当前位置:文档之家› 端氨基聚醚的合成及应用_莫蛮

端氨基聚醚的合成及应用_莫蛮

端氨基聚醚的合成及应用_莫蛮
端氨基聚醚的合成及应用_莫蛮

Vol.43No.3(2012)

ZHEJIANG CHEMICAL INDUSTRY 文章编号:1006-4184(2012)03-0024-03

端氨基聚醚的合成及应用

莫蛮田静刘学民蒋惠亮

(江南大学化学与材料工程学院,江苏无锡214122)

收稿日期:2011-09-04

作者简介:莫蛮(1986-),男,硕士生,主要从事精细化学品合成方面的研究。

端氨基聚醚是一类分子主链为聚醚骨架,末端被氨基封端的聚氧化烯化合物。自从Texaco 化学公司[1]率先完成端氨基聚醚的工业化生产以来,人们对该类型产品的合成方法及其应用进行了深入而广泛的研究。由于端氨基的反应活性,使其能与多种反应性基团作用,该类型制品的应用日益广泛。目前有关端氨基聚醚的合成方法,已有诸多文献报道[2-3],有些已用于工业化生产。本文概述了脂肪族端氨基聚醚的几种常用合成方法,并介绍了端氨基聚醚在环氧树脂固化剂、聚氨酯工业及汽油清净分散剂领域的应用。

1端氨基聚醚的合成方法

1.1催化还原胺化法

这种合成方法是将聚醚多元醇、氨、氢气和催化剂在一定的温度及压力下进行临氢催化还原胺化反应,使羟基转化成端氨基。Jefferson 公司的Yeakey 等[4]研究了T 系列(三度官能团)端氨基聚氧化丙烯醚的合成工艺,认为反应历程为:羟基脱氢生成羰基、羰基氨化并脱水变成烯亚胺、(烯亚胺)加氢还原转化成端氨基。

x 、y 、z 为整数。通过选用含不同x 、y 、z 的聚醚多

元醇,便可以合成出相应分子量的端氨基聚醚。可选用间歇式或连续型高压反应器,通常反应温度

150℃~275℃、压力3.5~35MPa ,选用具有脱氢-加

氢功能的金属催化剂(如Ni 、Gu 、Cr 、Al 、Ru 等)[5]。催化剂的制备方法和工艺对转化率和选择性有很大的影响,常用的制备方法是:首先用浸渍-沉淀法或浸渍法使所需活性组分的易溶盐负载于载体上,然后置于110℃下干燥数小时,再在400℃~450℃焙烧,自然降温后即得催化剂前驱体,最后经氢气还原可得所需催化剂[6-7]。常用催化剂金属组分如表1所示:

摘要:讨论了脂肪族端氨基聚醚的几种常用合成方法,介绍了端氨基聚醚在环氧树脂固化剂、

聚氨酯工业及汽油清净分散剂领域的应用。

关键词:端氨基聚醚;催化胺化;应用

精细化

24--

《浙江化工》2012年第43卷第3期

表1常用催化剂组分

此合成方法的转化率高和选择性好、原料利用率高、对环境污染小、合成产物易分离纯化。

1.2离去基团法

1.2.1光气法

Simons等[8-9]提出了将聚醚多元醇与光气进行反应制得聚醚氯甲酸酯,然后用二元伯胺与聚醚氯甲酸酯反应合成端氨基聚醚。伯胺基与氯甲酸酯基团的摩尔比为3:1时,制得的端氨基聚醚粘度低、色泽浅,并且过量的二元伯胺可以作为盐酸的吸收剂。其反应历程如下:

宋建梅[10]以聚氧化丙烯多元醇为基础原料,与光气在适当溶剂存在下采用低温、高温两段法合成聚醚氯甲酸二酯,然后再与多胺在甲苯为溶剂、三乙胺为催化剂的条件下进行反应,脱除溶剂后得到端氨基氯甲酸聚氧丙烯。

1.2.2卤化法

用不同的卤化剂如氯化亚砜、溴化亚砜、五氯化磷及氢卤酸等,与聚醚多元醇反应合成端卤代聚醚,然后再进行氨化合成端氨基聚醚。

在催化剂存在下,刘志华等[11]向聚丙二醇的N, N-二甲基甲酰胺溶液中滴入氯化亚砜,控温60℃~ 70℃,搅拌反应72h,得到双端氯代聚丙二醇,再将氨基酚、氢氧化钠在室温下搅拌混合均匀后,加入双端氯代聚丙二醇在60℃下搅拌反应24h,合成了目标产物端氨基聚醚。

1.2.3甲磺酰氯法

研究发现甲磺酰氯是比氯更为有效的离去基团。甲磺酰氯的反应活性高,很容易将甲磺酰基引入聚醚的两端,并且第二步的亲核取代反应也很容易进行。其反应历程如下:

华峰君等[12]以不同分子量的聚氧化丙烯二元醇为原料,加入四氢呋喃和对甲苯磺酰氯搅拌溶解后,滴入适量吡啶。在低于30℃条件下搅拌反应24h,得到双磺酯化聚醚,然后在氮气保护下将双磺酯化聚醚滴入含乙二胺和甲苯混合溶液的烧瓶中,控温110℃进行胺解反应,得到浅黄色的聚氧化丙烯多胺。

相比催化还原胺化法,采用离去基团法合成端氨基聚醚对设备要求低、操作成本小,但副产物多且不易控制、产物分离纯化难度大、中和过程耗碱量大。

2端氨基聚醚的应用

2.1环氧树脂固化剂方面的应用

端氨基聚醚具有粘度低、渗透性能好、抗黄变、耐热性能优等特性,制成的玻璃钢制品有很好的柔韧性,这是一般环氧固化剂很难满足的[13]。目前在较大型的环氧玻璃钢制品中,基本上都选用端氨基聚醚作环氧树脂的固化剂,常用的有美国Huntsman 公司生产的T系列(三度官能团)、D系列(二度官能团)的端氨基聚氧化丙烯醚产品。

环氧树脂风电机组风叶片一般长度都在50m 左右,现在长的叶片可达80m以上,而且在全天候条件下使用年限要求达到20年以上。基本上都选用端氨基聚醚作为环氧树脂的固化剂[14]。近年来,特别是国家"十一五"规划以来,对风能放电项目的投入增加,使得国内市场端氨基聚醚需求量持续增长。

选用端氨基聚醚固化的环氧树脂具有良好的耐碱性和耐浸泡性能,以及在提高玻璃钢制品的抗疲劳性能方面也有着独特的作用,所以有些复合材料也会在很多场合选用端氨基聚醚,如游艇、冲浪板、钓鱼竿等抗疲劳性能好的产品。环氧树脂的室温固化剂采用脂肪族多元胺或改性胺,存在着毒性大、易挥发、色泽深、对人体皮肤刺激性强、固化时放热量大、使用周期短、固化后树脂的耐热冲击性差等缺点,这使其应用受到限制[15]。端氨基聚醚应用

文献名称US4766245

催化剂组分

x(Ni)60%~85%、x(Cu)14%~37%、x(Cr)1%~5%

ω(Ni)60%~75%、ω(Al)25%~40%ω(Ni)70%~75%、ω(Cu)20%~25%、ω(Cr)0.5%~5%、ω(Mo)1%~5%

ω(Ru)/γ~Al2O30.5%~20%

(金属占载体的质量百分数)

US3654370

US5003107

US2005027141A1

Vol.43No.3(2012)ZHEJIANG CHEMICAL INDUSTRY

于环氧树脂固化剂中,不但能降低固化物的脆性、提高固化物的柔韧性,而且还克服了简单多胺固化剂毒性大、易挥发的严重缺点。

端氨基聚醚具有色泽浅、粘度低、与环氧树脂相容性好等性能,涉及环氧树脂应用的大部分领域:涂料,端氨基聚醚作为固化剂的环氧涂料漆耐磨损和冲击,也可与聚酰胺混合制得更柔软的涂层;灌封材料,采用端氨基聚醚固化剂的环氧树脂固化物在浇铸和灌封时放热小、耐热冲击,例如在电路的开发与应用方面;同时端氨基聚醚在建筑材料、复合材料等领域也有重要的应用[16]。与其它胺类固化剂相比,端氨基聚醚对环境影响小、与许多有机物相容性好,在国家大力发展基础建设的政策下,市场需求量大。Huntsman公司2011年2月宣布计划对新加坡的端氨基聚醚装置进行4万t产能的扩建,并表示预计亚太地区的端氨基聚醚年增长率至少将达到10%(目前全球市场占有率>80%)。

