当前位置:文档之家› 齿轮齿条传动机构设计说明

齿轮齿条传动机构设计说明

齿轮齿条传动机构设计说明
齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算

1. 齿轮1,齿轮2与齿轮3基本参数的确定

由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即

,/5003s mm V =又()160

d 3

33n V π=

,取,25,25.3202131mm B B mm m Z Z =====,由此可

得()265d 31mm mZ d ===,由(1)与(2)联立解得m in /r 147n 32==n ,取4i 12=则由4i 2

1

1212===

n n z z 得80m in,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定

齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径

mm

mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ

齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为

mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=???

?

????+=??? ??+===παπ

端面齿厚为

mm m x s s t t t t t t 94.632.3367.0cos 7.022tan 22s 2321=????

? ????+=???

??+===βπαπ

齿距 mm m p p 205.1025.314.3p 321=?====π 3. 齿轮材料的选择及校核

齿轮选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上。为减轻质量,壳体用铝合金压铸。由于转向器齿轮转速低,是一般的机械,故选择7级精度。

经校核,齿轮满足强度及刚度的要求。 4. 齿条的设计

取齿条的模数m=,压力角020=α,则齿数z=120,故齿距取

mm m 205.1025.314.3p =?==π,则长度mm z L 6.1224120205.10p =?==,取

螺旋角08=β。

端面模数mm m t 28.38cos /25.3cos /m 0===β 端面压力角37.099.0/364.0cos /tan t ===βαα 端面齿距mm m t t 3.1028.314.3p =?==π 齿顶高()()mm x h m n an n a 525.57.0125.3h =+?=+=* 齿根高()()mm x c h m n n an n 79.17.025.0125.3h f =-+?=-+=** 齿高 mm h h f a 315.779.1525.5h =+=+=

法面齿厚mm m x n n n n 76.625.3364.07.022

tan 22

s =???

?

????+=??

? ??+=π

απ

端面厚度mm t 85.628.3367.0cos /7.022

s 2=???

? ????+=βπ

齿条选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上,选择7级精度。 5. 齿轮轴的设计

碳素钢价格低廉,锻造工艺性能好,对载荷较大,较为重要的场合,以45号钢最为常用。经校核,齿轮轴满足强度及刚度的要求。 6. 电机的选择

因为齿轮1的转速为588r/min ,由此可得电机的转速应该大于此值,因此可以选择功率合适的电动机,如Y132S-8,功率为,转速为750r/min 。

参考文献: 机械原理, 孙恒主编

机械设计, 姚桂英主编

1.1.2齿轮齿条的材料选择

齿条材料的种类很多,在选择过程中应考虑的因素也很多,主要以以下几点作为参考原则:

1)齿轮齿条的材料必须满足工作条件的要求。

2)应考虑齿轮尺寸的大小、毛坯成形方法及热处理和制造工艺。

3)正火碳钢,不论毛坯制作方法如何,只能用于制作载荷平稳或轻度冲击

工作下的齿轮,不能承受大的冲击载荷;调制碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的

高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或者更多。

钢材的韧性好,耐冲击,还可通过热处理或化学热处理改善其力学性能及提高齿面硬度,故适用于来制造齿轮。由于该齿轮承受载荷比较大,应采用硬齿面(硬度≥350HBS),故选取合金钢,以满足强度要求,进行设计计算。

齿轮齿条的设计与校核

1.2.1起升系统的功率

设V为最低起钻速度(米/秒),F为以V起升时游动系统起重量(理论起重量,公斤)。

起升功率V

=

F

P?

F=N 5

106?

1V 取(米/秒)

KW P 4808.01065=??=

由于整个起升系统由四个液压马达所带动,所以每部分的平均功率为

KW KW

P P 1204

4804

==

=' 转矩公式:

595.510P T n

?=

所以转矩 T=

mm N n

.120

105.955?? 式中n 为转速(单位r/min )

1.2.2 各系数的选定

计算齿轮强度用的载荷系数K ,包括使用系数A K 、动载系数V K 、齿间载荷分配系数K α及齿向载荷分配系数K β,即

K=A V K K K K αβ 1)使用系数A K

是考虑齿轮啮合时外部因素引起的附加载荷影响的系数。

该齿轮传动的载荷状态为轻微冲击,工作机器为重型升降机,原动机为液压装置,所以使用系数A K 取。

2)动载系数V K

齿轮传动不可避免地会有制造及装配误差,轮齿受载后还要产生弹性变形,对于直齿轮传动,轮齿在啮合过程中,不论是有双对齿啮合过渡到单对齿啮合,或是有单对吃啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。为了计及动载荷的影响,引入了动载系数V K ,如图2-1所示。

图2-1动载系数V K

由于速度v 很小,根据上图查得,V K 取。 3)齿间载荷分配系数K α

一对相互啮合的斜齿(或直齿)圆柱齿轮,有两对(或多对)齿同时工作时,则载荷应分配在这两对(或多对)齿上。

对于直齿轮及修形齿轮,取1H F K K αα==。 4)齿轮载荷分布系数K β

当轴承相对于齿轮做不对称配置时,受灾前,轴无弯曲变形,齿轮啮合正常,两个节圆柱恰好相切;受载后,轴产生弯曲变形,轴上的齿轮也就随之偏斜,这就使作用在齿面上的载荷沿接触线分布不均匀。

