当前位置:文档之家› 齿轮传动效率测试试验台设计说明书(DOC)

齿轮传动效率测试试验台设计说明书(DOC)

齿轮传动效率测试试验台设计说明书(DOC)
齿轮传动效率测试试验台设计说明书(DOC)

齿轮传动效率测试试验台设计说明书

齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。 当输入功率为P1,输出功率为P2时,则齿轮传动效率η可写为

12221121///P P T n T n T iT η===

式中:1T 、2T ——分别为输入轴和输出轴的转矩;

1n 、2n ——分别为输入轴和输出轴的转速; i ——传动比,12/i n n =

利用测试手段,通过测量齿轮试验箱的输入和输出轴的转矩和转速,即可由上式迅速确

定齿轮的传动效率。

一:测定效率的方式:开放功率流式和封闭功率流式

①开放功率流式:借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。一般测试对象的功率减小时多采用此种形式。

优点:与实际工作情况一致,简单易行,实验装置安装方便。 缺点:动力消耗大,对于需作较长时间实验的场合(如疲劳试验),耗费能量尤其严重。 ②封闭功率流式:采用输出功率反馈给输入从而形成功率流封闭。一般测试对象的功率较大时或需作长时间试验时多采用此种形式。

优点:电源只提供齿轮传动中摩擦阻力所消耗的功率,可大大地减小功耗。 缺点:试验台的控制复杂,价格较高。

鉴于在学生实验中一般都是小功率,而且不需长时间试验,所以选择开放功率流式测定效率。

二:实验系统的技术参数

1、齿轮箱的长度:400~600mm

2、齿轮箱的宽度:200~400mm

3、齿轮箱的高度:300~400mm

4、转速调节范围:0~1440r/min

5、传动比:2~20

6、功率条件范围:0~4kw

7、扭矩测量范围:0~500N·m

三:动力源

①直流电动机:将直流电能转换为机械能的转动装置。电动机定子提供磁场,直流电源向转子的绕组提供电流,换向器使转子电流与磁场产生的转矩保持方向不变。

特点:

1.调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。

2.起动力矩大,可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均

匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。

②交流电动机:用于实现机械能和交流电能相互转换的机械。交流电动机由定子和转子组成,并且定子和转子是采用同一电源,所以定子和转子中电流的方向变化总是同步的,即线圈中的电流方向变了,同时电磁铁中的电流方向也变,根据左手定则,线圈所受磁力方向不变,线圈能继续转下去。

交流电机(不管是同步还是异步)的转速都受电源频率的制约。因此,交流电机的调速比较困难,最好的办法是改变电源的频率,而以往要改变电源频率是比较复杂的。

③汽油机:以汽油为燃料,采用电点火,转速一般在3000~6000转/分,甚至高达每分万转。功率由几百瓦至几百千瓦。在农林方面广泛用作采茶机、割草机、机锄、喷药机、割灌机、机锯等的动力;在交通方面用作摩托车、汽车、小艇的动力。此外,用于通信和电影放映机的小型发电机组,采矿用凿岩机、建筑用打夯机等,无不以小型汽油机作动力。

④柴油机:以柴油为燃料,利用压缩热自燃,转速一般在百余转至五、六千转每分,功率由几千瓦至数万千瓦。广泛用作汽车、拖拉机、坦克、船舶、军舰、机车、发电机组、物料搬运机械、土方机械等的动力。

从上面的介绍可以看出,汽油机和柴油机虽然用途广泛,但是对于本实验台来说,动力过于强劲,且调速不便。本实验台所测试的减速器,其设计时选用电机带动,电机额定功率为4kw,满载转速1440转/分。根据本实验简单易行的原则,应该尽量使实验的环境与减速器实际工作环境保持一致,以便使测得的数据实际有效。故选用减速器设计时的电机——Y 系列Y112M-4一般用途的全封闭自扇冷鼠笼型三相异步电动机,额定功率为4kw,满载转速1440转/分。

减速器电动机选用Y112M—4

同步转速:1500r/min,满载转速为1440r/min

四:转速转矩测量

转矩测量技术包括两方面:一是传感器,二是测试系统。

⑴转矩传感器主要有两大类:第一类是以应变片作为敏感元件的传感器。它在转轴或与转轴串联的弹性轴上安装4片应变片,应变片连接成惠登斯桥,转矩使轴的微小变形引

起应变片阻值发生变化,桥输出信号与转矩成比例。第二类是通过磁电感应获取信号的磁(齿)栅式传感器。这类传感器输出信号的本质是角位移信号,需对信号进行组合处理才能得到转矩信息。它是非接触式传感器,无磨损,无摩擦,是目前应用最广泛的转矩传感器。

转速传感器,将旋转物体的转速转换为电量输出的传感器。转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。按信号形式的不同,转速传感器可分为模拟式和数字式两种。前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机等。

转矩传感器,利用扭轴把转矩转换成扭应力或扭转角,再转换成与转矩成一定关系的电信号的传感器。扭轴的形式有实心轴、空心轴、矩形轴等。按照作用原理不同,扭应力式转矩传感器可分为电阻应变式和压磁式两种;扭转角式转矩传感器可分为振弦式、光电式和相位差式三种。

所以可以选择两个额定转矩为500N·m的JC型转矩转速传感器。

⑵测试系统的传感器都是齿栅式转矩传感器。主要分为数字式、单片微机型、通用微机型三种。数字式是采用中小规模集成电路和组合逻辑设计硬件系统,这是早期的测试系统,缺点是仪器系统可靠性差,功能单一,操作复杂,体积庞大。单片微机型采用单片微机采集与处理数据,体积小、性能高,但是仪器的分析能力弱。通用微机型利用单片微机采集数据,再把数据送到通用微机上进行离线的数据分析与处理。本实验中只需要测定2个数据,不需要分析,故选用单片微机型的测试系统,具体型号可以选用上海良表仪器仪表有限责任公司(原上海第二电表厂)的ZJYW—1型。