2.2聚氨酯(聚脲)工业领域的应用

在聚氨酯工业中,端氨基聚醚主要应用于反应注射成型(RIM)和喷涂聚氨酯弹性体技术。在聚脲RIM体系中,端氨基聚醚同异氰酸酯的反应十分迅速,已使聚氨酯反应注射成型体系的循环周期缩短为1~1.5min,并且无需加入催化剂。聚醚多元醇聚氨酯的RIM体系需加入大量催化剂以使循环周期缩短,影响了RIM弹性体的物理性能;端氨基聚醚在固化反应中同异氰酸酯形成脲基(-NHCONH-),不会降低甚至还提高了胶粘剂的性能,并且无需任何催化剂[17-18]。端氨基聚醚即使在不加热的条件下,也能与原料体系进行快速反应,进而实现聚氨酯弹性体的快速成型,提高了聚氨酯制品的应用范围,可用于制造车窗密封垫、车轮罩、保险杠、仪表板等制件。通过选用不同的端氨基聚醚,可得到不同的聚脲RIM硬质材料,例如:使用相应的端氨基聚醚三胺或聚醚二胺便可制得不同程度的高模量和低模量材料[19]。得益于端氨基聚醚的快速成型和胶粘性能好的特点,目前在聚脲RIM体系、SPUA弹性体领域,端氨基聚醚应用越来越广。端氨基聚醚在SPUA弹性体技术中的优越性表现在:SPUA材料耐老化、柔韧性好、抗拉强度高、材料无毒无污染,并且在高寒地下和海洋的恶劣环境条件下防腐性能强。上述性能是普通聚氨酯弹性体无法比拟的[20]。2.3端氨基聚醚汽油清净分散剂

Chevron、BASF等公司开发了一系列端氨基聚醚型第四代汽油清净剂。端氨基聚醚作为汽油清净分散剂不仅能有效清洁发动机进气阀部位沉积物,而且不会增加燃烧室沉积物,将其与曼尼烯清净剂复配后,可有效地减少燃烧室积炭的生成[21]。汽油清净分散剂是现代汽油的重要组分,汽油无铅化、电喷技术的使用必须伴随合理的使用清净剂,只有三者有机结合起来,才会取得节能环保的最佳综合效果[22]。随着我国汽车工业的快速发展,势必会推动端氨基聚醚汽油清净分散剂的市场需求。

3结束语

随着我国经济建设的稳步推进,国内市场对端氨基聚醚类产品的需求量也越来越大。目前端氨基聚醚的生产被国外Huntsman/BASF化学公司所垄断,产品价格昂贵。不过令人欣喜的是国内研究机构也在进行相关研究并取得了进展,据报道江苏化工研究所已经研究出一系列脂肪族端氨基聚醚的生产工艺条件,并且中试成功,其产品性能与Jeffamine 相当。随着我国端氨基聚醚生产技术的不断成熟,其价格这一制约因素将随之消失;这将有助于端氨基聚醚在聚氨酯工业和环氧树脂行业的广泛应用。参考文献:

[1]颜吉效.端伯氨基氧化丙烯聚醚的合成与应用进展[J].浙江化工,2007,38(1):12-14.

[2]季宝.离去基团法制备端氨基聚醚的研究进展[J].山西建筑,2009,35(12):171-172.

[3]刘立峰,姜志国,周亨近,等.新型端氨基聚醚的合成[J].北京化工大学学报:自然科学版,2005,32(1):103-105.

[4]Emest L.Yeakey.Process for preparing Polyoxyalkylene Polyamines:US,3654370[P].1972-04-04.

[5]John M,Larkin,Terry L,Renken.Process for the preparation of polyoxyalkylene polyamines:US,4766245[P]. 1988-08-23.

[6]Robert L Zimmerman,John M Larkin.Catalytic method for the reductive amination of poly(oxytetramethyle)glycols:US, 5003107[P].1991-03-26.

[7]Tetsuaki Furushima,Wakayama,Masaharu Jono.Process for polyoyalklene triamine:US,20050027141A1[P].2005-02-03.

[8]郁维铭.端氨基聚醚的合成方法及其应用[J].聚氨酯工业,2002,17(1):1-5.

[9]Donald M,Simons,Wilmington.Polyurethane diamines: US,2888439A[P].1959-05-26.

[10]宋建梅,俞介兵.一种新型端氨基聚醚的合成方法[J].楚雄师范学院学报,2007,22(9):30-33.

[11]刘志华,闫共芹,陶剑青,等.端氨基苯基聚丙二醇的合成及其环氧树脂胶黏剂的研究[J].中国胶黏剂,2005,14(6): 01-03.

(下转第29页)

26 --

《浙江化工》

2012年第43卷第3期Surwey on the Influence to the Viscosity of HBP-NH 2

WANG Shou-jian,WANG Shou-wu,ZHEN Yuan,DING Hao,YUAN Chuan,

ZHANG Feng ,SUN Tong

(Chemical Engineering School,Huaihai Institute of Technology,Lianyungang,Jiangsu 222005,China )Abstract:As the main body,amino-terminated hyperbranched polymer (HBP-NH 2)was dissolved in water,reach to 1%mass fraction.Under different concentration,acid-base environment,salts and salinity,the influence to the viscosity of HBP-NH 2aqueous solution was surveyed.The optimum using condition at the low concentration environment was obtained.

Keywords:HBP-NH 2;pH;concentration;salinity;influence

[4]王生杰,范晓东,孔杰,等.端氨基超支化合物性能

的测试与研究[J].高分子学报,2006,(8):1024-1028.

[5]王欣,范晓东,王生杰,等.可光固化超支化聚硅氧

基硅烷的合成与表征[J].高分子学,2006,(9):1112-1116.

[6]唐黎明,方宇,由虎,等.超支化聚硅氧基硅烷的合

成及其表征[J].高分子学报,2005,(2):301-304.

[7]张峰,陈宇岳,张德锁,等.端丙烯酸酯基超支化聚(酯-胺)的结构分析及光固化[J].印染,2007,(17):1-4.

Sythesis and Application of Amine-Terminated Polyethers

MO Man ,TIAN Jing ,LIU Xue-min ,JIANG Hui-liang

(School of Chemical and Material Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)

Abstract:Several common synthetic methods for aliphatic amine -terminated Polyethers(ATPEs)were described.The applications of ATPEs in the area of caring agents for epoxy resins,polyurethane industry and dispersant-detergent for gasoline were remarked.

Keywords:amine-terminated polyether;catalytic amination;applications

[12]华峰君,胡春圃.聚氧化丙烯多胺的合成表征及对环氧树脂的增韧效应[J ].高分子材料科学与工程,1999,15(3):

21-23.

[13]Kathy B Sellstrom,Harold G Waddill.Extended amine

curing and epoxy resins cured therewith:US,4552933[P ].1985-11-12.

[14]Harold G Waddill,Richard J G Dominguez.Epoxy

resin containing a combination of high and low molecular weight polyoxyalkylene polyamine curing agents:US,4485229[P ].1984-11-27.

[15]虞兆年.涂料工业[M ].北京:化学工业出版社,1997.[16]刘东晖,刘培礼,黄微波.新型环氧树脂固化剂-端氨基聚氧化丙烯醚[J ].热固性树脂,2001,16(2):30-33.

[17]黄微波,王宝柱,陈酒姜,等.喷涂聚脲弹性体技术的发展历程[J ].现代涂料与涂装,2004(4):09-12.

[18]吕璐,曹一林,马跃.端氨基聚醚的合成及应用[J ].化学与粘合,2003(6):300-304.

[19]商汉章,李芸德,沙金.喷涂聚脲弹性体技术的现状和应用[J ].中国涂料,2008,23(9):54-57.

[20]郁维铭.聚氨酯及聚脲防水涂料技术综述[J ].新型建筑材料,2009(12):64-67.

[21]张金龙,王鹏翔,葛圣才.汽油清净分散剂端氨基聚醚的合成及应用[J ].石油炼制与化工,2009,40(7):40-43.

[22]金晶哲,刘立红.汽油清净剂的发展历程及现状简述[J ].化工科技,2010,18(2):74-77.