计算齿轮强度时,为了计及齿面上载荷沿接触线分布不均匀的现象,通常以系数K β

来表征齿面上载荷分布不均匀的程度对齿轮强度的影响。

根据机械设计表10-4取H K β=。

综上所述,最终确定齿轮系数K=A V K K K K αβ=??? 齿轮传动的设计参数、许用应

力的选择

1.压力角α的选择

我国对一般用途的齿轮传动规定的标准压力角为α=20°。 2.齿数z 的选择

为使齿轮免于根切,对于α=20°的标准直齿轮,应取z ≥17,这里取z=20。 17 3.齿宽系数d φ的选择 由于齿轮做悬臂布置,取d φ= 4.预计工作寿命

10年,每年250个工作日,每个工作日10个小时

h L =10?250?10=25000h

5.齿轮的许用应力 按下式计算

[]N lim

K S

σσ=

式中:S ——疲劳强度安全系数。对于接触疲劳强度计算时,取S=1;进行齿根弯

曲疲劳强度计算时,取S=~。

N K ——考虑应力循环次数影响的系数,称为寿命系数。应力循环次数N 的计算方法是:设n 为齿轮的转速(单位为r/min );j 为齿轮每转一圈时,同一齿面啮合次数;

h L 为齿轮工作寿命(单位为h ),则齿轮工作应力循环次数N 按下式计算:

N=60nj h L

n 暂取10,则N=??0=?710。 查机械设计表10-18可得N K =。

lim σ——齿轮疲劳极限。弯曲疲劳极限用FE σ代入;接触疲劳极限用Hlim σ代入,查机械设计图10-21得Hlim σ=980。1500

HN K = S=1

[]HN Hlim H K 1.3980

1274MPa S 1

σσ??=

== 1950

780FE MPa σ= 850 1FN K = S=

[]7801

557.11.4

HF FE F K MPa S σσ??=

== (双向工作乘以)

当齿数z=20 17 时,齿形系数Fa Y = 应力校正系数Sa Y = 基本参数选择完毕

1.2.4 齿轮的设计计算

齿轮的设计计算公式:

m ≥

3

2

1]

[2F Sa

Fa d m Y Y z T K K m σφ?????≥……………K m —开式齿轮磨损系数,K m =(机械设计手册(3卷)14-134) 转矩 595.510P T n

?= (1式)

601000n mz v π=??

所以238.8

n m

= v= n=m (2式)

将1式、2式及各参数代入计算公式得:

≥2

m 8

.2381.557206.055.18.2120105.958.1225?????????

解得:72.23≥m ;20 取m=25 那么n=,取n=10

5510146.110

120105.95?=??=T

齿面接触疲劳强度计算公式:d ≥

式中[]Hσ的单位为Mpa,d的单位为mm,其余各符号的意义和单位同前。

由于本传动为齿轮齿条传动,传动比近似无穷大,所以

u1

u

±

=1

E

Z为弹性影响系数,单位

1

2

MPa,其数值查机械设计表,取

E

Z=

1

2

MPa,如表2-1所示:

表2-1 材料特性系数

E

Z

计算,试求齿轮分度圆直径:

[]E

3

d H

Z

KT u1

u

d

φσ

±

≥?2

()32

.2=

?

?

?

?

?

?

?

?

3

2

5

1274

8.

189

6.0

10

146

.1

8.1

456.75mm 通过模数计算得:m=25,z=20 所以分度圆直径d=25?20=500mm

所以取两者偏大值d=500mm

计算齿宽 b=

d

d

φ?=?=300mm

齿高 h=2.25m=?=56.25mm

最终确定齿轮数据:

模数m=25 齿数z=20

分度圆直径d=500mm 齿高h=56.25mm

齿宽b=300mm 转速n=10r/min

因此齿轮齿条的最终设计图形如图2-2所示:

图2-2 齿轮齿条的设计图

齿轮齿条传动机构设计规划介绍

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得m in /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80m in,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS , 齿条材料为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N ?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1= K HN1σHlim1S =1.7×600MPa =1020MPa (2) 计算 1) 试算小齿轮分度圆直径d t1,代入[σH ]1。

齿轮齿条传动优缺点

齿轮齿条,同步带,丝杠对比 齿轮齿条,承载力大,传动精度较高,可达0.1mm,可无限长度对接延续,传动速度可以很高,>2m/s,缺点:若加工安装精度差,传动噪音大,磨损大。典型用途:大版面钢板、玻璃数控切割机,建筑施工升降机可达30层楼高。 同步带,承载力较大,负载再大就要加宽皮带,传动精度较高,传动长度不可太大,否则需要考虑较大的弹性变形和振动,传动距离大尤其不适合精确定位、连续性运动控制,如大版面数控设备的XY轴,但是可用于伺服电机到传动齿轮或伺服电机到丝杠的短距离传动。优点:短距离传动速度可以很高,噪音低。典型用途:小型数控设备、某些打印机 丝杠,(1)普通梯形丝杠可以自锁,这是最大优点,但是传动效率低下,比上述二者低许多,所以不适合高速往返传动。缺点是时间久了传动间隙大,回程精度差,用在垂直传动较合适。 (2)滚珠丝杠不能自锁,传动效率高,精度高,噪音低,适合高速往返传动,但是水平传动时跨距大了要考虑极限转速和自重下垂变形,所以传动长度不可太大,要么改用丝母旋转丝杠不动,但还是不能太长,要么就用齿轮齿条。典型用途:数控机床,小版面数控切割机 应用上的区别? 在长距离重负载直线运动上,丝杆有可能强度不够,就会导致机子出现震动、抖动等情况,严重的,会导致丝杆弯曲、变形、甚至断裂等等;而齿条就不会有这样的情况,齿条可以长距离无限接长并且高速运转而不影响齿条精度(当然这个跟装配、床身本身精度都有关系),丝杆就做不到这一点,但在短距离直线运动中,丝杆的精度明显要比齿条高得多。另外就是,齿条齿轮传动对于机子结构设计来讲要相对简单一些。反正,各有优劣,所以,丝杆有丝杆的市场,齿条有齿条的市场。互不影响。 当标准外齿轮的齿数增加到无穷多时,齿轮上的基圆和其它圆都变成了相互平行的直线,同侧渐开线齿廓也变成了相互平行的斜直线齿廓,这就是齿条。齿条与齿轮相比有以下两个特点: (1)由于齿条齿廓是直线,所以齿廓上各点的法线是平行的。又由于齿条在传动时作平动,齿廓上各点的速度大小、方向都相同,所以齿条上各点的压力角都相等,等于齿廓的倾斜角(齿形角),标准值是。 (2)与齿顶线平行的各直线上的齿距都相同,模数为同一标准值,其中齿厚与齿槽宽相等且与齿顶线平行的直线称为中线,它是确定齿条各部分尺寸的基准线。 标准齿条的齿部尺寸与,与标准齿轮相同。 但是在进行冲压的加工时,由于在冲压过程中冲压行程是工作行程,而返回时是非工作过程,则在加工工件时要尽量满足工件在返回时减少时间。所以要满足此机构有急回特性。但是齿轮齿条不能满足急回的特性,不能增加工件的冲压加工效率,齿轮齿条加工的运动形式不符合;则排除此工艺的加工方式。