五:负载

①机械制动器:由耐热、抗磨性能好的制动块及其固定与移动机构组成的,能对水轮发电机转子进行摩擦制动的装置。

②测功器:测量机械的输出扭矩或驱动扭矩的装置。如果同时测得机械的转速,还可算出机械的输出功率或驱动功率。测功器主要用来测定发电机、电动机、内燃机、燃气轮机和泵等机械的轴功率特性。有些测功器既可吸收被测机械的机械能而测定其输出功率,又可放出能量测定机械的驱动功率。

③磁粉制动器:制动部件与运动部件借助于磁粉间的电磁吸力形成的磁粉链,同工作面之间的摩擦力产生制动功能的制动器。其具有激磁电流和传递转矩基本成线性关系的特点。在同滑差无关的情况下能够传递一定的转矩,具有响应速度快、结构简单、无污染、无噪音、无冲击振动节约能源等优点。是一种多用途、性能优越的自动控制元件。现已被广泛应用于造纸、印刷、塑料、橡胶、纺织、印染、电线电缆、冶金、压片机以及其他有关卷取加工行业中的放卷和收卷张力控制。

机座式磁粉制动器:CF—50

六:联轴器

输入端输入转矩为22.85N·m,故选用LT3型弹性套柱销联轴器,主动端为Z型轴孔,C型键槽,从动端J型轴孔,B型键槽,其许用转矩为31.5N·m

输出端输出转矩为382.55N·m,故选用HL3型弹性柱销联轴器,主动端为Y型轴孔,其许用转矩为630N·m

齿轮传动效率测定

验证性实验指导书 实验名称:齿轮传动效率测定 实验简介:齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 适用课程:机械设计 实验目的:A了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;B掌握功率流分析、效率测定的方法;C测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;D初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。。面向专业:机械类 实验项目性质:验证性(课内选做) 计划学时: 2学时 实验分组:4人/组 实验照片:

《机械设计》课程实验 实验二齿轮传动效率测定 齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 一、实验目的 1. 了解电功率封闭式齿轮传动试验台的基本原理、结构及特点; 2.掌握功率流分析、效率测定的方法; 3.测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线; 4.初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。 二、实验设备和工具 1. Z-45直流电动机2台; 2. ZJ型转矩转速传感器2台; 3. ZD10型减速器2台; 4. JXW-1型机械效率仪1台; 5. TSGC-20调压器1台; 6. 加载控制箱1台; 7. CP-80打印机1台。 三、实验原理 1. 齿轮传动试验台简介 所有类型的齿转传动试验台,根据运转与否分为运转式和非运转式两大类。非运转式试验台指齿轮或齿轮副只能在静止状态下进行试验的试验台,如静态加载的齿轮静强度试验台。非运转式试验台中被测齿轮的试验状态同齿轮的实际工作状态有较大的差别,不大可能获得满意的试验结果。运转式试验台是指齿轮副能在一定转速下进行试验的设备。该类设备一般都由驱动装置、传动装置、加载装置、齿轮试件失效监护装置、润滑装置、测试装置等六部分组成。其试验能获得较接近实际的结果,运转式试验台根据试验台功率的传递原理和加载方法的不同,可分为开放功率流式和封闭功率流式两类。 (1)开放功率流式试验台 所谓开放功率流,就是齿轮传动所传递的功率由原动机传来,经过齿轮传动和试验装且中的全部传动件,最后传到耗能装置中,由耗能装置即加载装置将其全部消耗,并借助耗能装置给被测装置加载。功率传递的流向未形成封闭回路,故称其为开放功率流式试验台,图2-1为开放功率流式试验台构成原理。

()齿轮传动效率及齿轮疲劳实验(文档)

齿轮传动效率及齿轮疲劳实验 (附加机械功率、效率测试实验) 一.实验目的 1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。 2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。 3.在封闭齿轮实验机上测定齿轮的传动效率。 4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。 二.实验设备及工作原理 1.封闭(闭式)传动系统 封闭齿轮实验机具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱4),每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与V,齿轮5与5'),两个实验齿轮箱之间山两根轴(一根是用于储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个封闭的齿轮传动系统。当山电动机1驱动该传动系统运转起来后,电动机传递给系统的功率被封闭在齿轮传动系统内,既两对齿轮相互自相传动,此时若在动态下脱开电动机,如果不存在各种摩擦力(这是不可能的),且不考虑搅油及其它能量损失,该齿轮传动系统将成为永动系统; 山于存在摩擦力及其它能量损耗,在系统运转起来后,为使系统连续运转下去, 山电动机继续提供系统能耗损失的能量,此时电动机输出的功率仅为系统传动功率的20%左右。对于实验时间较长的情况,封闭式实验机是有利于节能的。 1?悬挂电动机2.转矩传感器3.转速传感器4?定轴齿轮箱5?泄轴齿轮副6.弹性扭力 轴7.悬挂齿轮箱&加载狂码9.悬挂齿轮副10.万向节轴11.转速脉冲发生器2.电动机的输出功率

电动机1为直流调速电机,电动机转子与定轴齿轮箱输入轴相联,电动机 采用外壳悬挂支承结构(既电机外壳可绕支承轴线转动);电动机的输出转矩等于电 动机转子与定子之间相互作用的电磁力矩,与电动机外壳(定子)相联的转矩传感器2提供的外力矩与作用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩To;电动机转速为n,电动机输出功率为P u =n? To/9550 (KW)。3.封闭系统的加载 当实验台空载时,悬挂齿轮箱的杠杆通常处于水平位置,当加上载荷W 后,对悬挂齿轮箱作用一外加力矩WL,使悬挂齿轮箱产生一定角度的翻转,使两个齿轮箱内的两对齿轮的啮合齿面鼎紧,这时在弹性扭力轴内存在一扭矩T9 (方向与外加负载力矩WL相反),在万向节轴内同样存在一扭矩TJ (方向同样与外加力矩WL相反);若断开扭力轴和万向节轴,取悬挂齿轮箱为隔离体, 可以看出两根轴内的扭矩之和(Tg+TJ)与外加负载力矩WL平衡(即T9+T9'=WL);乂因两轴内的两个扭矩(T9和T9')为同一个封闭环形传动链内的扭矩,故这两个扭矩相等(T9=T9*),即2T9=WL, T9=WL/2 (Nm);由此可以算出该封闭系统内传递的功率为: P9=T9 n / 9550=WLn/19100 (KW) 其中:n--电动机及封闭系统的转速(rpm); W-所加祛码的重力(N); L—加载杠杆(力臂)的长度,L= 0.3 mo 4.单对齿轮传动效率 设封闭齿轮传动系统的总传动效率为Q ; 封闭齿轮传动系统内传递的有用功率为P9; 封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率Po,即: Po=( P9 / n)-P9 n=p9 / (Po+PJ 二T9/ (T0+T9) 若忽略轴承的效率,系统总效包也含两级齿轮的传动效率,故单级齿轮的传 动效率为:7=向={〒务 5.封闭功率流方向""