(上接第26页)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!29--

聚醚多元醇的羟值及羟值计算

聚醚多元醇的羟值及羟值计算 2007-03-03 15:39:07来源: 作者: 【大中小】浏览:401次评论:0条 羟值是聚醚多元醇(以下简称聚醚)的重要特性指标。它涉及聚醚中官能团的含量和聚醚的分子量,为聚醚生产、应用、开发部门所关注。在聚醚合成工业,还用羟值控制生产,所以如投料量,误差分析,产量估算等都离不开羟值。但是由于羟值的单位不够直观,防碍了人们,特别是初学者,深入的认识和理解羟值的含义,以致在有关计算中,往往抛开羟值本身的含义,重复地使用羟值与分子量的关系式,使本来简单的计算复杂化。这不仅增加了工作量,还容易出现计算错误,贻误工作。因此,深入了解有关羟值的概念,灵活运用它进行各类计算是必要的。 1 羟值的含义和单位 从羟值的名称上理解,羟值就是羟基的含量(或浓度)。指的是单位重量的样品中所含羟基的量。所用单位是mgKOH/g,其中的mgKOH是度量羟基的单位。这种单位不如克,升等单位直观,其中的mgKOH似乎与羟基毫无关系。那么1mgKOH 的羟基是多少?与摩尔什么关系?用单位重量的某一化学物质(如mgKOH)做为单位,通常用于表示某一化学基团或某一类化学物质(如酸性物质)的量。因为化学基团与一般的物质不同,不能够独立存在,因此有时在习惯上,或者是根据实际需要把某一基团按化学计量关系折算成含有这种基团的某一化学物质来表示。在聚醚合成及相关的部门,是把羟基折算成KOH表示。按OH与KOH的计量关系-1摩尔KOH中含有1摩尔OH,则1摩尔OH折算成一摩尔KOH,就等于是56.1克或者是56100mgKOH。反过来1mgKOH与1/56100摩尔的羟基相当。因此用mgKOH做为度量羟基的单位时,1mgKOH的羟基就是1/56100摩尔的羟基。可见,mgKOH是

氨基磺酸镍溶液MSDS最新

核工业兴中——氨基磺酸镍化学品安全技术说明书 第一部分化学品与企业资料 化学品中文名称:氨基磺酸镍溶液 化学品英文名称:Nickel Sulfamate 分子式:Ni(SO3NH2)2·4H2O 企业名称:江西核工业兴中科技有限公司 地址:江西省南昌市昌东大道999号 传真号码:(86-791)(88158900) 企业紧急联络电话:(86-755)(27373896) /(86-791)(88216442) 生效日期:2014-3-1 第二部分成份/组成信息 第三部分危害性质概述 危害性类别:普通化学品(非危险品)。 侵入途径:吸入、食入、皮肤吸收。 健康危害:刺激喉咙、眼睛和鼻子,皮肤接触可引起皮炎和湿疹,常伴有剧烈瘙痒,称之为“镍痒症”。大量口服会引起恶心、呕吐和眩晕。 环境影响:对环境有危害,对水体可造成污染。 燃爆危险:本品不燃、不爆。 第四部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。 食入:饮足量温水,催吐,洗胃,导泻。就医。

核工业兴中——氨基磺酸镍化学品安全技术说明书 第五部分消防措施 适用灭火剂:可用雾状水、泡沫、二氧化碳、干粉、沙土扑救。 灭火注意事项:避免氨基磺酸镍流入下水道、河流及排水沟。 消防人员特殊防护设备:无。 特殊灭火程序:无。 第六部分泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴橡胶手套,佩戴化学安全防护眼镜或面罩。用惰性材料吸附(如干沙、石灰等)并移到封闭容器中。处理过 程中先切断泄漏源。防止进入下水道等限制性空间。 第七部分操作处置与储存方法 操作注意事项:操作区域保持良好通风。操作人员必须经过专门培训,严格遵守操作规程。 建议操作人员佩戴面罩或戴化学安全防护眼镜,穿一般防护服,戴橡胶手 套,配备泄漏应急处理设备,倒空的容器不能残留有害物。 储存注意事项:储存于阴凉、通风的库房内。远离火种、热源,防止阳光直射。包装密封,应与过氧化物、食用化学品分开存放,切忌混储。仓温10℃~35℃储存期 可超过五年。储区应备有泄漏应急处理设备和合适的材料收容泄漏物。 第八部分接触控制/个体防护 TWA TLV:0.1 mg(Ni)/m3 STEL TLV:0.3 mg(Ni)/m3 工程控制:生产过程密闭,加强通风避免超出TWA规定界限。 呼吸防护:空气中浓度超标时,建议佩戴过滤式防毒面具。紧急事态抢救或撤离时,应该佩戴空气呼吸器或氧气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿一般作业防护服。 手部防护:戴橡胶手套。 卫生措施:工作现场禁止吸烟、进食和饮水。饭前要洗手,工作完毕要淋浴更衣,保持良好的卫生习惯。定期体检。

PCB电镀工艺介绍

PCB电镀工艺介绍 线路板的电镀工艺,大约可以分类:酸性光亮铜电镀、电镀镍/金、电镀锡,文章介绍的是关于在线路板加工过程是,电镀工艺的技术以及工艺流程,以及具体操作方法. 二.工艺流程: 浸酸→全板电镀铜→图形转移→酸性除油→二级逆流漂洗→微蚀→二级逆流漂洗→浸酸→镀锡→二级逆流漂洗→逆流漂洗→浸酸→图形电镀铜→二级逆流漂洗→镀镍→二级水洗→浸柠檬酸→镀金→回收→2-3级纯水洗→烘干 三.流程说明: (一)浸酸 ①作用与目的: 除去板面氧化物,活化板面,一般浓度在5%,有的保持在10%左右,主要是防止水分带入造成槽液硫酸含量不稳定; ②酸浸时间不宜太长,防止板面氧化;在使用一段时间后,酸液出现浑浊或铜含量太高时应及时更换,防止污染电镀铜缸和板件表面; ③此处应使用C.P级硫酸; (二)全板电镀铜:又叫一次铜,板电,Panel-plating ①作用与目的:保护刚刚沉积的薄薄的化学铜,防止化学铜氧化后被酸浸蚀掉,通过电镀将其加后到一定程度 ②全板电镀铜相关工艺参数:槽液主要成分有硫酸铜和硫酸,采用高酸低铜配方,保证电镀时板面厚度分布的均匀性和对深孔小孔的深镀能力;硫酸含量多在180克/升,多者达到240克/升;硫酸铜含量一般在75克/升左右,另槽液中添加有微量的氯离子,作为辅助光泽剂和铜光剂共同发挥光泽效果;铜光剂的添加量或开缸量一般在3-5ml/L,铜光剂的添加一般按照千安小时的方法来补充或者根据实际生产板效果;全板电镀的电流计算一般按2安/平方分米乘以板上可电镀面积,对全板电来说,以即板长dm×板宽dm×2×2A/ DM2;铜缸温度维持在室温状态,一般温度不超过32度,多控制在22度,因此在夏季因温度太高,铜缸建议加装冷却温控系统; ③工艺维护: 每日根据千安小时来及时补充铜光剂,按100-150ml/KAH补充添加;检查过滤泵是否工作正常,有无漏气现象;每隔2-3小时应用干净的湿抹布将阴极导电杆擦洗干净;每周要定期分析铜缸硫酸铜(1次/周),硫酸(1次/周),氯离子(2次/周)含量,并通过霍尔槽试验来调整光剂含量,并及时补充相关原料;每周要清洗阳极导电杆,槽体两端电接头,及时补充钛篮中的阳极铜球,用低电流0。2?0。5ASD电解6?8小时;每月应检查阳极的钛篮袋有无破损,破损者应及时更换;并检查阳极钛篮底部是否堆积有阳极泥,如有应及时清理干净;并用碳芯连续过滤6?8小时,同时低电流电解除杂;每半年左右具体根据槽液污染状况决定是否需要大处理(活性炭粉);每两周要更换过滤泵的滤芯; ④大处理程序:A.取出阳极,将阳极倒出,清洗阳极表面阳极膜,然后放在包装铜阳极的桶内,用微蚀剂粗化铜角表面至均匀粉红色即可,水洗冲干后,装入钛篮内,方入酸槽内备用 B.将阳极钛篮和阳极袋放入10%碱液浸泡6?8小时,水洗冲干,再用5%稀硫酸浸泡,水洗冲干后备用;C.将槽液转移到备用槽内,加入1-3ml/L的30%的双氧水,开始加温,待温度加到65度左右打开空气搅拌,保温空气搅拌2-4小时;D.关掉空气搅拌,按3?5克/升将活性碳粉缓慢溶解到槽液中,待溶解彻底后,打开空气搅拌,如此保温2?4小时;E.关掉空气搅拌,加温,让活性碳粉慢慢沉淀至槽底;F.待温度降至40度左右,用10um的PP滤芯加助滤粉过滤槽液至清洗干净的工作槽内,打开空气搅拌,放入阳极,挂入电解板,按0。2-0。5ASD电流密度低电流电解6?8小时,G.