机械设计基础课程习题.doc

《机械设计基础课程》习题 第1章机械设计基础概论 1-1 试举例说明机器、机构和机械有何不同? 1-2 试举例说明何谓零件、部件及标准件? 1-3 机械设计过程通常分为几个阶段?各阶段的主要内容是什么? 1-4 常见的零件失效形式有哪些? 1-5 什么是疲劳点蚀?影响疲劳强度的主要因素有哪些? 1-6 什么是磨损?分为哪些类型? 1-7 什么是零件的工作能力?零件的计算准则是如何得出的? 1-8 选择零件材料时,应考虑那些原则? 1-9 指出下列材料牌号的含义及主要用途:Q275 、40Mn 、40Cr 、45 、ZG310-570 、QT600-3。 第2章现代设计方法简介 2-1 简述三维CAD系统的特点。 2-2 试写出优化设计数学模型的一般表达式并说明其含义。 2-3 简述求解优化问题的数值迭代法的基本思想。 2-4 优化设计的一般过程是什么? 2-5 机械设计中常用的优化方法有哪些? 2-6 常规设计方法与可靠性设计方法有何不同? 2-7 常用的可靠性尺度有那些? 2-8 简述有限元法的基本原理。 2-9 机械创新设计的特点是什么? 2-10 简述机械创新设计与常规设计的关系。 第3章平面机构的组成和运动简图 3-1 举实例说明零件与构件之间的区别和联系。 3-2 平面机构具有确定运动的条件是什么? 3-3 运动副分为哪几类?它在机构中起何作用? 3-4 计算自由度时需注意那些事项? 3-5 机构运动简图有何用途?怎样绘制机构运动简图? 3-6 绘制图示提升式水泵机构的运动简图,并计算机构的自 由度。 3-7 试绘制图示缝纫机引线机构的运动简图,并计算机构的 自由度。 3-8 试绘制图示冲床刀架机构的运动简图,并计算机构的自 由度。 3-9 试判断图a、b、c所示各构件系统是否为机构。若是,

齿轮齿条的传动

齿轮齿条的传动计算 齿轮与齿条传动特点 齿轮作回转运动,齿条作直线运动,齿条可以看作一个齿数无穷多的齿轮的一部分,这时齿轮的各圆均变为直线,作为齿廓曲线的渐开线也变为直线。齿条直线的速度v 与齿轮分度圆直径d 、转速n 之间的关系为 v= (/)60 dn mm s π 式中 d ——齿轮分度圆直径,mm ; n ——齿轮转速,min r 。 其啮合线12N N 与齿轮的基圆相切1N ,由于齿条的基圆为无穷大,所以啮合线与齿条基圆的切点2N 在无穷远处。 齿轮与齿条啮合时,不论是否标准安装(齿轮与齿条标准安装即为齿轮的分度圆与齿条的分度圆相切),其啮合角'α恒等于齿轮分度圆压力角α,也等于齿条的齿形角;齿轮的节圆也恒与分度圆重合。只是在非标准安装时,齿条的节线与分度线不再重合。 齿轮与齿条正确啮合条件是基圆齿距相等,齿条的基圆齿距是其两相邻齿廓同侧直线的垂直距离,即cos cos b P P m απα==。 齿轮与齿条的实际啮合线为12B B ,即齿条顶线及齿轮齿顶圆与啮合线12N N 的交点2B 及1B 之间的长度。

齿轮齿条传动的几何尺寸计算 齿轮与齿条传动的尺寸计算见表表齿轮齿条传动的几何尺寸计算 项目名称计算公式及代号转90?齿轮齿条数 值转180?齿轮齿条数值 齿轮齿数 1 z4832模数m2mm2mm 螺旋角β0?0? 基本齿廓压力角α20?20?齿顶高 系数 * a h11顶隙系 数 * C 齿轮变位系数 1 x 尺宽齿轮 1 b10mm10mm

齿条的主要特点: (1)由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。(2)与齿顶线平行的任一条直线上具有相同的齿距和模数。 (3)与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。