齿轮传动设计

机械原理 课程设计说明书 设计题目:齿轮传动设计 学院:工程机械学院 专业:机械设计制造及其自动化班级:25040808

设计者:刘春(学号:25) 指导教师:张老师 2011-01-13 课程设计说明书 一、设计题目:齿轮传动设计 如图所示,齿轮变速 箱中,两轴中心距为80㎜, 各轮齿数为Z1=35,Z2=45, Z3=24,Z4=55, Z5=19,Z6=59,模数均为 m=2㎜,试确定各对齿轮的传动传动类型,并设计这三对齿轮传动。 二、全部原始数据:

Z1=35,Z2=45,Z3=24,Z4=55,Z5=19,Z6=59, m=2mm,ha*=1,c*=0.25, α=20,a'=80mm 三、设计方法及原理: (一)传动的类型及选择: *按照一对齿轮的变位因数之和(X1+X2)的不同,齿轮传动可分为三种类型。 1.零传动(X1+X2=0) a.标准齿轮传动:X1=X2=0 传动特点:设计简单,便于互换。 b.高度变为齿轮传动:X1=-X2≠0,X1+X2=0。一般小齿轮 采用正变位,大齿轮采用负变位。 传动特点:互换性差,需成对设计和使用,重合度略有降低。 2.正传动(X1+X2>0) 传动特点: ①可以减小齿轮机构的尺寸。 ②可以减轻齿轮的磨损程度。 ③可以配凑中心距。 ④可以提高两轮的承载能力,由于两轮都可以采用正变。

位,可以增加两齿轮的齿根厚度,从而提高两齿轮的抗弯能力。 ⑤互换性差,需成对设计,制造和使用。 ⑥重合度略有降低。 3.负传动(X1+X2<0) 传动特点: ①重合度略有降低。 ②互换性差,需成对设计,制造和使用。 ③齿厚变薄,强度降低,磨损增大。 综上所述,正传动的优点突出,所以在一般情况下,采用正传动;负传动是最不理想的传动,除配凑中心距的不得已情况下,尽量不用;在传动中心距等于标准中心距时,为了提高传动质量,可采用高度变位齿轮传动代替标准齿轮传动。 (二)变位因数的选择: *根据设计要求,可在封闭图上选择变位因数。 封闭图内容解释: 1.封闭图中阴影区是不可行区,无阴影区是可行区。所选择的变位因数的坐标点必须在可行区内。 2.根据不发生根切的最小变位因数算出两个齿轮不发生根切的限制线X1min,X2min分别平行于两坐标轴,若变位因数X1在X1min线的右边,变位因数X2在X2min线的上方,则所设计的齿轮完全不发生根切。

效率实验报告

机械传动性能综合实验报告 姓名: 学号: 班级: 任课老师:

(特别提示:本报告第一、二、三部分来自试验指导书,稍有更改。) 一、实验目的 1.了解机械传动系统效率测试的工程试验手段和常用的机械效率测试设备, 掌握典型机械传动系统的效率范围,分析传动系统效率损失的原因; 2.通过对典型机械传动系统及其组合的性能测试,加深对机械传动系统性能 的认识以及对机械传动合理布置的基本原则的理解; 3.通过对实验方案的设计、组装和性能测试等训练环节,掌握计算机辅助实 验测试方法, 培养学生创新设计与实践能力。 二、实验原理及设备 1、实验原理: 机械传动性能综合测试实验台的工作原理如图1所示。通过对转矩和转速的测量,利用转矩、转速与功率的数学关系间接导出功率数值,并通过对电机和负载的相应控制观察分析转速、转矩、功率的相应变化趋势,同时通过对减速器的输入功率和输出功率的测量分析,得出减速器的效率及其随不同情况的变化所呈现的变化趋势。 2、实验设备: 机械传动性能综合测试实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。机械传动性能综合测试实验台各硬件组成部件的结构布局如图2所示。 图2(a) 实验台外观图

1-变频调速电机 2-联轴器 3-转矩转速传感器 4-试件 5-加载与制动装置 6-工控机 7-电器控制柜 8-台座实验设备包括机械传动综合效率实验台(包括台座、变频调速器、机柜、电控箱)、蜗轮蜗杆减速器、齿轮减速器、三相异步电动机、同步带传动装置、滚子链传动装置、V带传动装置、磁粉制动器、ZJ转矩转速传感器、计算机及打印机、其他零配件。典型实验装置包括齿轮减速传动装置、蜗轮蜗杆减速传动装置、V带+齿轮减速传动装置、齿轮减速+滚子链传动装置、同步带减速传动装置、V带减速传动装置、V带+同步带减速传动装置。实验装置由动力部分、测试部分、加载部分和被测部分等组成。各部分的性能参数如下: 1、动力部分 1)YP-50-0.55三相感应变频电机:额定功率0.55KW;同步转速 1500r/min;输入电压380V。 2)LS600-4001变频器:输入规格 AC 3PH 380-460V 50/60HZ;输出规格 AC 0-240V 1.7KVA 4.5A;变频范围 2~200 HZ。 2、测试部分 1)ZJ10型转矩转速传感器:额定转矩 10N.m;转速范围 0~6000r/min; 2)ZJ50型转矩转速传感器:额定转矩 50N.m;转速范围 0~5000r/min; 3)TC-1转矩转速测试卡:扭矩测试精度±0.2%FS;转速测量精度± 0.1%; 4)PC-400数据采集控制卡。 3、被测部分 1)三角带传动: 带轮基准直径 D1=70mm D2=115mm O型带L内=900mm; 带轮基准直径 D1=76mm D2=145mm O型带L内=900mm; 带轮基准直径 D1=70mm D2=88mm O型带L内=630mm。 2)链传动:链轮 Z1=17 Z2=25 滚子链 08A-1×71 滚子链 08A-1×53 滚子链 08A-1×66。