新型氨基磺酸盐高效减水剂的合成、复配及应用毕业论文

新型氨基磺酸盐高效减水剂的合成、复配及应用毕业论文1绪论 1.1 论文研究背景 混凝土减水剂,是能够减少混凝土用水量的外加剂。它可以定义为能保持混凝土坍落度不变,而显著减少其拌和水量的外加剂。混凝土减水剂多属表面活性剂,借助极性吸附及排斥作川,降低水泥颗粒之间的吸引力而使之分散,从而取得减水的效果,故称之为分散剂(Dispersion agent)或超级塑化剂(Super plasticizer)。采用减水剂的目的在于提高混凝土的强度,改善其工作性,泌水性,抗冻性,抗渗性和耐蚀性等[1]。 混凝土减水剂的发展有着悠久的历史。20 世纪30 年代,美国、英国、日本等国家已相继在公路、隧道、地下等工程中开始使用引气剂。1935 年美国E1W1 斯克里普彻(Scripture) 首先研制成木质素磺酸盐为主要成分的塑化剂,揭开了减水剂发展的序幕。早期使用的减水剂有木质素硝酸盐、松香酸钠和硬脂酸皂等[2]。20 世纪60 年代,β-萘磺酸甲醛缩合物钠盐(SNF)和磺化三聚氰胺甲醛缩合物(SMF) 这两种高效减水剂研制成功,并且在混凝土工程中得到了广泛应用,使混凝土技术的发展上升到更高阶段[3]。从60 年代到80 年代初,是高效减水剂的发展阶段,该阶段减水剂的特点是减水率较高,但混凝土坍落度损失较快,无法满足泵送等施工要求,不能用于制备高性能和超高性能混凝土。通常是在减水剂中复合缓凝组分等方法解决,但复合缓凝组分会带来新的问题,如影响混凝土早期强度的发展等[4]。 混凝土改性的第三次突破,就是以高效减水剂的研究和应用为标志的。通过高效减水剂的使用,使混凝土技术进入由塑性到干硬性再到流动性的第三代。木质素类减水剂属于普通型减水剂,虽然它有制作方便、价格低廉等优点,但其减水率太低(8~10%左右),对混凝土的增强不够,且提高混凝土的耐久性能较差。它的使用条件也受到较多的限制,要求气温在5摄氏度以上,混凝土在无水石膏、工业氟石膏作调凝剂会出现异常凝结现象,在减水剂超过掺和量时,混凝土的强度不仅不增加反而要降低,混凝土甚至长时间不结硬等的缺点。高效减水剂具有许多普通减水剂不具备的优点,且在提高混凝土的流动性、减水、增强和耐久性方面效果颇佳,随着我国石油化工和煤化工工业的发展,这类减水剂的造价将越来越低,因此,在混凝土工程制品中将越来越得到广泛应用[5]。 国外对萘系、三聚氰胺系等高效减水剂的研究日趋完善。日本自从服部健一博士发明β-萘磺酸甲醛缩合物钠盐后,基于此发明采用了各种方法来改进萘系减水剂的性能,以减少坍落度损失。如1969 年研究萘系和柠檬酸、葡萄糖酸钠、磷酸钠等缓凝剂混用;1971 年通过改变添加方法,如二次添加法来改性;1979 年通过改变萘系本身的形状,如将减水剂由粉末状转变为球粒状来对萘系进行改性;1983 年通过产品成分本身改进来提高萘系

氨基磺酸合成方法详解

氨基磺酸合成方法详解 氨基磺酸是重要的精细化工产品,广泛应用于金属和陶瓷制造的多种工业设备和民用清洗剂、石油并处理剂和清洗剂、电镀工业用剂电化学抛光用剂、沥青乳化剂、蚀刻剂、染料医药及颜料工业用磺化剂、染色用剂、高效漂白剂、纤维、纸张用阻燃剂、柔软剂、树脂交联促进剂、除草剂、防枯剂以及标准分析试剂等各个领域中。 氨基磺酸可以制成极纯的常温时稳定的结晶体,其水溶液具有与盐酸、硫酸同等的强酸性,别名固体硫酸。不挥发,不吸湿,对人身毒性极小,但皮肤不能长时间与氨基磺酸接触,更不能进入眼睛。氨基磺酸生产工艺过程简单,反应较容易控制,原料及设备都较容易解决,废水也容易处理,副产物可以有效利用。该产品可以代替硫酸,其包装、贮存、运输都很方便。 1、氨基磺酸的生产方法很多,有二氧化硫与羟胺或丙酮肟为原料的羟胺法,亚硫酸或硫酸盐与液氨为原料的氨化法,尿素与氯磺酸为原料的氯磺化法,以发烟硫酸和尿素为原料的发烟硫酸法,尿素、三氧化硫和硫酸为原料的硫酸法和发烟硫酸法(又称液相法)和液氨经气化与三氧化硫在气相条件下反应的气相法等。国内外具有工业意义的工艺为发烟硫酸法以及三氧化硫与氨直接合成的氨化法两种。由尿素与发烟硫酸在40-70℃下进行磺化生成氨基磺酸粗品,然后加水进行结晶制得氨基磺酸成品。原料消耗定额:尿素2000kg/t、发烟硫酸1500kg/t。 2、其合成方法主要有气相法和液相法两种。气相法操作条件苛

刻,设备材质要求高。副产品多,且氨基酸易粘附在反应器内壁需经常清理。生产成本高。优点是产品纯度高。厂家采用的多为液相法。 3、将过量的发烟硫酸加入反应釜中,搅拌降温至20~40℃,开始加入按比例混合好的硫酸和尿素。加料结束后,在20℃左右搅拌8h。再逐渐升温至70~90℃,蒸出三氧化硫,冷却析晶。固液分享后得粗氨基磺酸,用水重结晶,脱水干燥得高纯度精品氨基磺酸。 4、氨基磺酸是强Lewis酸SO3与强Lewis碱NH3的加合物,制取少量纯度要求高的氨基磺酸时,可在完全无水的条件下,直接用高纯度的SO3与氨反应。若用量较大时可用尿素与发烟硫酸反应来制取。将带有机械搅拌装置的圆底烧瓶置于流水浴中,向其中加入560g 100%的硫酸,在强烈搅拌下将100g尿素分多次(约45min加完)慢慢加入到硫酸中,注意不要使温度超过40℃。然后向其中加入309g 发烟硫酸(含65%游离SO3),并在42~45℃的温度下放置16h。用玻璃砂芯漏斗过滤反应混合物,先用纯硫酸洗涤,再用50%的硫酸洗涤,最后用冷的甲醇洗涤。 5、将20%的发烟硫酸加热至30℃,慢慢加入尿素,温度控制在60~65℃,加完后保温3H,然后升温至80~85℃,保温2h,反应结束后,冷却至5℃,过滤,所得结晶离心甩干后,用5%乙醇洗涤,滤干后用蒸馏水重结晶精制,得氨基磺酸纯品。

聚醚多元醇的研究进展_慕朝师

基金项目:广西科学基金资助项目(桂科自0832194);广西培养新世纪学术和技术带头人专项资金资助项目(资金批准号: 2004224) 收稿日期:2009206201 综述与进展 聚醚多元醇的研究进展 慕朝师1,黄科林2,4,李克贤3,罗素娟2,刘宇宏2,黄尚顺2,何耀良2,李卫国2 (11广西科技情报研究所,广西南宁 530022;21广西化工研究院,广西南宁 530001;31广西师范学院化学系,广西南宁 530001;41广西新晶科技有限公司,广西南宁 530001) 摘 要:聚醚多元醇是生产聚氨酯原料之一,本文从聚醚多元醇合成工艺入手,重点从催化剂角度阐述了聚醚多元醇的合成,并对今后的发展提出建议。 关键词:聚醚多元醇;催化剂;聚氨酯 中图分类号:TQ 223116 文献标识码:A 文章编号:167129905(2009)1220013206 聚醚多元醇是分子中含有醚键(R O R ), 端基为OH 基团的齐聚物。它是由含活泼氢的低分子化合物如(醇类、胺类)作起始剂,在催化剂作用下与含有环氧结构的化合物进行开环聚合反应而成的。聚醚多元醇是一种重要的化工原料,它的最大用途是合成聚氨酯(PU )树脂类产品,如聚氨酯泡沫塑料、聚氨酯黏合剂、聚氨酯胶粘剂、聚氨酯弹性体等。此外,还可以用作非离子表面活性剂、润滑剂、液流体、热交换流体等。 用于合成聚醚多元醇的环氧化物包括氧化乙烯、氧化丙烯、四氢呋喃以及这些化合物的混合物。其中由氧化丙烯与含活泼氢的化合物聚合而成的聚醚多元醇在聚氨酯工业的发展中占有重要的地位。早期合成聚醚多元醇的聚合反应是在酸或者碱催化作用下进行的,常用的酸催化剂是质子酸(H 2SO 4、HCl 等)和路易斯酸(AlCl 3、BF 3等),碱性催化剂常用的是碱金属、碱(土)金属的氧化物、醇化物和氢氧化物[1]。后经不断探索,开发出多种催化剂,研究最多且已经工业化的当属双金属氰化物络合催化剂(DMC )。 聚醚多元醇的发展[2]是由20世纪30年代开始的,它最初应用于非离子表面活性剂领域。1939年,美国Scretle 和Wotter 合成出烷醇聚醚非离子表面活性剂。1940年又合成出烷基酚聚氧乙烯醚非离子表面活性剂。1953年Du Pont 公司首次把聚醚多元醇应用于聚氨酯软泡,接着美国怀安多特化学公司于1954年提出以氧化丙烯—氧化乙烯嵌段共聚醚制备聚氨酯泡沫塑料,并于1957年将聚醚型 聚氨酯泡沫塑实现工业化。几十年来,聚醚多元醇发展迅速,产量逐年增多。世界聚醚多元醇生产装置规模较大,生产也较集中,主要掌握在几家大型跨国公司如巴斯夫、拜耳、陶氏化学和壳牌化学公司手中。2003年全球聚醚多元醇生产量为380万t ,2005年全球生产能力达到540万t ,2006年全球生产能力上升到610万t 。目前国内聚醚多元醇的生产企业有30多家,拥有万t 级生产装置的企业也有10多家,2005年聚醚多元醇产量增加到35万t ,2006年聚醚多元醇产能达到87万t [3]。 1 聚醚多元醇的合成工艺状况 为了满足聚醚多元醇在不同领域的需求,不断开发新的聚醚产品和研究新的生产工艺显得尤为重要。目前各生产商生产聚醚多元醇所采用的工艺各不相同,但归纳起来根据聚合反应所用催化体系不同,一般可分为3类: (1)阴离子催化合成工艺[4~5]。阴离子催化剂主要以碱金属、碱土金属的氢氧化物为主,包括KOH 、NaOH 、CsOH 、RO K 等。合成的聚醚多元醇 中残存的碱金属或碱土金属离子会影响PU 的生产和制品性能,因此该工艺需要最大限度地脱去金属离子,在生产过程中能耗物耗较大,产生大量污水和废渣,造成污染,收率不理想。但该合成工艺成熟,催化生产的软泡、硬泡、高活性聚醚多元醇具有储存稳定性好、在聚组合聚醚中配伍稳定性好、对组合料发泡性能干扰小等优点,因此目前多数企业仍在使 第38卷 第12期2009年12月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 138 No 112 Dec 12009