齿轮齿条设计

第四章 齿轮设计 4.1 齿轮参数的选择[8] 齿轮模数值取值为m=10,主动齿轮齿数为z=6,压力角取α=20°,齿轮螺旋角为β=12°,齿条齿数应根据转向轮达到的值来确定。齿轮的转速为n=10r/min ,齿轮传动力矩2221Nm ?,转向器每天工作8小时,使用期限不低于5年. 主动小齿轮选用20MnCr5材料制造并经渗碳淬火,而齿条常采用45号钢或41Cr4制造并经高频淬火,表面硬度均应在56HRC 以上。为减轻质量,壳体用铝合金压铸。 4.2 齿轮几何尺寸确定[2] 齿顶高 ha = () ()mm h m n an n 25.47.015.2=+?=+* χ,ha=17 齿根高 hf () ()mm c h m n n an n 375.17.025.015.2=-+?=-+=* *χ ,hf 齿高 h = ha+ hf =17+5.5=22.5 分度圆直径 d =mz/cos β=mm 337.1512cos 6 5.2=? d=61.348 齿顶圆直径 da =d+2ha =61.348+2×17=95.348 齿根圆直径 df =d-2hf =61.348-2×11 基圆直径 mm d d b 412.1420cos 337.15cos =?== α db=57.648 法向齿厚为 5 .2364.07.022tan 22???? ????+=??? ??+=παχπn n n n m s mm 593.4=×4=18.372 端面齿厚为 5253.2367.0cos 7.022tan 222????? ????+=??? ??+=βπαχπt t t t m s mm 275.5=×4=21.1 分度圆直径与齿条运动速度的关系 d=60000v/πn1=?v 0.001m/s 齿距 p=πm=3.14×10=31.4 齿轮中心到齿条基准线距离 H=d/2+xm=37.674(7.0) 4.3 齿根弯曲疲劳强度计算[11] 4.3.1齿轮精度等级、材料及参数的选择 (1) 由于转向器齿轮转速低,是一般的机械,故选择8级精度。 (2) 齿轮模数值取值为m=10,主动齿轮齿数为z=6,压力角取α=20°. (3) 主动小齿轮选用20MnCr5或15CrNi6材料制造并经渗碳淬火,硬度在56-62HRC 之间,取值60HRC. (4) 齿轮螺旋角初选为β=12° ,变位系数x=0.7

机械设计基础齿轮传动设计例题

例1 设计用于带式输送机传动装置的闭式单级直齿圆柱齿轮传动。传递功率P=2.7kW ,小齿轮转速n 1=350r/min ,传动比i=3.57。输送机工作平稳,单向运转,两班工作制,齿轮对称布置,预期寿命10年,每年工作300天。 解:1. 选择齿轮精度等级、材料、齿数 1)带式输送机属于一般机械,且转速不高,故初选择8级精度。 2)因载荷平稳,传递功率较小,可采用软齿面齿轮。参考表5-6,小齿轮选用45钢调质处理,齿面硬度220~250HBS ,σHLim1=595MPa , σFE1=230MPa ;大齿轮选用 45钢正火处理,齿面硬度170~200HBS , σ HLim2=520MPa ,σFE2=200MPa 。 3)初选小齿轮齿数z 1=24,则z 2=iz 1=3.57×24=85.68,取z 2=87。故实际传动比i=z 2/z 1=87/24=3.62,与要求的传动比3.57的误差小于3%。 对于齿面硬度小于350 HBS 的闭式软齿面齿轮传动,应按齿面接触强度设计,再按齿根弯曲强度校核。 2. 按齿面接触强度设计 设计公式5-48 1d ≥1)查表5-8,原动机为电动机,工作机械是输送机,且工作平稳,取载荷系数K=1.2。 2)小齿轮传递的转矩 11 2.7 9550955073.671 350 P N m n T =?= ?= ? 3)查表5-13,齿轮为软齿面,对称布置,取齿宽系数φd =1。

4)查表5-10,两齿轮材料都是锻钢,故取弹性系数Z E =189.8 MPa 1/2。 5)两齿轮为标准齿轮,且正确安装,故节点区域系数Z H =2.5,取重合度系数Z ε=0.9。 6)计算许用接触应力 N W X HLim H H Z Z Z S σσ??=?? ①应力循环次数 小齿轮N 1=60n 1jL h =60×350×1×(2×8×300×10)=10.08×108 大齿轮N 2= N 1/i=10.08×108/3.62=2.78×108 ②据齿轮材料、热处理以及N 1、N 2,查接触疲劳寿命系数图表,不允许出现点蚀,得接触疲劳寿命系数Z N1=1,Z N2=1,两齿轮均为软齿面故ZW=1,ZX=1。 ③一般传动,取安全系数S H =1.1。 ④计算许用接触应力 11115951540.91.1N W X HLim H H MPa Z Z Z S σσ???===??2222 5201427.71.1N W X HLim H H MPa Z Z Z S σσ???===?? 取小值[σ H2]代入计算。 7)计算 1 81.56mm d 8)计算主要尺寸 ①模数m=d 1/z 1=81.56/24=3.4mm 查表5-2,取标准值m=4mm 。 ②分度圆直径d 1=mz 1=4×24=96mm

轮系传动比计算(机械基础)教案

轮系传动比计算(机械基础)教案

教案首页

科目:机械基础(第四版)授课班级:08级模具(1)班 授课地点:多媒体教室(一)室课时:2课时

课题:§6—2 定轴轮系的传动比 授课方式:讲授 教学内容:定轴轮系的传动比及其计算举例 教学目标:能熟练进行定轴轮系传动比的计算方法及各轮回转方向的判定 选用教具:三角板、圆规、平行轴定轴轮系模型、非平行轴定轴轮系模型 教学方法:演示法、循序渐进教学法、典型例题法 第一部分:教学过程 一、复习导入新课(约7分钟) (一)组织教学(2分钟) 学生点名考勤,课前6S检查,总结表扬上次优秀作业学生,调节课堂气氛,调动学生主动性。 (二)教学回顾(2分钟) 1、什么是轮系? 2、轮系有什么应用特点? 3、轮系的分类依据是什么?可分为哪几类? 4、什么是定轴轮系?(让学生回顾上次课的内容) (三)复习,新课导入(2分钟) 演示减速器、车床主轴箱、钟表机构等,我们看到的这些都是定轴轮系的应用,请问:我们生活中常见钟表里的时针走一圈,分针走了12圈,秒针走了720圈,那么由时针到秒针是如何实现传动的?时针把运动传到秒针时,其转速大小有何变化?具体比值如何确定? (四)教学内容介绍(1分钟) 重点:定轴轮系的传动路线的分析、传动比的计算及各轮回转方向的判定。 难点:非平行轴定轴轮系传动比公式推导及各轮回转方向的判定。 二、新课讲解(约32分钟) (一)定轴轮系的传动比概念(2分钟) 教师先展示定轴轮系模型,引导学生参与到演示教学中来,通过一对齿轮的传动比概念,教师提出问题:定轴轮系的传动比是否就是输入轴的转速与输出轴的转速之比?引发学生思考。演示得出定轴轮系的概念:定轴轮系的传动比是指首末两轮的转速之比。 (二)知识分解(12分钟)