齿轮设计说明书

设计计算说明书设计题目:齿轮 学院: 专业: 班级: 学号: 姓名: 指导老师:

计算内容计算说明结果 1.计算齿轮传动 比i2根据ω=2πn,v=ωr ,求得 n=ω/2π=1.96*60=117.6r/min 由此算出i2=1500/(2.5*117.6)=5.1 传动比i2=5.1 2选择齿轮材料,并确定许用应力大丶小齿轮都采用CrMnTi,渗碳淬火,齿面硬度 HRC60.根据参考文献[1]图10-38和图10-39查出齿 轮的疲劳极限强度,确定许用应力。 σHlim 1=σHlim 2=1500MPa σFlim 1=σFlim=460MPa [σH]=0.9σHlim 1=0.9*1500=1350MPa [σF]=1.4σFlim 1=1.4*460=644MPa 材料:大丶小齿轮都采 用CrMnTi,渗碳淬火 许用应力。 σHlim1=σHlim2=1500MPa σFlim1=σFlim=460MPa [σH]=1350MPa [σF]=644MPa 3.选取设计参数取最小齿轮齿数Z1=17,则 Z2=i2Z1=5.1*17=86.7,取大齿轮齿数Z2=87 Z1=17 Z2=87 4计算齿数比U=Z2/Z1=5.1 U=5.1 5计算相对误差是 否合理由于传动比误差为|(u-i)/i|*100%=0.39%<3%~5%, 所以齿轮数选择合理 合理 6选齿宽系数Φd参考表10—11选齿宽系数Φd =0.5 (齿轮相对于轴承为对称布置) Φd =0.5

7计算系数 A m、A d 初选螺旋角β=10°, 根据表10—8,系数A m=12.4,A d=756 A m=12.4 A d=756 8计算小齿轮的功率P1和小齿轮的转 速n1取传动带的效率 η=0.95,P1=P c*0.95=28.8*0.95=27.36w n1=V/i=1500/2.5=600(r/min) P1=27.36w n1=600(r/min) 9计算小齿轮的转 矩T1T1=9550*(P1/n1) =9550*(27.36/600)=435.48(N·m) T1=435.48(N·m) 10计算当量齿数按式(10-32)计算齿轮当量齿数 Z V1=Z1/cos3β=17/cos310°=17.8 Z V2=Z2/cos3β=87/cos310°=91.1 Z V1=17.8 Z V2=91.1 11计算模数m n根据表10—10查出复合齿形系数 Y SF1=4.49,Y SF2=3.85 取载荷系数K=1.2 m n≥A m31Y KT FS1/Φd Z12[σF] =12.4*) 644 * 2 ^ 17 * 5.0 /( ) 49 .4 * 48 . 435 * 2.1( 3=3.6 按表10—1取标准值m n=4mm M n=4mm 11计算中心距a a=[m n(z1+z2)]/2cosβ =[4*(17+87)]/2*cos10°=211.2mm 取a=212mm a=212mm

机械原理实验报告-齿轮传动

机械原理实验报告-齿轮传动 机械原理实验 ——齿轮传动机构 groups, Wujiang County. In September, the chapter in the Tomb occupied formally established the village of KMT: Wu Jiang County Government (known as "guerrilla Government") and against self-defence groups. Begins to flow from jiaxing railway Lili, Tan Hills area. In November, the County Government is based on the tomb of Lu Xiyan, mine-and from the pier at Dang, under Jin bang. County Government operates three Civil Affairs, finance, education 一( 实验目的 1. 掌握齿轮的相关几何参数的定义及其意义。 2. 了解齿轮传动的构成,认识其组成原件。 3. 掌握齿轮传动比的计算方法。 4. 掌握齿轮的相关几何参数的计算。 5. 训练动手能力,培养综合设计的能力。二( 实验仪器 序号名称数量备注 1 1 试验台机架 2 1 主动轴带轮 3 1 电机轴带轮 4 2 主轴

5 3 端盖 6 2 卡环 三( 实验原理 (一)齿轮参数 groups, Wujiang County. In September, the chapter in the Tomb occupied formally established the village of KMT: Wu Jiang County Government (known as "guerrilla Government") and against self-defence groups. Begins to flow from jiaxing railway Lili, Tan Hills area. In

一级齿轮减速器课程设计说明书

一级齿轮减速器课程设计说明书

目 录 一、 运动参数的计算.............................................4 二、 带传动的设计 .............................................6 三、 齿轮的设计 ................................................8 四、 轴的设计 ...................................................12 五、 齿轮结构设计................................................18 六、 轴承的选择及计算..........................................19 七、 键连接的选择和校核.......................................23 八、 联轴器的选择 .............................................24 九、 箱体结构的设计 (24) 十、 润滑密封设计 (26) *-一.运动参数的计算 1.电动机的选型 1)电动机类型的选择 按工作要求选择Y 系列三相异步电机,电压为380V 。 2)电动机功率的选择 滚筒转速:6060 1.1 84.0min 0.25 v r n D ωππ?= ==? 负载功率: /10002300 1.1/1000 2.52w P FV ==?= KW 电动机所需的功率为:kw a w d p p η= (其中:d p 为电动机功率,w p 为负载功率,a η 为总效率。) 为了计算电动机所需功率d p ,先确定从电动机到工作机只见得总效率a η,设1η、 2η、3η、4η分别为V 带传动、闭式齿轮传动(齿轮精度为8级)、滚动轴承和联轴器的效率 查《机械设计课程设计》表2-2得 1η=0.95 2η=0.97 3η=0.99 4η=0.99 3a 1234 30.950.970.990.990.8852 ηηηηη==???=