电镀镍工艺

1、作用与特性 PCB(是英文Printed Circuie Board印制线路板的简称)上用镀镍来作为贵金属和贱金属的衬底镀层,对某些单面印制板,也常用作面层。对于重负荷磨损的一些表面,如开关触点、触片或插头金,用镍来作为金的衬底镀层,可大大提高耐磨性。当用来作为阻挡层时,镍能有效地防止铜和其它金属之间的扩散。哑镍/金组合镀层常常用来作为抗蚀刻的金属镀层,而且能适应热压焊与钎焊的要求,唯读只有镍能够作为含氨类蚀刻剂的抗蚀镀层,而不需热压焊又要求镀层光亮的PCB,通常采用光镍/金镀层。镍镀层厚度一般不低于2.5微米,通常采用4-5微米。 PCB低应力镍的淀积层,通常是用改性型的瓦特镍镀液和具有降低应力作用的添加剂的一些氨基磺酸镍镀液来镀制。 我们常说的PCB镀镍有光镍和哑镍(也称低应力镍或半光亮镍),通常要求镀层均匀细致,孔隙率低,应力低,延展性好的特点。 2、氨基磺酸镍(氨镍) 氨基磺酸镍广泛用来作为金属化孔电镀和印制插头接触片上的衬底镀层。所获得的淀积层的内应力低、硬度高,且具有极为优越的延展性。将一种去应力剂加入镀液中,所得到的镀层将稍有一点应力。有多种不同配方的氨基磺酸盐镀液,典型的氨基磺酸镍镀液配方如下表。由于镀层的应力低,所以获得广泛的应用,但氨基磺酸镍稳定性差,其成本相对高。 3、改性的瓦特镍(硫镍) 改性瓦特镍配方,采用硫酸镍,连同加入溴化镍或氯化镍。由于内应力的原因,所以大都选用溴化镍。它可以生产出一个半光亮的、稍有一点内应力、延展性好的镀层;并且这种镀层为随后的电镀很容易活化,成本相对底。 4、镀液各组分的作用: 主盐──氨基磺酸镍与硫酸镍为镍液中的主盐,镍盐主要是提供镀镍所需的镍金属离子并兼起着导电盐的作用。镀镍液的浓度随供应厂商不同而稍有不同,镍盐允许含量的变化较大。镍盐含量高,可以使用较高的阴极电流密度,沉积速度快,常用作高速镀厚镍。但是浓度过高将降低阴极极化,分散能力差,而且镀液的带出损失大。镍盐含量低沉积速度低,但是分散能力很好,能获得结晶细致光亮镀层。 缓冲剂──硼酸用来作为缓冲剂,使镀镍液的PH值维持在一定的范围内。实践证明,当镀镍液的PH值过低,将使阴极电流效率下降;而PH值过高时,由于H2的不断析出,使紧靠阴极表面附近液层的PH值迅速升高,导致Ni(OH)2胶体的生成,而Ni(OH)2在镀层中的夹杂,使镀层脆性增加,同时Ni(OH)2胶体在电极表面的吸附,还会造成氢气泡在电极表面的滞留,使镀层孔隙率增

端氨基聚醚的合成及应用_莫蛮

Vol.43No.3(2012) ZHEJIANG CHEMICAL INDUSTRY 文章编号:1006-4184(2012)03-0024-03 端氨基聚醚的合成及应用 莫蛮田静刘学民蒋惠亮 (江南大学化学与材料工程学院,江苏无锡214122) 收稿日期:2011-09-04 作者简介:莫蛮(1986-),男,硕士生,主要从事精细化学品合成方面的研究。 端氨基聚醚是一类分子主链为聚醚骨架,末端被氨基封端的聚氧化烯化合物。自从Texaco 化学公司[1]率先完成端氨基聚醚的工业化生产以来,人们对该类型产品的合成方法及其应用进行了深入而广泛的研究。由于端氨基的反应活性,使其能与多种反应性基团作用,该类型制品的应用日益广泛。目前有关端氨基聚醚的合成方法,已有诸多文献报道[2-3],有些已用于工业化生产。本文概述了脂肪族端氨基聚醚的几种常用合成方法,并介绍了端氨基聚醚在环氧树脂固化剂、聚氨酯工业及汽油清净分散剂领域的应用。 1端氨基聚醚的合成方法 1.1催化还原胺化法 这种合成方法是将聚醚多元醇、氨、氢气和催化剂在一定的温度及压力下进行临氢催化还原胺化反应,使羟基转化成端氨基。Jefferson 公司的Yeakey 等[4]研究了T 系列(三度官能团)端氨基聚氧化丙烯醚的合成工艺,认为反应历程为:羟基脱氢生成羰基、羰基氨化并脱水变成烯亚胺、(烯亚胺)加氢还原转化成端氨基。 x 、y 、z 为整数。通过选用含不同x 、y 、z 的聚醚多 元醇,便可以合成出相应分子量的端氨基聚醚。可选用间歇式或连续型高压反应器,通常反应温度 150℃~275℃、压力3.5~35MPa ,选用具有脱氢-加 氢功能的金属催化剂(如Ni 、Gu 、Cr 、Al 、Ru 等)[5]。催化剂的制备方法和工艺对转化率和选择性有很大的影响,常用的制备方法是:首先用浸渍-沉淀法或浸渍法使所需活性组分的易溶盐负载于载体上,然后置于110℃下干燥数小时,再在400℃~450℃焙烧,自然降温后即得催化剂前驱体,最后经氢气还原可得所需催化剂[6-7]。常用催化剂金属组分如表1所示: 摘要:讨论了脂肪族端氨基聚醚的几种常用合成方法,介绍了端氨基聚醚在环氧树脂固化剂、 聚氨酯工业及汽油清净分散剂领域的应用。 关键词:端氨基聚醚;催化胺化;应用 精细化 工 24--

