自校校准办法

自校仪器等校准办法 GY-YQ-01-2011 编制:谢远鹏 审核:王爱华 批准:蔡海祯 使用部门:工程技术部 编号:03 2014年10月15日发布2014年10月15日实施 兰州广宇建筑安装有限公司发布

仪器检定方法 为了保证工程质量,强化监视和测量装置的管理,使监视和测量装置的管理规范化,标准化,制度化,保证公司范围内的无溯源关系的装置始终处于有效的控制状态,特制定本检定办法,望各工区认真遵照执行。 1检定范围 1.1砼坍落度筒 1.2砼试模(包括砼抗渗试模)砂浆试模 1.3塔尺 1.4检查尺 1.5阴阳角检测尺 2检定项目 2.1砼坍落度筒:a几何尺寸b竖向轴线是否偏心 2.2砼砂浆试模:a几何尺寸b相邻面的垂直度 2.3塔尺: 3.0m 5.0m长度 2.4检查尺:工作面是否处于直线垂直状态 2.5阴阳角检测尺:是否满足阴、阳角检测的角度 3检定周期的确定 由于以上监视和测量装置在施工现场的使用较频繁,其准确与否,将直接影响工程质量,所以规定以上计量器具检定周期为三个月。 4检定方法与标识 4.1坍落度筒的检定方法 a将坍落度筒固定在刨光的木板上,用铅笔在筒内沿筒内壁划圆,检查期圆度,并用分规再量出直径,在标准尺上读出直径尺寸,(筒上下口直径分别为100mm、200mm) b用刨光的木方做成倒“T”型,横杆长度为190mm,竖杆长度为350mm,制作时保证横、竖杆间的角度为90度,检定时,将其抄平立放后,将坍落筒套在其外,在筒上口标高处在竖杆上划线,用标准尺量出标记到底板的高度(300mm)。 C要求: 1)筒直径允许偏差≤2mm

2)筒高度允许偏差≤2mm 3)筒内壁必须光滑,无凸凹部位 d 用δ=4mm厚钢板(尺寸为250×250mm)在对称中心垂直焊-φ6mm,长350mm 的钢筋,保证钢筋与钢板垂直,并在钢板上划一个以上钢板对称中心为圆,以筒下口半径为半径的圆。测定时,将坍落度筒套在φ6mm钢筋外,同时筒下口与钢板上的圆重合,平放安稳,再用标准尺量钢筋与筒上口边缘的距离,(至少二点)如距离相等,则判定坍落度筒竖向轴线下偏心。 4.2砼、砂浆试模的检定方法 首先将试模表面清理干净,然后组装,用300mm标准钢板尺量测几何尺寸,用万能角度规量测试模相邻面的角度(角度规标准钢板尺须检定合格)。要求: A试模内表面必须平整光滑,底侧模不准有翘曲现象。 B试模组装后,各接缝处,不允许有超过1mm以上的裂缝。 C紧固螺栓必须灵活,无脱扣和严重锈蚀现象。 D试模的几何尺寸长,宽、高各边长允许误差≤2mm。 E 试模内角垂直度允许误差≤30′。 4.3塔尺 5.0m以下尺检定方法 用经过检验合格的5m钢卷尺,对需检测3.0m或5.0m塔尺进行检测。 A每米段允许偏差≤1mm。 3.0m塔尺累计允许偏差≤3mm 5.0m塔尺累计允许偏差≤4mm b 被检尺尺面必须清净,光滑,刻度、数字清晰,抽拉自如,无弯曲打折现象。 4.4检查尺的检定方法 用小白线检查,两人把白线拉直放在铝合金靠尺工作面的两端,铝合金靠尺工作面没有挠度(成一直线)同白线平行,宽窄一致,然后把铝合金靠尺上来检查检查尺的准确度,允许偏差≤0.5mm。 4.5阴阳角检测尺检定 用万能角度规检查阴阳角检测尺的各个角度,允许偏差≤5′。

ABB机器人零点校准方法_New

ABB机器人零点校准方法_New

ABB机器人零点校准方法

FlexPendant 的操作方式 1、操作FlexPendant 时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图13 3、控制柜上的主要按钮和端口如图14所示 图14 4、控制柜上钥匙开关的位置于意义如图15所示 图15 注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法: 1> 点击ABB 2> 点击手动操纵

图 1 第二步:选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式2> 点击轴1 - 3 或者轴4 - 6 3> 点击确定 第三步:选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标2> 点击tGripper 3> 点击确定 图2图3 第四步:选择移动速度(参看图2 和图5) 方法: 1> 点击增量2> 点击中或者小3> 点击确定 图4图 5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意: 如果先前选择轴1 - 3 则 1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 - 6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 图 6 A(六轴机器人) 图6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击ABB 2> 点击校准3> 点击ROB_1 (参看图7) 图7图8