二级展开式圆柱齿轮传动减速器设计说明书Ⅱ

目录 设计任务书 (5) 一.工作条件 (5) 二.原始数据 (5) 三.设计内容 (5) 四.设计任务 (5) 五.设计进度 (6) 传动方案的拟定及说明 (6) 电动机的选择 (6) 一.电动机类型和结构的选择 (7) 二.电动机容量的选择 (7) 三.电动机转速的选择 (7) 四.电动机型号的选择 (7) 传动装置的运动和动力参数 (8) 一.总传动比 (8) 二.合理分配各级传动比 (8) 三.传动装置的运动和动力参数计算 (8) 传动件的设计计算 (9) 一.高速啮合齿轮的设计 (9) 二.低速啮合齿轮的设计 (14) 三.滚筒速度校核 (19)

轴的设计计算 (19) 一.初步确定轴的最小直径 (19) 二.轴的设计与校核 (20) 滚动轴承的计算 (30) 一.高速轴上轴承(6208)校核 (30) 二.中间轴上轴承(6207)校核 (31) 三.输出轴上轴承(6210)校核 (32) 键联接的选择及校核 (34) 一.键的选择 (34) 二.键的校核 (34) 连轴器的选择 (35) 一.高速轴与电动机之间的联轴器 (35) 二.输出轴与电动机之间的联轴器 (35) 减速器附件的选择 (36) 一.通气孔 (36) 二.油面指示器 (36) 三.起吊装置 (36) 四.油塞 (36) 五.窥视孔及窥视盖 (36) 六.轴承盖 (37) 润滑与密封 (37) 一.齿轮润滑 (37)

二.滚动轴承润滑 (37) 三.密封方法的选择 (37) 设计小结 (37) 参考资料目录 (38)

五.设计进度 1、第一阶段:传动方案的选择、传动件参数计算及校核、绘 制装配草图 2、第二阶段:制装配图; 3、第三阶段:绘制零件图。 传动方案的拟定及说明 一个好的传动方案,除了首先满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及维护方便。要完全满足这些要求是很困难的。在拟订传动方案和对多种传动方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。 根据工作条件和原始数据可选方案二,即展开式二级圆柱齿轮传动。因为此方案工作可靠、传动效率高、维护方便、环境适应行好,但也有一缺点,就是宽度较大。其中选用斜齿圆柱齿轮,因为斜齿圆柱齿轮兼有传动平稳和成本低的特点,同时选用展开式可以有效地减小横向尺寸。 示意图如下: 1—电动机;2—联轴器;3—齿轮减速器;4—联轴器;5—鼓轮;6—带式运输机 实际设计中对此方案略微做改动,即:把齿轮放在靠近电动机端和滚筒端。(其他们的优缺点见小结所述)

机械传动性能综合测试实验

机械传动性能综合测试实验指导书 一、实验目的 1.了解机械传动效率测试的工程试验方法及常用测试设备及其精度; 2. 分析传动系统效率损失的主要原因,掌握常用传动系统的特点及其效率范围; 3. .认识智能化机械设计综合实验台的工作原理,掌握计算机辅助实验的新方法, 培养进行设计性实验与创新性实验的能力。 二、实验原理及设备 .本实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。 机械设计综合实验台的工作原理如图1所示。 图1 实验台的工作原理 机械设计综合实验台各硬件组成部件的结构布局如图2所示。 1-变频调速电机2-联轴器3-转矩转速传感器4-试件 5-加载与制动装置6-工控机7-变频器8电器控制柜9-台座

实验台组成部件的主要技术参数如表1所示。 机械设计综合实验台采用自动控制测试技术设计,所有电机程控起停,转速程控调节,负载程控调节,用扭矩测量卡替代扭矩测量仪,整台设备能够自动进行数据采集处理,自动输出实验结果。其控制系统主界面如图2所示,软件操作指南见附件二。 图2 实验台控制系统主界面 运用“机械设计综合实验台”能完成多类实验项目(表2),可根据专业特点和实验教学改革需要指定,也可以让学生自主选择设计实验类型与实验内容。 表2

线的测试, 来分析机械传动的性能特点; 实验利用实验台的自动控制测试技术,能自动测试出机械传动的性能参数, 如转速n (r/min)、扭矩T (N.m)、功率P (K.w)。并按照以下关系自动绘制参数曲线: 传功比i=n1/n2 扭矩T=9550 P/n (Nm) 传功效率η=P2/P1= T2 n2/ T1n1 四、实验步骤

齿轮锻造工艺设计说明书

齿 轮 锻 造 工 艺 设 计 说 明 书 姓名:xxx 学号:xxxxxxxx 班级:xxxxxxx 日期;xxxxxxx

齿轮锻造工艺设计说明书 摘要:锻造生产的目的是坯料成型、及控制其内部组织性能达到所需的几何形状,尺寸以及品质的锻件,钢和大多数非铁金属及合金具有不同程度的塑性,均可在冷态或热态下进行塑性加工成型。齿轮的锻造采用的是自由锻工艺。本文主要介绍的是齿轮的自由锻工艺。自由锻是利用压力或冲击力是金属在上下抵铁之间产生塑性变形,从而获得所需锻件形状及尺寸的方法。确定自由锻的工艺成为了自由锻加工的关键。本文着重介绍的就是齿轮的自由锻的工艺流程。 关键词:自由锻、齿轮加工、塑性变形、工艺流程。