齿轮齿条传动设计计算39229

7)由图10-19取接触疲劳寿命系数 HN1 1.7。 材料选择。由表10-1选择小齿轮材料为40Cr (调质),硬度为280HBS 齿条 材料为45钢(调质)硬度为240HBS 6)由式10-13计算应力循环次数。 N 1 60n 1 jL h 60 7.96 1 2 0.08 200 4 6.113 10 4 1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传 动。 2 ) 速度不高,故选用7级精度(GB10095-88。 3) 4) 选小齿轮齿数1=24,大齿轮齿数 2=x 。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d it I 2 ccc (K" u 1 Z E 2.323 |— ----------------------- --- V u (1) 确定公式内的各计算数值 1) 试选载荷系数t 2) 计算小齿轮传递的转矩。 (预设齿轮模数 m=2mn 直径d=65mm T 1 95.5 1O 5 R n 1 95.5 105 O. 2424 2.908 105N mm 7.96 3) 由表10-7选齿宽系数d =。 4) 由表10-6查得材料的弹性影响系数 1 E 189.8 MPa 2 5) 由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 600M Pa ;齿 条的接触疲劳强度极限 Hlim 2 500 Mpa 。

8)计算接触疲劳许用应 力。 取失效概率为1%安全系数S=1,由式(10-12)得 K HN 1 Hlim1 S 1.7 600M Pa 1020MPa 计算 1 ) 试算小齿轮分度圆直径d ti,代入 2)d1t 2.323{K.T1 u 1 68.89mm 计算圆周速度V。 Z E 60 1000 3)计算齿宽b o d d1t 0.5 4)计算齿宽与齿高之 比。 模数 m t d1t 68.89 Z1 24 齿高 2.25m t 2.25 卜 3 2.908 105 1 189.8 2 0.5 1020 68^1^ 0.026m/s 60 1000 68.89 34.445mm 2.87 2.27 6.46 34.445 6.46 5.33

齿轮齿条的设计

齿轮齿条的材料选择 齿条材料的种类很多,在选择过程中应考虑的因素也很多,主要以以下几点作为参考原则: 1)齿轮齿条的材料必须满足工作条件的要求。 2)应考虑齿轮尺寸的大小、毛坯成形方法及热处理和制造工艺。 3)正火碳钢,不论毛坯制作方法如何,只能用于制作载荷平稳或轻度冲击 工作下的齿轮,不能承受大的冲击载荷;调制碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的 高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS 或者更多。 钢材的韧性好,耐冲击,还可通过热处理或化学热处理改善其力学性能及提高齿面硬度,故适用于来制造齿轮。由于该齿轮承受载荷比较大,应采用硬齿面(硬度≥350HBS ),故选取合金钢,以满足强度要求,进行设计计算。 齿轮齿条的设计与校核 1.2.1起升系统的功率 设V 为最低起钻速度(米/秒),F 为以V 起升时游动系统起重量(理论起重量,公斤)。 起升功率 V F P ?= F=N 5 106? 1V 取(米/秒)

KW P 4808.01065=??= 由于整个起升系统由四个液压马达所带动,所以每部分的平均功率为 KW KW P P 1204 4804 == =' 转矩公式: 595.510P T n ?= 所以转矩 T= mm N n .120 105.955?? 式中n 为转速(单位r/min ) 1.2.2 各系数的选定 计算齿轮强度用的载荷系数K ,包括使用系数A K 、动载系数V K 、齿间载荷分配系数K α及齿向载荷分配系数K β,即 K=A V K K K K αβ 1)使用系数A K 是考虑齿轮啮合时外部因素引起的附加载荷影响的系数。 该齿轮传动的载荷状态为轻微冲击,工作机器为重型升降机,原动机为液压装置,所以使用系数A K 取。 2)动载系数V K 齿轮传动不可避免地会有制造及装配误差,轮齿受载后还要产生弹性变形,对于直齿轮传动,轮齿在啮合过程中,不论是有双对齿啮合过渡到单对齿啮合,或是有单对吃啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。为了计及动载荷的影响,引入了动载系数V K ,如图2-1所示。

(完整版)齿轮齿条传动设计计算.docx

1. 选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用 7 级精度( GB10095-88)。 3)材料选择。由表 10-1 选择小齿轮材料为 40Cr(调质 ),硬度为 280HBS ,齿条 材料为 45 钢(调质)硬度为 240HBS 。 4)选小齿轮齿数 Z 1 =24,大齿轮齿数 Z 2 = ∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 3 K t T 1 u + 1 Z E d 1t ≥ 2.32 √ ?( ) 2 φd u [ σ ] H (1) 确定公式内的各计算数值 1)试选载荷系数 K t =1.3。 2)计算小齿轮传递的转矩。 (预设齿轮模数 m=8mm,直径 d=160mm ) T 1 = 95.5 ×105 P 1 = 95.5 ×105 ×0.2424 n 1 7.96 = 2.908 ×105 N ?mm 3) 由表 10-7 选齿宽系数 φ = 0.5。 d 1 4)由表 10-6 查得材料的弹性影响系数 Z E = 189.8MPa 2 。 5)由图 10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 σ = 600MPa;齿 Hlim1 条的接触疲劳强度极限 σ = 550MPa 。 Hlim2 6)由式 10-13 计算应力循环次数。 N 1 = 60n 1 jL h = 60 × ( 2× 0.08× 200 × ) = × 4 7.96 ×1 × 4 6.113 10 7)由图 10-19 取接触疲劳寿命系数 K HN1 = 1.7。 8)计算接触疲劳许用应力。 取失效概率为 1%,安全系数 S=1,由式( 10-12)得 [ σH ] 1 = K HN1 σHlim1 ×600MPa = 1020MPa = 1.7 S (2) 计算 1)试算小齿轮分度圆直径 d ,代入 [σ ] 。 t1 H 1