聚醚多元醇

聚氨酯硬泡的原料 用于硬质聚氨酯泡沫塑料制造的原料有聚醚多元醇(及聚酯多元醇)、多异氰酸酯等主要原料,以及发泡剂、催化剂、泡沫稳定剂、抗氧剂等助剂。在合成聚氨酯泡沫塑料所采用的配方中有关原料的作用如下: 原料名称主要作用 聚醚、聚酯或其它多元醇主反应原料 多异氰酸酯(如粗MDI 等)主反应原料 水链增长剂,化学发泡剂(产生CO2) 物理发泡剂(如HCFC-141b、戊烷等) 气化后作为气泡的来源,并可移去反应热 交联剂提高泡沫的机械性能 催化剂催化发泡及凝胶反应 泡沫稳定剂使泡沫稳定,并控制泡孔的大小和结构 抗氧剂提高抗热、氧老化,湿老化性能阻燃剂使泡沫塑料具有阻燃性 颜料提供各种色泽 各种泡沫生产工艺的开发,以及近十年来CFC替代技术等,每一步技术发展,都依赖于聚醚多元醇、异氰酸酯体系及助剂新品种的开发。多种CFC替代发泡技术,每一种发泡体系对原料及助剂的要求不同。 聚氨酯泡沫塑料作为聚氨酯制品一大门类,原料品种多,范围广,下面对泡沫体系用的多元醇、异氰酸酯及助剂品种,特别是新型原料等作一介绍。 4.1 多元醇 聚醚多元醇是聚氨酯泡沫塑料业用量最大的多元醇原料,聚异氰脲酸酯硬泡也采用聚酯多元醇作为原料。聚氨酯发展初期,所用的有机多元醇主要是以煤化学为基础的聚酯多元醇及农副产品蓖麻油为基础的多元醇化合物,石油化工的发展提供了大量的氧化烯烃,为聚醚多元醇的开发奠定了基础,聚醚多元醇价格比聚酯多元醇低得多,泡沫性能好,在聚氨酯泡沫用多元醇中占主导地位。 聚醚的原料来源丰富,常规硬泡用聚醚多元醇的价格低廉,聚醚型聚氨酯耐水解性能好。聚酯多元醇的优点是泡沫体强度大、粘接性好,延长率高,耐油性好,缺点是耐水解性能不及聚醚型泡沫。 4.1.1 聚醚多元醇 4.1.1.1 聚醚多元醇的起始剂及聚醚种类 通用聚醚多元醇的工业化生产一般以负离子催化开环聚合为主。通常以氢氧化钾(或氢氧化钠)或二甲胺为催化剂,以甘油或蔗糖等小分子多元醇或其它含活泼氢化合物如胺、醇胺为起始剂,以氧化丙烯(环氧丙烷,简称PO)或者氧化丙烯和氧化乙烯(环氧乙烷,简称EO)的混合物为单体,在一定的温度及压力下进行开环聚合,得到粗聚醚,再经过中和、精制等步骤,得到聚醚成品。 聚醚在生产后应立即加入抗氧剂,不加保护的聚醚会逐渐被氧化而生成过氧化物。在大块泡沫塑料的生产中过氧化物会引发泡沫熟化前期的热降解,造成泡沫烧芯甚至自燃。广泛使用的抗氧剂是空间位阻酚,例如2,6-二叔丁基-4-甲基苯酚。还常加微量吩噻嗪,后者与空间位阻酚有协同效应,可抑制泡沫生产过程的高温氧化。环氧丙烷进行开环聚合制得的聚醚多元醇的端羟基基本上是仲羟基。在PO 开环聚合中引入EO 链段,可提高聚醚多元醇的亲水性及其与水、多异氰酸酯的混溶性。

浅谈电镀(氨基磺酸镍)镍-磷合金的工艺

电子接插件镍-磷合金中间层电镀工艺 摘要: 对电子接插件镍-磷合金(氨基磺酸镍-磷合金)中间层电镀工艺进行了简单综述,包括工艺流程,镀液成分、操作条件等对镀层结构和物性的影响、初步并介绍了合金镀层的维护与管理方法、以及杂质处理此外,本文还介绍了一种较成熟卷对卷连续(电子行业接触件连续电镀生产线)电镀镍-磷合金工艺电镀。 引言 氨基磺酸镍是一种优良的电镀主盐,因其内应力低、电镀速度快,溶解度大,无污染等,而成为近年国际上发展较快的一种电镀主盐。由于电子接插件镍-磷合金中间层电镀工艺由于不存在晶界位错等缺陷,因此不会产生晶间腐蚀现象,耐点蚀的性能远比晶态(化学镍-磷) 合金要好,除此之外它还具有镀层致密/耐化学药品性好以及耐摩性/能屏蔽电磁波比硫酸镍磷合金好等特性/已广泛应用于汽车电子、航空电子、计算机电子、精密电子电镀、化学工业等领域特适用于卷对卷连续电镀中间层电镀工艺。 目前获取镍-磷合金中间层的方法有硫酸镍磷合金与氨基磺酸镍磷合金电两种, 本文综述了作为电子接插件镍-磷合金中间层(电镀氨基磺酸镍为主盐的镍-磷合金层)工艺, 氨基磺酸镍中间层合金工艺较硫酸镍磷合金工艺中间层工艺相比具有很多优点: 1.沉积速度快、使用氨基磺酸镍可以通过的电流密度为1-20 A/dm2 可根据法拉第两大定律导出下列公式:Z=2.448CTM/ND其中Z代表厚度(单位为微英寸); C 代表电流密度(单位为A/dm2) ;T代表时间(单位为分钟); M代表镍的原子量;N代表镍的电荷量;D代表镍的密度.(1) 而硫酸镍电镀镍-磷合金可以通过的电流密度为1-5 A/dm2在相同时间内厚度是硫酸镍电镀镍-磷合金的1-4倍之间. 2. 氨基磺酸镍镀液稳定性高、较硫酸镍电镀镍-磷合金有很好的柔软性, 折弯一般不因厚度而产生折弯龟裂现象。 3.氨基磺酸镍镀液有很高的溶解度(目前没有办法确定)至少在常温能溶解≥180g/lNi2+,而硫酸镍是≤100 g/lNi2+ (50℃),适用于高浓度电镀工艺. 1氨基磺酸镍镍-磷合金工艺 1.1氨基磺酸镍的制备 可以用碱式碳酸镍和氨基磺酸来制备氨基磺酸镍镀液。每制备1.0 kg氨基磺酸镍需2.0 kg 碱式碱酸镍和3.2 kg氨基磺酸。配制时将氨基磺酸溶解在存有2/3去离子水的槽中,加热至70℃(不得超过80 ℃,否则会分解),在搅拌下加入碱式碳酸镍,此时会产生C02气体,应防止槽液溢出。 化学反应为:NH3S03+Ni(OH)2·NiC03=2Ni(NH2S03)2+C02↑+H20

氨基磺酸说明

氨基磺酸

氨基磺酸可以制成极纯的常温时稳定的结晶体,其水溶液具有与盐酸、硫酸同等的强酸性,别名固体硫酸。不挥发,不吸湿,对人身毒性极小,但皮肤不能长时间与氨基磺酸接触,更不能进入眼睛。氨基磺酸生产工艺过程简单,反应较容易控制,原料及设备都较容易解决,废水也容易处理,副产物可以有效利用。该产品可以代替硫酸,其包装、贮存、运输都很方便。 氨基磺酸是具有氨基和磺酸基的双官能团物质,能进行与之有关的许 多化学反应. 1、分解反应氨基磺酸在常温度下很稳定,加热到209度时开始分解。 2HSO3NH2——SO2+SO3+N2+2H2+H2O 2、与金属反应氨基磺酸能与金属反应,生成盐和氢气,但与较活泼金属反应,氨基的一个氢可被取代,生成双金属盐。 2HSO3NH2+Zn——Zn(SO3NH2)2+H2 HSO3NH2+2Na——NaSO3NHNa+H2 3、与金属氧化物、氢氧化物和盐反应。 2HSO3NH2+FeO——Fe(SO3NH2)2+H2O 4、与亚硝酸盐和硝酸盐反应氨基磺酸能被亚硝酸盐和硝酸盐迅速氧化。 5、与氧化剂反应氨基磺酸能被氯化钾和次氯酸钠氧化,但不能被铬酸、高锰酸钾和三氯化铁氧化。 6、与醇和酚反应 HSO3NH2+ROH——ROSO2ONH4 HSO3NH2+C6H5OH——C6H5OSO2ONH4 7、与胺和酰胺反应 HSO2NH2+RNH2—— RNH3HSO3NH2 HSO3NH2+C6H5CONH2——C6H5CONHSO3NH4 8、生成络合物氨基磺酸与硫酸钠反应,生成氨基磺酸络合物。 6HSO3NH2+5Na2SO4——6HSO3NH2*5Na2SO4*15H2O 9、水解反应氨基磺酸水溶液加热至60度以上时,将水解成硫酸盐 HSO3NH2+H2O——NH4HSO4 氨基磺酸工业化 自从氨基磺酸工业化生产以来,由于应用范围不断扩大,产品产量也相应增长。日本在1965年年产量为1.4万吨,1980年售价每公斤为140~160日元。日本生产厂有富士的日产化学公司,年产7.2千吨;大阪的大喜产业公司,年产3千吨。美国年产量为5万吨,在1984年每100磅售价为38~41美元。我国生产氨基磺酸厂有无锡硫酸厂,扩建后的生产能力为年