目录 一.绪论 (1) 二.总体设计方案 (1) 三.具体的设计方法与步骤 (3) 3.1绘制锻件图 (3) 3.2确定变形工艺 (3) 3.2.1镦粗 (3) 3.2.2冲孔 (4) 3.2.3扩孔 (4) 3.2.4修整锻件 (4) 3.3计算坯料质量和尺寸 (4) 3.4选定设备及规范 (5) 四.工艺流程(工艺卡) (6) 五.结论 (7) 六.致谢 (7) 七.参考文献 (8)

一、绪论 锻造的目的是使坯料成形及控制其内部组织性能达到所需的几何形状,尺寸以及品质的锻件。锻造的基本工艺有自由锻、模锻、板料冲压等,其中自由锻和模锻是热塑性成型,而板料冲压是冷塑性成形,两者的基本原理相同。 锻造件占得比例说明了一个国家生产水平、生产率、材料利用率、生产成本及产品品质在国际竞争中的地位。在新中国成立之前,锻造基本上是手工作坊式的延续,生产效率低,劳动强度大。然而在改革开放之后我国的锻造工艺水平得到了迅猛的发展,从而带动了诸如汽车工业的跨越式发展。但我们还应该清醒的看到我们的锻造工艺水平与欧美发达国家还有一定差距,这更加促使我们努力发展新技术,赶超国际先进水平。 齿轮是现代工业大量使用的零件,本文就是讨论齿轮的自由锻生产。自由锻能进行的工序很多,可分为基本工序、辅助工序、及精整工序三大类。它的基本工序是使金属产生一定程度的塑性变形以达到所需的形状和尺寸的工艺过程,如镦粗,拔长、冲孔、弯曲、切割、扭转及错移等工序。 二、总体设计方案 1.绘制锻件图 根据零件图的基本图样,结合自由锻工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 2.计算坯料质量及尺寸 (1)坯料质量的计算 根据锻件的形状和尺寸,可先计算锻件的质量,再考虑加热时的氧化损失,冲孔时冲掉的芯料以及切头的损失,可先计算锻件所用的坯料的质量,其计算公式为 m坯=m锻+m烧+m头+m芯 (2)坯料尺寸确定 皮料尺寸与所用第一个基本工序有关,由于齿轮是饼块类或空心类锻件,用镦粗工序锻造时,为了避免镦弯,应使坯料高度h不超过直径D的2.5倍,即坯

机械专业齿轮设计课程设计说明书范本

机械设计课程设计说明书 设计题目:带式输送机传动装置中的二级圆柱齿轮减速器 机械系机械设计与制造专业 设计者: 指导教师: 2010 年07月02日

目录 一、前言 (3) 1.作用意义 (3) 2.传动方案规划 (3) 二、电机的选择及主要性能的计算 (4) 1.电机的选择 (4) 2.传动比的确定 (5) 3.传动功率的计算 (6) 三、结构设计 (8) 1.齿轮的计算 (8) 2.轴与轴承的选择计算 (12) 3.轴的校核计算 (14) 4.键的计算 (17) 5.箱体结构设计 (17) 四、加工使用说明 (20) 1.技术要求 (20) 2.使用说明 (21) 五、结束语 (21) 参考文献 (22)

一、前言 1.作用及意义 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为二级直齿圆柱齿轮减速器,第二级传动为链传动。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。本设计采用的是二级直齿轮传动(说明直齿轮传动的优缺点)。 说明减速器的结构特点、材料选择和应用场合。 综合运用机械设计基础、机械制造基础的知识和绘图技能,完成传动装置的测绘与分析,通过这一过程全面了解一个机械产品所涉及的结构、强度、制造、装配以及表达等方面的知识,培养综合分析、实际解决工程问题的能力, 2.传动方案规划 原始条件:胶带运输机由电动机通过减速器减速后通过链条传动,连续单向远传输送谷物类散粒物料,工作载荷较平稳,设计寿命10年,运输带速允许误差为% 。 5 原始数据:

齿轮传动效率测定与分析

齿轮传动效率测定与分 析 Document number:PBGCG-0857-BTDO-0089-PTT1998

实验2 齿轮传动效率测定与分析 实验目的 1.了解机械传动效率的测定原理,掌握用扭矩仪测定传动效率的方法; 2.测定齿轮传动的传递功率和传动效率; 3.了解封闭加载原理。 实验设备和工具 1.齿轮传动效率试验台; 2.测力计; 3.数据处理与分析软件; 4.计算机、打印机。 实验原理和方法 1. 齿轮传动的效率及其测定方法 齿轮传动的功率损失主要在于:(1)啮合面的摩擦损失;(2)轮齿搅动润滑油时的油阻损失;(3)轮轴支承在轴承中和轴承内的摩擦损失。齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。对于采用滚动轴承支承的齿轮传动,满负荷时计入上述损失后,平均效率如表所示。 表齿轮传动的平均效率

测定效率的方式主要有两种:开放功率流式与封闭功率流式。前者借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。其优点是与实际工作情况一致,简单易行,实验装置安装方便;缺点是动力消耗大,对于需作较长时间试验的场合(如疲劳试验),消耗能力尤其严重。而后者采用输出功率反馈给输入的方式,电源只供给齿轮传动中摩擦阻力所消耗的功率,可以大大减小功耗,因此这种实验方案采用较多。 2. 封闭式试验台加载原理 图表示一个加载系统,电机功率通过联轴器1传到齿轮2,带动齿轮3及同一轴上的齿轮6,齿轮6再带动齿轮5。齿轮5的轴与齿轮2的轴之间以一只特殊联轴器和加载器相联接。 设齿轮齿数6532,z z z z ==,齿轮5的转速为5n (r/min)、扭矩为)m N (5?M ,则齿轮5处的功率为 )kW ( 9550 555n M N = 若齿轮2、5的轴不作封闭联接,则电机的功率为 )kW ( 9550/5 551η η?==n M N N 式中η为传动系统的效率。 而当封闭加载时,在5M 不变的情况下,齿轮2、3、6、5形成的封闭系统的内力产生封闭力矩4M )m N (?,其封闭功率为 )kW ( 9550 444n M N = 该功率不需全部由电机提供,此时电机提供的功率仅为 )kW ( /441 N N N -='η 由此可见,11 N N <<',若%95≈η,则封闭式加载的功率消耗仅为开放式加载功率的1/20。