各种传动方式优缺点

1、齿轮传动 分类:平面齿轮传动、空间齿轮传动。 优点:适用的圆周速度和功率范围广;传动比准确、稳定、效率高。;工作可靠性高、寿命长。;可实现平行轴、任意角相交轴和任意角交错轴之间的传动 缺点:要求较高的制造和安装精度、成本较高。;不适宜远距离两轴之间的传动。渐开线标准齿轮基本尺寸的名称有齿顶圆;齿根圆;分度圆;摸数;压力角等。 2、涡轮涡杆传动 适用于空间垂直而不相交的两轴间的运动和动力。 优点:传动比大。;结构尺寸紧凑。 缺点:轴向力大、易发热、效率低。;只能单向传动。 涡轮涡杆传动的主要参数有:模数;压力角;蜗轮分度圆;蜗杆分度圆;导程;蜗轮齿数;蜗杆头数;传动比等。 3、带传动 包括主动轮、从动轮;环形带 1)用于两轴平行回转方向相同的场合,称为开口运动,中心距和包角的概念。 2)带的型式按横截面形状可分为平带、V带和特殊带三大类。 3)应用时重点是:传动比的计算;带的应力分析计算;单根V带的许用功率。 优点:适用于两轴中心距较大的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防止损坏其他零部件;结构简单、成本低廉。 缺点:传动的外廓尺寸较大;、需张紧装置;由于打滑,不能保证固定不变的传动比;带的寿命较短;传动效率较低。 4、链传动 包括主动链、从动链;环形链条。 链传动与齿轮传动相比,其主要特点:制造和安装精度要求较低;中心距较大时,其传动结构简单;瞬时链速和瞬时传动比不是常数,传动平稳性较差。 5、轮系 1)轮系分为定轴轮系和周转轮系两种类型。

2)轮系中的输入轴与输出轴的角速度(或转速)之比称为轮系的传动比。等于各对啮合齿轮中所有从动齿轮齿数的乘积与所有主动齿轮齿数乘积之比。 3)在周转轮系中,轴线位置变动的齿轮,即既作自转,又作公转的齿轮,称为行星轮,轴线位置固定的齿轮则称为中心轮或太阳轮。 4)周转轮系的传动比不能直接用求解定轴轮系传动比的方法来计算,必须利用相对运动的原理,用相对速度法(或称为反转法)将周转轮系转化成假想的定轴轮系进行计算。 适用于相距较远的两轴之间的传动;可作为变速器实现变速传动;可获得较大的传动比;实现运动的合成与分解。 二、电气传动 1、精确度高:伺服电机作为动力源,由滚珠丝杠和同步皮带等组成结构简单而效率很高的传动机构。它的重复精度误差是0.01%。 2、节省能源:可将工作循环中的减速阶段释放的能量转换为电能再次利用,从而减低了运行成本,连接的电力设备仅是液压驱动所需电力设备的25%。 3、精密控制:根据设定参数实现精确控制,在高精度传感器、计量装置、计算机技术支持下,能够大大超过其他控制方式能达到的控制精度。 4、改善环保水平:由于使用能源品种的减少及其优化的性能,污染源减少了,噪音降低了,为工厂的环保工作,提供了更良好的保证。 5、降低噪音:其运行噪音值低于70分贝,大约是液压驱动注塑机噪音值的2/3。 6、节约成本:此机去除了液压油的成本和引起的麻烦,没有硬管或软喉,无须对液压油冷却,大幅度降低了冷却水成本等。 三、液压传动 优点:

(完整版)齿轮齿条传动设计计算

1.选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用7级精度(GB10095-88)。 3)材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS,齿条材料为45钢(调质)硬度为240HBS。 4)选小齿轮齿数Z1=24,大齿轮齿数Z2=∞。 2.按齿面接触强度设计 由设计计算公式进行计算,即 d1t ≥2.32√K t T1 d ? u+1 ( Z E [H] )2 3 (1)确定公式内的各计算数值 1)试选载荷系数K t =1.3。 2)计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm) T1=95.5×105P1 1 = 95.5×105×0.2424 =2.908×105N?mm 3) 由表10-7选齿宽系数φd=0.5。 4)由表10-6查得材料的弹性影响系数Z E=189.8MPa 1 2。 5)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N1=60n1jL h=60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1=K HN1σHlim1 S =1.7×600MPa=1020MPa (2)计算 1)试算小齿轮分度圆直径d t1,代入[σH]1。

d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 =2.32√1.3×2.908×1050.5?∞+1∞ (189.81020)23=68.89mm 2)计算圆周速度v 。 v =πd 1t n 1=π×68.89×7.96=0.029m s ? 3)计算齿宽b 。 b =φd ?d 1t =0.5×68.89=34.445mm 4)计算齿宽与齿高之比b h 。 模数 m t =d 1t z 1=68.8924 =2.87 齿高 h =2.25m t =2.25×2.87=6.46mm b =34.445=5.33 5)计算载荷系数。 根据v =0.029m/s ,7级精度,由图10-8查得动载荷系数K V =1; 直齿轮,K Hα=K Fα=1; 由表10-2查得使用系数K A =1.5; 由表10-4用插值法查得7级精度、小齿轮为悬臂布置时K Hβ=1.250。 由b h =5.33,K Hβ=1.250查图10-13得K Fβ=1.185;故载荷系数 K =K A K V K HαK Hβ=1.5×1×1×1.250=1.875 6)按实际的载荷系数校正所算得的分度圆直径,由式(10-10a )得 d 1=d 1t √K t 3=68.89×√1.8753=77.84mm 7)计算模数m 。 m = d 1z 1=77.8424 =3.24mm 3. 按齿根弯曲强度设计 由式(10-5)得弯曲强度设计公式为