氨基磺酸生产可行性报告

氨基磺酸生产可行性报 告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氨基磺酸生产可行性报告 、产品概况 氨基磺酸是硫酸衍生产品,属危险化学品,是一种无色或白色结晶,不挥发,不吸湿,无气味,无毒,常温,常压下稳定性高,不发生质变,易溶于水,液氨和甲酰胺,微溶于甲醇和乙醇,干燥产品对皮肤无腐蚀作用,分子式:NH2SO3H,分子量,属斜方晶系,密度,熔点205°。主要用于生产甜味剂,中药中间体,清洗、印染等行业。 、项目投资及建设周期 总投资2800万元人民币,分三期运作,一期工程1000万元人民币,建设周期为四个月/期。 、人员编制及工作日数和用地面积 总人数150人,一期工程50人,全年工作300天,年生产时间8000小时,占地面积10亩。 、项目组成 项目分为主厂房、辅助厂房、机泵房、仓库等配套设施。 、产品方案 氨基磺酸主生产线含量≥% 10000吨/年×3 最大储量1000吨/年时数8000小时,可兼一般小化工产品。 、产品质量指标 工业氨基磺酸的技术要求

、项目投资的经济意义 氨基磺酸作为硫酸的衍生产品,也是尿素的后开发产品早在上世纪30年代国外就进行了开发,40年代实现工业化并在化学研究和应用方面发展,特别六七十年代后氨基磺酸在许多领域迅速得到运用,以氨基磺酸为原料而开发的衍生产品在医药、农药、电化学方面有着突出的优越性,特别是近年来以氨基磺酸为原料生产的食品添加剂在食品行业广泛应用,使得市场上对氨基磺酸的需求越来越广泛。 由于氨基磺酸生产中生产的副产品,稀硫酸又是制造磷肥、清洗、电镀等行业的首选,故而也有着广阔的市场。 而传统的氨基磺酸的生产由于废气、废水的大量排放对周边环境造成较大的污染,故而传统的生产工艺势必面临淘汰,而我公司在多年反复实践的基础上成功地摸索出一条对周边环境无污染且节能降耗的生产工艺。在生

端氨基聚醚

端氨基聚醚(Amine-Terminated Polyethers ,缩写为ATPEs) 的合成研究始于20 世纪50 年代,由美国Texaco 公司率先完成工业化生产,并于20 世纪60年代开始销售系列端氨基聚醚类固化剂,商品牌号为Jeffamine 。直到1981 年该公司发现可将高分子量聚醚多胺替代第二代RIM 体系配方中的聚醚多元醇部分,产生了在聚合过程中仅形成脲键的新一代RIM体系,即聚脲RIM体系,并在20 世纪80 年代中期成功开发出了喷涂聚脲弹性体技术( SprayPolyurea Elastomer ,缩写为SPUA) ,这时端氨基聚醚的开发才引起了较多的关注。此后多家公司相继完成了端氨基聚醚的工业化生产。比较目前各种端氨基聚醚类产品,可以看出端氨基聚醚是一类具有柔软的聚醚骨架,末端以氨基或胺基(一般为含有活泼氢的仲胺基、伯胺基或多胺基基团) 封端的化合物,结构变化包括聚氧乙烯二胺、聚氧丙烯二胺、聚氧乙烯/ 氧丙稀二胺、聚氧丙烯三胺和聚四甲撑醚二胺等的变化;且多是以相应的聚醚多元醇为原料,通过对末端羟基进行化学处理而得到的,因此在许多文献中也称之为聚醚多胺(Polyether Polyamine) 。另外,按照分子链是否含有芳香基团,又可将其分为芳香族端氨基聚醚和脂肪族端氨基聚醚, 一般来说脂肪族的较芳香族的活性高、粘度低。由于端氨基聚醚的合成过程中不改变分子的主链,只发生末端官能团的改换,所以从结构上看,除了末端官能团外,端氨基聚醚与相应的端羟基聚醚并无差异,两者的性质也基本相似。例如都可以用作环氧树脂固化剂、润滑油添加剂、聚氨酯/ 脲材料的合成原料等。但是正是由于末端官能团的改换使得端氨基聚醚的反应活性得到了相当大的提高,尤其是在聚氨酯工业中,目前的报道表明,端氨基聚醚同异氰酸酯的反应极为迅速,已使聚氨酯反应注射成型(RIM) 体系的循环周期缩短为1~115 min ,并且无须使用催化剂,而聚醚多元醇聚氨酯的RIM 体系需要使用大量催化剂才能使循环周期缩短;另外端氨基聚醚在固化反应中同异氰酸酯形成脲基(-NHCONH-) 代替了聚醚聚氨酯中的氨基甲酸酯基(-NHCOO-) ,所以不会降低甚至会提高胶粘剂的性能。目前在聚氨酯RIM 体系、SPUA 弹性体中的应用均表明使用端氨基聚醚的制品较用聚醚多元醇的在性能上优异得多。因而端氨基聚醚在室温固化体系及SPUA 技术中具有极大的应用优势。1 合成综合目前有关端氨基聚醚合成方法的报道,其研究思路主要有二种: (1) 从聚醚多元醇的末端羟基着手,通过氨解反应用氨(胺) 基取代其末端羟基。这也是目前端氨基聚醚工业合成的主要方法,一般称之为催化还原胺化法; (2) 从聚醚多元醇末端羟基的活泼氢着手,用带有易离去基团或不饱和基团(-NCO、- NO2 、- CN 等) 的化合物与活泼氢作用进行封端,然后通过相应的处理后得到端氨基聚醚,这一类方法包括水解法、氰烷基化法、硝基封端法等; 另外以乙醇胺为引发剂,使环氧化物开环聚合,可以形成一端为氨基、一端为羟基的聚合物,这种方法多用于合成具有多个末端羟基的高活性聚醚,习惯上并不将其纳入端氨基聚醚类产品的合成方法中。下面详细介绍端氨基聚醚的各处合成方法: 1.1 催化还原胺化法催化还原胺化法是目前研究最详细、报道最多的合成端氨基聚醚的方法之一,也是目前端氨基聚醚工业生产的主要方法,其实质是聚醚多元醇同氨、氢气在相应的催化剂(如含Ni 催化剂、Ni/ Cu/ Cr 催化剂、Raney Ni/ Al 催化剂) 的存在下进行的氨解反应,所采用的催化剂均为氢化- 脱氢催化剂,可以根据Houben - Weyl 的有机化学方法第111 卷126~131 页中的介绍进行选择。根据路径的不同,可以大致分为两种路径:直接催化还原胺化法和间接催化还原胺化法。1.1.1 直接催化还原胺化法这种方法是将聚醚多元醇、氨、氢气的混合物在一定温度、压力及催化剂存在下直接进行催化还原胺化以生产端氨基聚醚。一般认为整个反应历程包含了醇的脱氢、醛的加成氨化、羟基胺的脱水、和烯亚胺的加氢 还原成胺等步骤。但是这种还原胺化的方法需要较高的压力和温度,一般要求反应温度在200 ℃左右,反应压力约~5000 psig (约3.45~34.5 MPa) ,对生产设备的要求很高。可能是反应温度及压力较高的原因,这种方法仅适于短链的聚醚多元醇的催化还原胺化。而高相对分子质量的端氨基聚醚的生产一般采用间接催化胺化法。1.1.2 间接催化还原胺化法这种催化胺化的方法是在将聚醚多元醇转化为其衍生物基础上,对该衍生物进行催化胺化。这些衍生物主要是通过用较好的离去基团(如乙酸基、苯甲酸基等) 取代聚醚多元醇中羟基的位置而获得。例如首先将端羟基聚醚与乙酰氯、苯甲酰氯、对甲苯甲酰氯等进行酯化反应,生成相应的酯后,再用这些酯同氨及氢气在催化剂存在下进行催化还原胺化。这种方法一定程度上降低了反应所需的温度及压力,但并未对成本产生实质性的影响。 例如Hollingsworth 等人实现了用聚四氢呋喃的双乙酸酯在Ni/ Cu/ Cr/Mo 存在下的催化还原胺化的方法, 但反应温度及压力同样较高, 温度约为220 ℃,反应压力则高达350 psig(约2.51 MPa) 。总的来说,催化还原胺化法的产物以脂肪族伯胺为主,尤适于喷涂聚脲弹性体技术的工艺要求。2.2 水解法早在1957 年,Simons 就在其专利中讨论过异氰酸酯预聚体经水解反应得到端氨基聚醚的可行性,后来日本人进行过酸性条件下异氰酸酯预聚体水解合成端氨基聚醚的研究,然而水解反应中生成的胺会进一步与未反应的异氰酸酯反应形成相应的脲,而且这一副反应在酸性条件下无法抑制,即使使用过量的无机强酸也是如此。1982 年Rasshofer 等人提出将聚醚多元醇与异氰酸酯反应形成的预聚体在碱性条件下水解先生生成含氨基甲酸基的中间体,再进一步加热分解得到端氨基聚醚的方法。该方法要求预聚体的水解反应须在低温(18~20 ℃) 下进行,以抑制聚脲的形成这一方法的优点在于控制碱性水解反应在低温下进行,使得反应生成的氨基甲酸酯基在此种条件下比较稳定,并且在分子链的末端实际上形成了氨基甲酸盐基团,抑制了聚脲的形成,所以没有明显的扩链反应。从而保证了预聚体的NCO 基团水解反应时的高选择性,因而最终产物的粘度主要取决于预聚体的起始粘度和体系中残留