齿轮传动效率实验

齿轮传动效率实验 一. 实验目的 1. 了解封闭式齿轮试验台的基本原理及其结构。 2. 测定齿轮传动效率,掌握测试方法。 3. 本试验台可长期运行,定时观察齿面点蚀现象。 二. 实验设备及工作原理 1. 1. 试验台结构 图12-1所示为封闭式齿轮试验台的结构示意图: 1—功耗电机 2—重力测力计 3—齿轮箱 4—加载器 5—试验齿轮箱 6—砝码 7—电器控制箱 图12-1 封闭式齿轮试验台结构示意图 1是外壳浮动式功耗电机;2是重力测力计;3、5是两套完全相同的齿轮箱,两对齿轮①、②、③、④分别用两根轴I 、II 相联接,并由特殊设计的联轴器和加载器4组成机械封闭回路;6是加在加载器上的砝码,从而产生作用在封闭系统中的轴向力;7是电器控制箱。 2. 加载机构 封闭式齿轮试验台加载器有多种形式,本试验台是采用螺旋槽轴向移动而产生轴扭转的方法来实现加载的。图12-2表示螺旋槽加载器的结构,由于槽中的滚子距轴心的作用半径为d/2(d =43mm ),螺旋槽的螺旋角β=11.14°,轴向力由砝码G (kgf )通过动滑轮实现,故作用在封闭系统内的封闭力矩为: (12—1) 系统中最大封闭力矩T B =50 N ?m 时,砝码重量G 最大为25 kgf 左右。 T G tg G N m B =???=?22159811141000 2140....()

系统中齿轮所受负载的大小仅与加载机构施加的扭矩有关,而与封闭系统外的浮动电机无关。当电机不转时,即齿轮处于静止状态,力矩T B仍然存在,此时 T B是由齿轮①—②—③—④所组成封闭系统中的平衡内力产生,称为封闭力矩。静止时,系统中只有力矩的存在而无功率的流动和损耗。当电机运转时,带动整个系统运转,并使封闭系统产生功率流动和损耗,电动机的作用就是克服系统中各种摩擦阻力,补充摩擦功率耗损、以维持正常运转状态。由于摩擦功率损耗很小,因而电机容量很小,仅需齿轮工作功率的1/20左右。这对于长期运转的实验,其经济意义很大。本试验台的功耗电机功率仅300w左右,同步转速1000 r/min,工作时约950 r/min。 三. 封闭功率的效率计算 单纯的齿轮副的效率测定是比较困难的,这里齿轮副的效率分别为η12,η34,它包括啮合效率,轴承效率及搅油效率等。 效率是指输出功率与输入功率之比。要确定输入和输出功率,首先要判明哪个是主动轮,哪个是从动轮。判别的方法是根据加载机构产生扭矩的方向与电机的转向是否一致,若方向一致则齿轮④为主动,相反为从动,封闭功率流动的方向应由大流向小,由主动流向从动。图12-1中设电机转动的方向与螺旋加载器产生扭矩T B方向相同,则齿轮④为主动,③为从动,齿轮④的左端为封闭功率P B的输入端(功率最大),功率P B流经齿轮④→齿轮③→轴II→齿轮②→齿轮①→轴I。流动中有啮合磨损,轴承磨损,搅油损耗等,功率逐渐减少,然而经过电动机输出功率P f的弥补,则通过轴II输入齿轮④的左端时,又恢复成P B。设封闭系统中的总效率为η0,则η0=η12?η34若η12≈η34=η,则一对齿轮副的效率为η=。 电动机输出功率为: P f =P B(1-η0)=P B(1-η2) η=P-P P B f B η

带传动和齿轮传动设计 说明书

机械设计大作业(二) 题目:带传动与齿轮传动设计 院系:过程装备与控制工程09(1)班姓名:沈益飞 学号:B09360114

目录 一、任务书 (3) (一)原始数据 (3) (二)工作量 (3) 二、电机的选择 (3) (一)各级效率 (3) (二)工作机所需功率 (3) (三)电机所需功率 (3) (四)电机所需转速范围 (3) (五)电机选择 (3) 三、传动参数的计算 (4) (一)各级传动比分配 (4) (二)各轴转速 (4) (三)各轴功率 (4) (四)各轴转矩 (4) (五)汇总数据 (4) 四、V带传动的设计计算 (5) (一)计算功率 (5) (二)选择V带带型 (5) (三)确定带轮基准直径并验算带速 (5) (四)确定中心距,并选择V带的基准长度 (5) (五)验算小带轮包角 (5) (六)确定带的初拉力与压轴力 (6) (七)带轮的材料与结构形式 (6) 五、齿轮传动的设计计算 (6) (一)选定齿轮类型、精度等级、材料与齿数 (6) (二)按齿面接触强度设计 (6) (三)按齿根弯曲强度设计 (7) (四)几何尺寸计算 (7)

一、任务书 (一)原始数据 选择题号4:减速器输出轴转矩T=249 N.m 减速器输出轴转速n=96 r/min V 带传动与齿轮传动简图 见《机械设计作业集1》p41 (二)工作量 1.小带轮零件图一张 2.大齿轮零件图一张 3.设计说明书一份 二、电机的选择 (一)各级效率 由《机械设计课程设计》表2-4(p7)机械传动的效率概略值 0.940.9850.955=?=带η 0.9550.9850.97=?=柱η (二)工作机所需功率 kw n T p w 503.2962499550/=?=?= (三)电机所需功率 kw p p w o 788.28977.0/503.2/===η (四)电机所需转速范围 由《机械设计课程设计》表2-1(p4)常用机械传动的单机传动比推荐值 min /2304min /57696)246(r r n i n o --=?-=?' ='? (五)电机选择 由《机械设计课程设计》表20-1(p196)Y 系列三相异步电机技术数据 得Y132S-6型号电机的额定功率Pm=3 kw ,满载转速:Nm=960 r/min