高职《机械设计基础》齿轮传动教案

****职业技术学院教案

(2)渐开线上任意一点的法线必切于基圆。 (3)渐开线上各点压力角不等,离圆心越远处的压力角越大。基圆上压力角为零。渐开线上任意点K处的压力角是力的作用方向(法线方向)与运动速度方向(垂直向径方向)的夹角αK(图10-1),由几何关系可推出 K b 1 K cos r r - = α(10-1)式中r b—基圆半径,r K—K点向径 (4).渐开线的形状取决于基圆半径的大小。基圆半径越大,渐开线越趋平直(图10-2)。 (5).基圆以内无渐开线。 图10-1 渐开线的形成及压力角10-2 渐开线形状与基圆大小的关系 10.2.3 渐开线齿廓的啮合特性 两相互啮合的齿廓E1和E2在K点接触(如图10-3),过K点作两齿廓的公法线nn,它与连心线O1O2的交点C称为节点。以O1、O2为圆心,以O1C(r1')、O2C(r2')为半径所作的圆称为节圆,因两齿轮的节圆在C点处作相对纯滚动,由此可推得 ' 1 ' 2 1 2 2 1 r r C O C O i= = = ω ω (10-2)一对传动齿轮的瞬时角速度与其连心线被齿廓接触点的公法线所分割的两线段长度成反比,这个定律称为齿廓啮合基本定律。由此推论,欲使两齿轮瞬时传动比恒定不变,过接触点所作的公法线都必须与连心线交于一定点。 10.2.3 渐开线齿廓的啮合特性 1. 渐开线齿廓能保证定传动比传动 一对齿轮传动,其渐开线齿廓在任意点K接触(图10-3),可证明其瞬时传动比恒定。过K点作两齿廓的公法线nn,它与连心线O1O2交于C点。由渐开线特性推知齿廓上各点法

线切于基圆,齿廓公法线必为两基圆的内公切线N1N2,N1N2与连心线O1O2交于定点C。 2. 中心距的可分性 由△N1O1C∽△N2O2C,可推得 1b 2 b 1 2 2 1 r r C O C O i= = = ω ω (10-3)渐开线齿轮制成后,基圆半径是定值。渐开线齿轮啮合时,即使两轮中心距稍有改变,过接触点 齿廓公法线仍与两轮连心线交于一定点,瞬时传动比保持恒定,这种性质称为渐开线齿轮传动的可分离性,这为其加工和安装带来方便。 图10-3 齿廓啮合基本定律图10-4 渐开线齿廓啮合 3. 齿廓间的正压力方向不变 齿轮无论在哪点接触,过接触点做公法线,公法线总是两圆的内公切线n1n2。 1.分度圆、模数和压力角(图10-5) 齿轮上作为齿轮尺寸基准的圆称为分度圆,分度圆以d表示。相邻两齿同侧齿廓间的分度圆弧长称为齿距,以p表示,p=πd/z,z为齿数。齿距p与π的比值p/π称为模数,以m表示。模数是齿轮的基本参数,有国家标准,见表4-1。由此可知: 齿距p= mπ (4-4)分度圆直径d= m z (4-5)渐开线齿廓上与分度圆交点处的压力角α称为分度圆压力角,简称压力角,国家规定标准压力角

齿轮齿条式转向器设计和计算

转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于且无动力转向和不大于4t带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。(转向盘转角增量与相应的转向摇臂转角增量之比iω1称为转向器角传动比。) 二、两侧转向轮偏转角之间的理想关系式 汽车转向行驶时,为了避免车轮相对地面滑动而产生附加阻力,减轻轮胎磨损,要求转向系统能保证所有车轮均作纯滚动,即所有车轮轴线的延长线都要相交于一点。 cotα=cotβ+B/L 其中α、β分别是内外侧转向轮的偏转角,B是两侧主销轴线与地面相交点之间的距离;L是汽车轴距。 如果是多轴汽车转向,转向轮转角间的关系与双轴汽车基本相同。

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Revised as of 23 November 2020

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS ,齿条材料 为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1d u +1(Z E [H ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa 。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1=K HN1σHlim1S =1.7×600MPa =1020MPa

各种传动方式的比较

各种传动方式的比较 各种传输模式的比较 这有几个优点。齿轮有间隔,链条有平均传动比,皮带传动有过载,螺旋传动精度高,蜗杆传动传动比大。 皮带传动和齿轮传动的区别很大,“比较皮带传动和齿轮传动的应用场合”很简单:皮带传动主要应用于中心距大、传力小、传动比要求低的场合;而齿轮传动适用于中心距小、传力大、传动比要求高的场合。齿轮齿条传动和滚珠丝杠传动(举升)哪一种效率更高 齿轮带动齿条上下移动,螺母(固定旋转)带动螺杆上下移动,效率高?他们的优点和缺点是什么?同样的垂直速度,哪一个需要更多的动力?请列出相关的公式和数据。两者重量相同,设备需要自锁。请帮忙分析,先谢谢你!齿轮传动的效率约为99%。试管架可以参考这个。 一般丝杠效率一般为50%,即使丝杠角度较大,也不会超过60%。只要滚珠丝杠的导程角不太小,一般正效率可以达到90%以上,但一般不超过95%。从动力的角度来看,齿条传动和滚珠丝杠传动之间的差别很小。 齿轮传动效率是机械特殊操作中效率最高的传动之一,一般可达90%,如果是一级齿轮传动效率可达99%,如果是多级齿轮传动,则是各级效率的乘积..当然,最低取决于齿轮设计和制造过程。没有必要研究这个。制造业就是这样,只需要知道当前的一般水平和最高水平。此外,传动功率可达10万千瓦,圆周速度可达12月XXXX“传

