当前位置:文档之家› 端氨基聚醚有机硅表面活性剂的合成及性能_黄良仙

端氨基聚醚有机硅表面活性剂的合成及性能_黄良仙

端氨基聚醚有机硅表面活性剂的合成及性能_黄良仙
端氨基聚醚有机硅表面活性剂的合成及性能_黄良仙

挥发性润滑剂

挥发性润滑剂 产品简介: 【唯能VNOVO】挥发性润滑剂是由不可燃氟素溶剂混合全氟聚醚油及超低分子量聚四氟乙烯(PTFE)颗粒,并添加耐热、抗腐蚀等添加剂配置而成的干性皮膜润滑剂。此速干性润滑剂干燥后在工作表面形成一层均匀润滑薄膜,具有不沾灰尘、低扭矩、耐高低温、不淅油、消音的特性. 产品特点: ●极佳的润滑抗磨性、摩擦系数极低,能持久消音; ●具有迅速变干成膜性,膜覆盖均匀,膜层不流动; ●全氟聚醚基础油,使用温度范围宽广(-60~300℃); ●使用方便易操作,较少的用量即可覆盖较大的面积; ●防污、防潮、防静电、防火性和防止磨擦粉末的粘附; ●优异的耐寒,耐酸碱、抗氧化性能,与大部分塑料、金属兼容; ●无毒、无味、无刺激,完全符合环保要求; 物理/化学数据 产品应用:

●用于CD、DVD盘仓滑轨、光学仪器的伸缩镜头、真空泵、模具顶针、手机转轴、计算机转轴、开关划片、电子连接器、SD卡座、IC引脚、IC插座、天线、发条、拉链等产品润滑、消音和防护。 ●用于电子、电器、光学器材、精密仪器、汽车附件等电子产品之需要洁净润滑的精密零件上终生润滑、防潮、防尘、绝缘 ●用于塑金属与金属、金属与塑胶、塑胶与塑胶以及橡胶部件表面覆盖膜润滑保护、防潮、防静电,降低塑胶和橡胶部件的摩擦和噪音; ●用于滑轨、输送机、滑轨、导轨、定时器,木器、塑料、橡胶及大多数的非金属与金属摩擦部位的润滑。 产品俗名: 快干性润滑油,速干性润滑油,干性油膜,干性皮膜润滑剂,皮膜润滑剂,清洁润滑剂,皮膜干燥润滑油,干膜润滑剂,干性润滑膜,干性溥膜润滑剂,挥发性润滑油,薄膜型润滑剂,滑盖手机润滑剂,干性油,干性润滑油,拉杆润滑剂,箱包拉杆润滑剂,高尔夫拉杆润滑剂,拉链用润滑剂,拉杆用润滑剂,氟素润滑剂,氟素润滑油,氟素干膜润滑剂,挥发性润滑剂,挥发性润滑油,速干性润滑油速干性润滑剂,快干性润滑油,干性润滑膜,半干性润滑剂,皮膜干燥润滑油,皮膜干燥润滑剂,干燥薄膜润滑剂干燥薄膜润滑油,干燥皮膜润滑剂,干燥皮膜润滑油,皮膜干性润滑剂,干性油膜润滑剂,干膜润滑膜,干膜润滑油,干膜润滑剂,干性皮膜剂,干性皮膜油,干性溥膜润滑剂,挥发性润滑油,挥发性润滑剂,干式皮膜润滑油,干式皮膜润滑剂干膜层润滑剂/油,无铅干膜润滑油/剂,高低温氟素油,洁净润滑剂,清洁润滑剂,透明薄膜润滑油,透明水性润滑剂,薄膜型润滑剂,特氟龙涂层润滑剂,铁氟龙皮膜润滑油,铁氟龙干性润滑油,铁氟龙干性润滑剂,特氟龙润滑油/剂,铁氟龙薄膜润滑,铁氟龙干膜润滑剂,固体干膜润滑剂,聚四氟乙烯润滑剂,聚四氟乙烯固体润滑剂,聚四氟乙烯干膜润滑剂,聚四氟乙烯挥发性润滑剂,PTFE固体润滑剂,PTFE固体润滑油 注意事项 ●此干性润滑剂在溶剂未挥发前易燃烧,溶剂挥发后不可燃; ●用毛刷涂刷或浸透,使用后应快速密封保存,以免介质挥发,应在阴凉通风处保