齿轮传动测试实验

实验名称实验3 齿轮传动测试实验 课程名称机械设计实验时间实验地点F302 组号同组人成绩 一、实验目的: 1.圆柱齿轮减速器传动效率测试。 二、仪器设备: THMCY-2型齿轮与蜗杆传动效率综合分析实验装置 本装置主要由实验台、圆柱齿轮减速器(速比为5)、直流调速电机、磁粉制动器及一些实验所需的仪器仪表等组成。使学生掌握齿轮传动主要性能参数的测试方法。 实验台的主要技术参数 1. 输入电源:单相三线 AC220V±10% 50Hz 2. 实训台外形尺寸:750mm×600mm×1160mm 3. 圆柱齿轮减速器 1台 4. 直流调速电机1台:额定功率 355W,调速范围 0~1500r/min 5. 直流调速器1个:PWM脉宽调速,为直流电机提供可调电源 6. 恒流源1路:输出电流0~0.8A,为磁粉制动器提供工作电流 7. 磁粉制动器1台:额定转矩50N·m 三、实验原理简要:(请自行节选) (一)实验台电源仪表控制部分操作说明 本实验台由电源仪表控制部分和机械部分两部分组成。电源仪表控制部分包括电源总开关(即漏电保护器)、电源指示灯、一只数显转速表、一只数显激磁电流表、激磁电流调节旋钮和电机调速部分。 1. 实验前先将实验台左后侧的单相电源线插头与实验室内电源接通。 2. 实验台面板左侧的漏电保护器是整个实验台的电源总开关,打开后,红色指示灯亮,两只数显仪表可以正常显示。 3. 磁粉制动器加载电流的调节,是通过实验台面板上磁粉制动器方格内的“激磁电流调节”旋钮来调节。旋钮慢慢的顺时针旋转,激磁电流数显表的数值会增大,磁粉制动器的加载电流增大,即减速器输出轴的负载转矩增大,实现了减速器传动负载的变化。 4. 实验台面板右边是电机调速部分,控制直流电机的转动,由“调速开关”和“电机调速”电位器组成。按下红色“调速开关”按钮,指示灯亮,顺时针旋转“电机调速”电位器,电机会带动减速器旋转。 (二)实验台的结构特点 1. 机械结构 本实验台的机械部分,主要由直流电机、减速器、磁粉制动器组成。直流电机作为输入功率的动力装置,磁粉制动器则作为输出功率的加载装置。 对直流电机,由直流调速器供给电动机电枢以不同的电压实现无级调速。直流电机可在两电机的机座上旋转,(由于定子与转子间磁场的相互左右,电动机的外壳(定子)将朝转子回转的反向反转。)通过与摆动臂、压力传感器一起组成可测试电机转矩的装置。改变输入磁粉制动器激磁电流的大小,即可准确预定电机的转矩。 磁粉制动器,有1路恒流源通过调节磁粉制动器输入电流的大小,来调节磁粉制动器的转矩,改变输入磁粉制动器激磁电流的大小,即可准确预定磁粉制动器的转矩。 采用直流调速电路和光电测速电路,对电机进行转速控制,并以数字仪表显示。 可无级控制电机负载大小,能直观的观察到电机的功率变化。

齿轮油泵设计说明书

绪论 一、课程设计容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、

螺栓组(件18、件8)组成。 连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉 ---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图 1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示

机械原理实验报告齿轮传动.docx

机械原理实验 ——齿轮传动机构 一.实验目的 1.掌握齿轮的相关几何参数的定义及其意义。 2.了解齿轮传动的构成,认识其组成原件。 3.掌握齿轮传动比的计算方法。 4.掌握齿轮的相关几何参数的计算。 5.训练动手能力,培养综合设计的能力。 二.实验仪器 序号名称数量备注 1 试验台机架 1 2 主动轴带轮 1 3 电机轴带轮 1 4 主轴 2 5 端盖 3 6 卡环 2 三.实验原理 (一)齿轮参数 (二)传动比计算 1、一对齿轮的传动比:

谢谢观赏 传动比大小: i12=ω1/ω2 =Z2/Z1 转向外啮合转向相反取“-”号 内啮合转向相同取“+”号 对于圆柱齿轮传动,从动轮与主动轮的转向关系可直接在传动比公式中表示即: i12=±z2/z1 其中"+"号表示主从动轮转向相同,用于内啮合;"-"号表示主从动轮转向相反,用于外啮合;对于圆锥齿轮传动和蜗杆传动,由于主从动轮运动不在同一平面内,因此不能用"±"号法确定,圆锥齿轮传动、蜗杆传动和齿轮齿条传动只能用画箭头法确定。 对于齿轮齿条传动,若ω1表示齿轮1角速度,d1表示齿轮1分度圆直径,v2表示齿条的移动速度,存在以下关系:V2=d1ω1/2 定轴齿轮系传动比,在数值上等于组成该定轴齿轮系的各对啮合齿轮传动的连乘积,也等于首末轮之间各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比。设定轴齿轮系首轮为1轮、末轮为K轮,定轴齿轮系传动比公式为: i=n1/nk=各对齿轮传动比的连乘积i1k=(-1)M所有从动轮齿数的连乘积/所有主动轮齿数的连乘积式中:"1"表示首轮,"K"表示末轮,m 表示轮系中外啮合齿轮的对数。当m为奇数时传动比为负,表示首末轮转向相反;当m为偶数时传动比为负,表示首末轮转向相同。 注意:中介轮(惰轮)不影响传动比的大小,但改变了从动轮的转向。四.实验分析 (一)齿轮参数的计算 一对渐开线标准外啮合圆柱齿轮传动的模数m=5mm ,压力角=20°,中心距a=350mm,传动比i12=1.8,求两轮的齿数、分度圆直径、齿顶圆直径、基圆直径以及分度圆上的齿厚和齿槽宽。 谢谢观赏

相关主题
文本预览
相关文档 最新文档