动技术”研究报告。两者之间的区别不取决于传动方式的选择,而是取决于制造商的设计和制造水平。 2、空载能耗为齿轮传动(耦合传动)的直接传动方式,空载压力一般保持在2.5巴以上,有的甚至高达4巴,以保证齿轮箱的润滑。对于皮带传动模式,理论上空载压力可以为零,因为吸入转子的油足以润滑转子和轴承。通常,出于安全原因,压力保持在大约0.5巴。以160千瓦齿轮驱动空气压缩机为例。它每年工作8000个小时,其中15%(即在1XXXX比同等功率的皮带驱动空气压缩机多消耗28800千瓦时的电能(假设两台机器之间的空载压差为2巴,能耗差约为15%)。从长远来看,这将是一笔巨大的开支。3.对漏油有经验的实际用户都知道变速箱将首先遭受漏油。皮带传动系统没有这样的安全问题。 4.根据用户要求设计工作压力。通常,用户要求的工作压力与制造商标准型号的压力不完全一致。例如,用户需要10巴的压力。根据后处理设备的情况,管道长度和密封程度不同,空气压缩机的工作压力可以是11巴或11.5巴。在这种情况下,通常将安装额定压力为13巴的空气压缩机,出口压力将设置为现场所需的工作压力。此时,位移将保持基本不变,因为尽管最终工作压力已经降低,转子的速度却没有增加。代表现代技术的皮带传动设计制造商只需简单地改变皮带轮的直径,就可以将工作压力设计成完全符合用户的要求,这样用户就可以用同样的动力电机获得更多的风量。对于齿轮传动来说,就不那么方便了。 5.已安装空气压缩机的压力变化有时由于用户生产工艺条件的变化,

机械设计基础实验

机械设计基础实验指导书 曹淑伟 徐州师范大学机电工程学院

目录 实验一.机构运动简图的测绘与分析实验 (1) 实验二.渐开线齿轮范成原理实验 (4) 实验三.带传动实验 (7) 实验四.减速器拆装实验 (10) 机构运动简图的测绘与分析实验报告 (12) 渐开线齿轮范成原理实验报告 (14) 带传动实验报告 (16) 减速器拆装实验报告 (18)

实验一机构运动简图的测绘与分析实验 一、实验目的 1.学会根据实际机械或模型的结构测绘机构运动简图的方法; 2.运用并熟悉一些常用的构件及运动副的代表符号; 3.验证和巩固机构自由度的计算。 二、实验设备和工具 1.各种典型机构、机械的实物或模型; 2.钢板尺、钢卷尺、内卡钳、外卡钳、量角器; 3. 学生自带下列实验用品:纸、笔、圆规、橡皮等文具。 三、实验内容 分析机构的组成,绘制机构运动简图,计算机构自由度,理解各种运动副的组成和特点,分析机构中的虚约束、局部自由度和复合铰链,判断机构具有确定运动的条件。 四、实验原理 在分析和研究机构运动时,为了使问题简化,便于分析,可以不考虑构件的外形、构件的截面尺寸和运动副的实际构造,只用简单线条和符号代表构件和运动副,并按一定的比例来表示运动副的相对位置和与运动相关的尺寸,以此说明实际机构的运动特征。 五、实验步骤 1.观察机构的运动并确定构件数 首先找出机构中的原动件,通过动力输入构件或转动手柄,使被测绘的机构或机器(或模型)缓慢地运动,循着运动的传递路线仔细观察并判断哪些为连接构件、工作构件、固定构件等,同时确定构件的数目。

2. 判别各构件之间运动副的类别 按照运动的传递路线,根据两构件的接触情况及相对运动的特点,依次判断相邻两构件之间组成运动副的类别,确定哪些是转动副、移动副及哪些是高副。 3. 绘制平面机构的示意图 正确选择投影面,将原动件放在一般位置上,按照运动的传递路线及代表运动副、构件的规定符号绘制出机构运动的示意图,并对机构中的每一构件进行编号,在构件旁标注数字1、2、3…,在运动副旁标注字母A ,B ,C …,在原动件上标注箭头。绘制机构示意图可供定性分析机构运动特征时使用,也可为正确绘制机构运动简图作好准备。 4. 测量与机构运动有关的尺寸并按比例绘制平面机构的运动简图 仔细测量与机构运动有关的尺寸,包括转动副间的中心距、移动副导路的位置或角度等。选择适当的比例尺μL ,按比例确定各运动副之间的相对位置,并以简单的线条和规定的运动副符号,正确绘出机构运动简图。 5. 计算机构的自由度 平面机构自由度F 的计算公式为: F =3n ?2P L ?P H 式中:n 为活动构件的数目,P L 为低副数目,P H 为高副数目。 6. 分析机构运动的确定性 将计算得到的机构自由度数与所测绘机构的原动件数比较,两者应相等。若与实际情况不符,要找出原因及时改正。 举例:绘制如图1-1(a )所示的小型压力机的机构运动简图。 了解该小型压力机的工作原理是电机带动偏心轮1′作顺时针转动,通过 ) 长度(单位简图上所画构件的图示)或构件的实际长度(单位长度比例尺mm mm m L = μ

相关主题
文本预览
相关文档 最新文档