氨基聚醚应用

喷涂型端氨基聚醚弹性体技术应用展望 刘水平 (青岛核工实业公司,青岛266601) 1 抗冲磨材料及现状 水工泄水消能建筑物如大坝的溢洪道、泄洪洞、泄水孔、溢流坝、消力池等表面遭受高速水流和含沙水流冲磨和气蚀破坏的问题,多年来一直未能得到较好的解决,国家每年都要投入大量的人力和财力对这些关键部位进行修补处理。随着我国水利水电建设的大力开发,西南地区一批高水头、大流量高坝的建设,对于泄水消能建筑物表面抗高速含沙水流冲磨和气蚀破坏的问题越来越受到人们的重视,这其中除了水工设计方面的技术研究以外,采用性能优异的抗冲耐磨材料至关重要[1,2]。 传统的水工泄水消能建筑物表面的抗冲耐磨材料主要有:高强混凝土、钢板衬砌和贴附、纤维增强混凝土、环氧树脂砂浆和涂层、丙烯酸酯及其它类型乳液改性砂浆或混凝土、硅粉混凝土等,但是这些材料存在着各自的应用局限性[3]。随着高强、高性能混凝土技术的发展,高强、高性能混凝土技术在水利工程中得到较多的应用,如二滩水电站水垫塘底板表面采用40cm厚的硅粉混凝土R28600、小浪底导流洞、排沙洞段及溢洪道采用了C70硅粉混凝土。由于高强混凝土施工中容易产生裂缝及其它技术问题,影响到工程的使用效果,其抗冲磨防护能力依然未能达到理想的效果[4]。 为解决或减缓泄水消能建筑物的抗冲磨和气蚀破坏问题,目前主要从两个方面考虑:一方面继续研究高强度、高性能混凝土的应用技术;另一方面是采用新型有机高分子复合材料抗冲磨技术,利用特种高分子材料的高强度、高韧性特点来解决高速含沙水流的冲击磨损。以往这方面的研究多是针对环氧树脂的改性,以改变其脆性、提高断裂韧性和抗冲耐磨性能。西安交通大学材料科学与工程系研究了环氧树脂与聚氨酯互穿聚合物网络技术,使改性环氧树脂的抗冲磨和气蚀能力提高了10倍以上[5],南京水利科学研究院采用呋喃树脂改性环氧亦提高了其抗冲磨性能[5]。但是,由于环氧树脂分子量小,其固化物结构中存在大量的容易受紫外线氧化的C—O键,使得其抗老化能力很差;环氧树脂线胀系数较大,在环境气候和不断变化的荷载作用下容易发生龟裂、起翘和脱层,而且施工不方便,又有一定的污染性挥发物存在,所以工程的适用性差,未能在工程中得到大量的使用。 20世纪90年代,美国率先开发出喷涂聚脲弹性体技术,这种新型材料所具有的优异的抗磨蚀性能、耐老化性能、抗腐蚀及独特的施工性能为人们所关注,该技术已经在工民建、机械工业和民航机场跑道等方面得到了广泛应用。国外称喷涂聚脲弹性体技术是喷涂工业技术的一次革新,其优异的物理力学性

化学镀简介

简介 化学镀简介 化学镀 一、化学镀(chemical plating) 化学镀是一种新型的金属表面处理技术,该技术以其工艺简便、节能、环保日益受到人们的关注。化学镀使用范围很广,镀金层均匀、装饰性好。在防护性能方面,能提高产品的耐蚀性和使用寿命;在功能性方面,能提高加工件的耐磨导电性、润滑性能等特殊功能,因而成为全世界表面处理技术的一个发展。 化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。 二、化学镀原理 化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。化学镀常用溶液:化学镀银、镀镍、镀铜、镀钴、镀镍磷液、镀镍磷硼液等。 目前以次亚磷酸盐为还原剂的化学镀镍的自催化沉积反应,已经提出的理论有“原子氢态理论”、“氢化物理论”和“电化学理论”等。在这几种理论中,得到广泛承认的是“原子氢态理论”。 三、对非金属的化学镀需要敏化活化处理 敏化就是使非金属表面形成一层具有还原作用的还原液体膜。这种具有还原作用的处理液就是敏化剂。好的敏化效果要求具有还原作用的离子在一定条件下能较长时间保持其还原能力,并且能控制其还原反应的速度,要点是敏化所要还原出来的不是连续的镀层,而只是活化点。目前最适合的还原剂只有氯化亚锡。目前,对于非金属化学镀镍用得最多的是Pd活化工艺。当吸附有Sn的非金属表面接触到Pd活化液时,Pd会被Sn还原而沉积到非金属表面形成活化中心,从而顺利进行化学镀。

氨基磺酸说明

氨基磺酸说明

氨基磺酸求助编辑 编辑本段

H2NSO3HH3NO3S 相对分子质量 97.09 性状 白色斜方结晶。干燥时稳定,在溶液中渐水解成硫酸氢铵。0℃时溶于6.5份水,80℃时溶于2份水,硫酸能降低其水中溶解度。易溶于含氮碱、液氨,也溶于含氮的有机溶剂如吡啶、甲酰胺和二甲基甲酰胺,微溶于丙酮、乙醇和甲醇,不溶于乙醚。强酸性,25℃,1%溶液的pH为1.18。相对密度2.15。熔点约205℃(分解)。最小致死量(大鼠,经口)1600mg/kg。有刺激性。 储存 密封干燥保存。 用途 碱量滴定法标准。络合掩蔽剂。有机微量分析测定氮和硫的标准。除锈剂制备。织物防火。有机合成。 安全措施 密闭包装,并贮于干燥通风处。与氧化剂、碱类等分储分运。注意个体防护,严禁身体直接接触。误食,用水漱口,饮牛奶或蛋清。

氨基磺酸可以制成极纯的常温时稳定的结晶体,其水溶液具有与盐酸、硫酸同等的强酸性,别名固体硫酸。不挥发,不吸湿,对人身毒性极小,但皮肤不能长时间与氨基磺酸接触,更不能进入眼睛。氨基磺酸生产工艺过程简单,反应较容易控制,原料及设备都较容易解决,废水也容易处理,副产物可以有效利用。该产品可以代替硫酸,其包装、贮存、运输都很方便。 氨基磺酸是具有氨基和磺酸基的双官能团物质,能进行与之有关的许 多化学反应. 1、分解反应氨基磺酸在常温度下很稳定,加热到209度时开始分解。 2HSO3NH2——SO2+SO3+N2+2H2+H2O 2、与金属反应氨基磺酸能与金属反应,生成盐和氢气,但与较活泼金属反应,氨基的一个氢可被取代,生成双金属盐。 2HSO3NH2+Zn——Zn(SO3NH2)2+H2 HSO3NH2+2Na——NaSO3NHNa+H2 3、与金属氧化物、氢氧化物和盐反应。 2HSO3NH2+FeO——Fe(SO3NH2)2+H2O 4、与亚硝酸盐和硝酸盐反应氨基磺酸能被亚硝酸盐和硝酸盐迅速氧化。 5、与氧化剂反应氨基磺酸能被氯化钾和次氯酸钠氧化,但不能被铬酸、高锰酸钾和三氯化铁氧化。 6、与醇和酚反应 HSO3NH2+ROH——ROSO2ONH4 HSO3NH2+C6H5OH——C6H5OSO2ONH4 7、与胺和酰胺反应 HSO2NH2+RNH2—— RNH3HSO3NH2 HSO3NH2+C6H5CONH2——C6H5CONHSO3NH4 8、生成络合物氨基磺酸与硫酸钠反应,生成氨基磺酸络合物。 6HSO3NH2+5Na2SO4——6HSO3NH2*5Na2SO4*15H2O 9、水解反应氨基磺酸水溶液加热至60度以上时,将水解成硫酸盐 HSO3NH2+H2O——NH4HSO4 氨基磺酸工业化 自从氨基磺酸工业化生产以来,由于应用范围不断扩大,产品产量也相应增长。日本在1965年年产量为1.4万吨,1980年售价每公斤为140~160日元。日本生产厂有富士的日产化学公司,年产7.2千吨;大阪的大喜产业公司,年产3千吨。美国年产量为5万吨,在1984年每100磅售价为38~41美元。我国生产氨基磺酸厂有无锡硫酸厂,扩建后的生产能力为年

相关主题
文本预览
相关文档 最新文档