超声波探伤仪自校准方法

超声波探伤仪自校准方法 ⒈目的 CTS-26型与HS-600型超声探伤仪系携带式A型脉冲反射式超声探伤,可用交流或电池供电工作,采用高亮度内刻度示波管,具有工作频率范围宽探伤灵敏度高、稳定性好、高亮度、示波管波形清晰和体积小、重量轻、耗电小以及造型新颖、操作方便等特点。为确保超声探伤仪功能正常,保证设备精确度、延长使用寿命,特制定本方法。 ⒉依据 (1)超声探伤仪使用手册 (2)JB/T4730-2005 ⒊技术要求 工作频率: 0.5~10MHz 工作方式: 单探头发射接收或双探头分别发射接收 衰减器: 衰减量80dB(20dB×2, 2dB×20) 垂直线性误差: ≤5% 水平线性误差: ≤1% 深度范围: 10~5000mm(钢纵波) ⒋校准项目 4.1 外观应完好,附件应齐全,各控制旋钮、调节装置应灵敏、有效。 4.2 垂直线性误差检查。 4.3 水平线性误差检查。 ⒌校准方法 5.1 检查各控制旋钮,调节是否有效、灵敏。 5.2 垂直线性检查 将《抑制》置最小(红点标志),《工作方式选择》开关置于“上”,使用5P20-D直探头。将探头固定在CS-1型试块上,调节仪器的衰减器和增益,使某一稳定回波的幅度恰为垂直刻度的100%,调节衰减器,每次衰减6dB,其幅度降低一半(即50%;25%;12.5%)其最大偏差应小于垂直刻度的5%。 5.3 水平线性检查

利用BH-50标准回波探头以取得多次无干扰回波后,调节仪器上的有关旋钮使多次回波的前沿挺拔清晰。调节仪器,在先后使每次底波均处于相同幅度(如垂直刻度的80%)的条件下,把第一次底波前沿对准水平刻度“0”。第6次波前沿对准“10”,然后在此条件下,检查第2、3、4、5次底波的前沿是否与相应的水平刻度2、4、6、8对准,其最大偏差应小于水平刻度的0.5格。 ⒍校准结果 6.1 各检查项目均满足为合格。 6.2 有不影响性能的外观缺陷等为准用。 6.3 垂直线性、水平性线超标,调节作用失灵为不合格。 ⒎记录 校准时应详细记录,记录格式见“超声波探伤仪自校准记录表”(SDTJ/JH-04-01) 超声波探伤仪自校准记录表

校准机器人零点位置的具体方法

校准机器人零点位置的具体方法 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置)方法:1>点击ABB 2>点击手动操纵 1 第二步: 选择动作模式(参看图2和图3) 方法:1>点击动作模式 2>点击轴1 — 3 或者轴4 3>点击确定 第三步: 选择工具坐标(参看图2和图4) 方法:1>点击工具坐标

2> 点击tGripper

3>点击确定 图3 第四步: 选择移动速度(参看图2和图5) 方法:1>点击增量 2>点击中或者小

如果先前选择轴1 - 则 3>点击确定 当前选择: Φt?? 第五步: 方法:此时图2上 操纵杆方向 处显示操纵杆移动方向于轴的对应关系 注意: 1>操纵杆上下移动为2轴动作 2>操纵杆左右移动为1轴动作 当前选择: 从列五中选择1牛项目" tGripper Il 具名球 1 H 2 A ? IGriPPer RAPTD /F_ROBI∕PRQG -DλTA ?α□10 RAPTDΛ.R□B1/BASE 新建… ?s 辑* 确定 ”圣 ≠??t?l 虑I 图4 I^QnE60?) 4车动挂纵-坦运 已朋土 (AA r IWA ≠? In?Ui -ISa -I L 賓 Emhtaatj 电真F 电 亡涉止t

3>操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 —6则 1>操纵杆上下移动为5轴动作 2>操纵杆左右移动为4轴动作 3>操纵杆顺/逆时针旋转为6轴动作 1>左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2>右手向唯--- 个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 B4 E A6 轴5轴4 O 轴 6B3 A3 B2 轴 3 Bl A2轴 2

机器人的零点问题

一,为什么要Mastering (零点复归)零点复归机器人时需要将机器人的机械信息与位置信息同步,来定义机器人的物理位置。必须正确操作机器人来进行零点复归。通常在机器人从FANUC Robotics出厂之前已经进行了零点复归。但是,机器人还是有可能丢失掉原点数据,需要重新进行零点复归机器人通过闭环伺服系统来控制机器人各运动轴。控制器输出控制命令来驱动每一个马达。而马达上装配的称为串行 脉冲编码器的反馈装置将把信号反馈给控制器。在机器人操作过程中,控制器不断的分析反馈信号,修改命令信号,从而在整个过程中一直保持正确的位置和速度。控制器必须“知晓”每个轴的位置,以使机器人能够准确地按原定位置移动。控制器通过比较操作过程中读取的串行脉冲编码器的信号与机器人上已知的机械参考点信号的不同来达到这一目的零点复归过程就是读取已知的机械参考点的串行脉冲编码器信 号的过程。这样的零点复归数据与其他用户数据一起保存在控制器备份中,并在未连接电源时由电池能源保持数据。当控制器在正常条件下关闭电源时,每个串行脉冲编码器的当前数据将保持在脉冲编码器中,由机器人上的后备电池提供能源(对P系列机器人来说,后备电池可能位于控制器上)。当控制器重新上电时,控制器将请求从脉冲编码器读取数据。当控制器收到脉冲编码器的读取数据时,伺服系统才可以正确操作。这一过程可以称为校准过程(也就是说校准过程是机器人自身进行)。校准在每次控制器开启时自动进行。如果控制器未连接电源时断开了脉冲编码器的后备电池,则上电时校准操作将失败,机器人唯一可能做的动作只有关节模式的手动操作。要还原正确的操作,必

须对机器人进行重新零点复归与校准。 因为Mastering 的数据出厂时就设置好了,所以,在正常情况下,没有必要做Masteing ,但是只要发生以下情况之一,就必须执行Mastering 。 SRAM(CMO)S 的备份电池的电压下降导致Mastering 数据丢失; AP啲备份电池的电压下降导致APC永冲记数丢失; SPC; 警告:如果校准操作失败,则该轴的软件移动限制将被忽略 ,并允许机器人超正常的移动。所以在未校准的条件下移动 机器人需要特别小心,否则将可能造成人身伤害或者设备损 坏。 注意:机器人的数据包括Mastering 数据和脉冲编码器的数据,分别由各自的电池保持。如果电池没电,数据将会丢失。为了防止这种情况发生,两种电池都要定期更换,当电池电压不足,将有报警“ BLAL提

机器人的零点问题

一,为什么要Mastering(零点复归) 零点复归机器人时需要将机器人的机械信息与位置信息同 步,来定义机器人的物理位置。必须正确操作机器人来进行零 点复归。通常在机器人从FANUC Robotics出厂之前已经进行了 零点复归。但是,机器人还是有可能丢失掉原点数据,需要重 新进行零点复归 机器人通过闭环伺服系统来控制机器人各运动轴。控制器 输出控制命令来驱动每一个马达。而马达上装配的称为串行 脉冲编码器的反馈装置将把信号反馈给控制器。在机器人操 作过程中,控制器不断的分析反馈信号,修改命令信号,从 而在整个过程中一直保持正确的位置和速度。控制器必须“知 晓”每个轴的位置,以使机器人能够准确地按原定位置移动。 控制器通过比较操作过程中读取的串行脉冲编码器的信号与 机器人上已知的机械参考点信号的不同来达到这一目的 零点复归过程就是读取已知的机械参考点的串行脉冲编码器信 号的过程。这样的零点复归数据与其他用户数据一起保存在控制器备份中,并在未连接电源时由电池能源保持数据。当控制器在正常条件下关闭电源时,每个串行脉冲编码器的当前数据将保持在脉冲编码器中,由机器人上的后备电池提供能源(对P系列机器人来说 ,后备电池可能位于控制器上)。当控制器重新上电时,控制器将请求从脉冲编码器读取数据。当控制器收到脉冲编码器的读取数据时,伺服系统才可以正确操作。这一过程可以称为校准过程(也就是

说校准过程是机器人自身进行)。校准 在每次控制器开启时自动进行。如果控制器未连接电源时断开了脉冲编码器的后备电池,则上电时校准操作将失败,机器人唯一可能做的动作只有关节模式的手动操作。要还原正确的操作,必须对机器人进行重新零点复归与校准。 因为Mastering的数据出厂时就设置好了,所以,在正常情况下,没有必要做Masteing,但是只要发生以下情况之一,就必须执行Mastering。 机器人执行一个初始化启动; SRAM(CMOS)的备份电池的电压下降导致Mastering数据丢失; APC的备份电池的电压下降导致APC脉冲记数丢失; 在关机状态下卸下机器人底座电池盒盖子; 更换马达; 机器人的机械部分因为撞击导致脉冲记数不能指示轴的角度; 编码器电源线断开; 更换SPC; 机械拆卸 警告:如果校准操作失败,则该轴的软件移动限制将被忽略 ,并允许机器人超正常的移动。所以在未校准的条件下移动 机器人需要特别小心,否则将可能造成人身伤害或者设备损

ABB机器人零点校准方法

F l e x P e n d a n t的操作方式 1、操作FlexPendant时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图13 3、控制柜上的主要按钮和端口如图14所示 图14 4、控制柜上钥匙开关的位置于意义如图15所示 图15注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法:1>点击ABB2>点击手动操纵 图1 第二步:选择动作模式(参看图2和图3) 方法:1>点击动作模式2>点击轴1-3或者轴4-6 3>点击确定 第三步:选择工具坐标(参看图2和图4) 方法:1>点击工具坐标2>点击tGripper3>点击确定

图2图3 第四步:选择移动速度(参看图2和图5) 方法:1>点击增量2>点击中或者小3>点击确定 图4图5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法:此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系 注意: 如果先前选择轴1-3则 1>操纵杆上下移动为2轴动作 2>操纵杆左右移动为1轴动作 3>操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4-6则 1>操纵杆上下移动为5轴动作 2>操纵杆左右移动为4轴动作 3>操纵杆顺/逆时针旋转为6轴动作 1>左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2>右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点图6 A(六轴机器人)

图6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法:1>点击ABB2>点击校准3>点击ROB_1(参看图7) 图7图8 4>点击转数计数器(参看图8) 5>点击更新转数计数器…(会弹出一个警告界面) 6>点击是 7>点选显示转数计数器未更新所有轴,显示转数计数器已更新的轴不用选择(参看图9)8>点击更新(会弹出一个警告界面如图10) 图9 9>点击更新(会弹出一个进度窗口然后等待)

机器人原点校准命令及方法

EPSON 机器人原点校准命令及用法 一.命令 1.PULSE :根据给出每个关节的脉冲数移动或返回当前位置各关节的脉冲值 例:移动到机器人原点 2.HOFS:设置或返回编码器Z相到机械原点的脉冲数

3.CALPLS :校准位置校准位置((或原点或原点))的脉冲数设置或显示 4.ENCRESET :编码器复位

5.CALIB :将Calpls 的脉冲值写入系统 6. BRAKE :刹车刹车单元单元单元控制控制控制命令命令命令;;控制控制电磁电磁电磁刹车刹车刹车单元单元单元抱闸抱闸抱闸或或松开

二. 机器人与原点校准方法 1.校准方法校准方法:: a. 移动手臂到机械原点或维修前已经确定的位置; b. EncReset (复位编码器每个轴),在命令窗口输入:Encreset 1- Encreset 6; c. 重启控制器,“菜单栏”->工具->控制器->重置控制器; d. 设定原点脉冲,Calpls 0, 0, 0, 0 (在原点位置); 或Calpls Ppls(P1,1),Ppls(P1,2),Ppls(P1,3),Ppls(P1,4) (引用原点变更前已经示教好的P1点); e. Calib (校准每个轴):Calib 1 Calib 2 Calib 3,4 Calib 4 2.轴机器人第二关节轴机器人第二关节精确校准精确校准精确校准((左右手左右手姿姿势校准势校准)) : a. 验证经过校准机器人J2关节的中心是否重合,方法如下: ①准备下图治具,安装在滚珠丝杆的末端;该治具的加工精度应足够高,尽量保证 安装后滚珠丝杆、治具顶尖同心; ②在工作台上固定一个“十”字标记(可以用纸打印),在右手姿势移动机器人,让 装在Z 轴上治具的顶尖对准十字的中心,如下图: Z 轴安装了治具及和“十”字标记对准 ③把当前点示教为P1; ④在命令窗口里输入 JUMP P0/L :Z(0) 命令,让机器人切换到左手姿势,把当前 点示教为P2; ⑤点动Z 轴接近工作台上面的“十”字标记,核对这两个位置是否重合;如果重合 校准到此结束,否则继续进行以下操作。 b.补正J2的原点,在命令窗口输入以下内容: Hofs Hofs(1), Hofs(2)+(Ppls(P1,2)+Ppls(P2,2))/2, Hofs(3), Hofs(4) c.移动机器人手臂对准工作台上面的“十”字标记,示校为P3; d.在命令窗口里输入 JUMP P3/R :Z(0) 命令, 动Z轴接近工作台上面的“十”字标记,核对 这两个位置是否重合;如果重合校准到此结束,否则重复进行1-2步操作。

相关主题
文本预览
相关文档 最新文档