高分子聚醚羧酸酯表面活性剂的合成与应用

综述作业 (徐云化工0701班学号25) 检索课题名称高分子聚醚羧酸酯表面活性剂的合成与应用 一、检索目的:课题综述 二、文献检索范围及检索策略 要求至少检索4种中外文期刊、专利、学位论文数据库 序号所检数据库名称检索的数据库 收录时间段 检索结果(篇) 1 中国期刊全文数据库 (CNKI) 2003 -2009 1 2 中文科技期刊数据库(重 庆维普) 1989-2009 112 3 超星数字图书馆2003-2009 0 4 万方数据库学位论文全 文库 2003-2009 12 5 SooPAT专利搜索引擎1985-2009 5 6 中宏数据库2003-2009 0 7 检索词: 3-8个 检索词: 中文:1.高分子表面活性剂2.聚醚羧酸酯表面活性剂3. 聚乙二醇醚羧酸酯4.聚醚表面活性剂 英文:1.Polymeric surfactants 2.Polyether carboxylic acid ester surfactant 3. Polyethylene glycol ether carboxylic acid esters 4. Polyether surfactant 检索式: 中文:#1. (聚醚羧酸酯 OR 聚乙二醇醚羧酸酯) AND(表面活性剂 #2. 高分子表面活性剂 英文:#1. (“Polyether carboxylic acid ester”OR“Polyethylene glycol ether carboxylic acid esters”) AND“surfactants” # 2. “ Polyether surfactant" 三、检索结果 通过国内外联机情报检索和Internet检索,列举8篇以上(含外文至少一篇)与你课题密切相关的文献如下: 要求:按论文中参考文献格式:著者姓名.论文题名[文献类型代码].出处.(参照教科书P.247) 范例1.马翠红等.基于DCS的加热炉温度专家控制的实现[J].微计算机信

聚醚改性有机硅添加剂可有效提升涂料性能Dow消除围绕有机硅类

聚醚改性有机硅添加剂可有效提升涂料性能 Dow消除围绕有机硅类添加剂在油漆,涂料或油墨配方中使用的误解 Vicky James Consumer Solutions 我们作为涂料助剂的供应商,已经在涂料、油 漆和油墨等行业服务多年。当看到有配方设 计师还残存旧的观念,认为有机硅类产品会 造成涂层表面污染或缺陷,而未在他们的油 漆、涂料或油墨配方中使用有机硅时,我们感 到非常惊讶。自聚二甲基硅氧烷(PDMS)很多 年前被首次引入涂料行业,初期使用时确实 很容易引发问题,但如今有机硅化学已今非 昔比。通过氧化乙烯或丙烯、烷基或芳基等有 机基团或高明的乳化技术实现机能的PDMS, 如今可与大多数涂料配方相容,并且还可用 来降低表面张力,消除缺陷。作为一个出色的 解决方案,有机硅也可以让涂层带来增强的、 差异化的性能,深受最终消费者好评。它们是 如何做到?请看以下实例: 增强滑动和手感的聚醚改性有机硅类添加剂 有机硅聚醚类添加剂已被配方设计师用于提 高湿润、爽滑及滑动性很多年了。低分子量聚 醚改性有机硅类添加剂具有良好的亲水性 (由于聚醚侧链,使其在木器涂料等配方中 具有良好的相容性。但其爽滑性能会由于配方的不同而有明显的变化。同时这类产品也缺乏高分子量聚醚改性有机硅类添加剂所能带来的高度的爽滑性能,手感不够丰富,不能完全被最终消费者所认可。DOWSIL? 205SL 添加剂可使涂层表面拥有高度爽滑柔软的特征,并且具有丰富的手感,深得高端客户的青睐。 DOWSIL? 205SL添加剂可用于溶剂型,水性及光固化型体系的配方中。如图1所示,可使得配方设计师在多种产品组合,不同领域内创造机会。DOWSIL? 205SL添加剂是一款多功能的添加剂, 同时也是一款有效的消泡剂,这对于表面改性剂来说是非常难得,令人难以置信的。这为配方设计师去除配方中的气泡创造了可能性。顺滑和耐磨类高分子量有机硅添加剂 由于耐磨和耐擦拭往往与表面顺滑有着内在联系,某些情况下有机硅添加剂提供的良好的耐磨性来自于其高分子量。有人可能会认为这将使得它们难以分散,并且与主体树脂不相容;但如果采用的合适的乳化技术的话,情况就并非如此。DOWSIL? 51 添加剂和DOWSIL? 52添加剂就是此类高分子量有机硅乳液,能有效分散进水性涂料中产生耐磨表面。 这些高分子量有机硅乳液可以显著超越传统的蜡技术,因为后者将降低顺滑性能。图2中,与合成蜡相比较,添加DOWSIL? 52添加剂的水性聚氨酯分散型涂料所添加的量为前者的十分之一,但摩擦系数却较低。 许多应用场合需要良好的耐水性,例如在油墨、木器涂料和建筑涂料中。在建筑涂料的DIY市场中,有机硅树脂乳液已在耐水方面应用多年,配方设计师用有机硅取代了一部分丙烯酸树脂乳液,其用量按重量比大于总配方的 5%,超出了被视为“添加剂水平”的量。虽然这样做一定程度上提高了性能,但也显著增加了成本。DOWSIL? 87添加剂可按添加剂的添加量(通常为总配方的2-5%)达到改善涂料的耐水性,及加强其水珠效应,而不需要额外的添加量。 Paints, Inks and Coatings

几种常见的消泡剂种类

消泡剂的详细分类 (作者:中和润消泡剂) 在工业生产的过程中会产生许多有害泡沫,需要添加消泡剂。消泡剂的种类很多,有机硅氧烷、聚醚、硅和醚接枝、含胺、亚胺和酰胺类的,具有消泡速度更快,抑泡时间更长,适用介质范围更广,甚至苛刻介质环境如高温、强酸和强碱的特点。广泛应用于清除胶乳、纺织上浆、食品发酵、生物医药、涂料、石油化工、造纸、工业清洗等行业生产过程中产生的有害泡沫。 1、天然油脂(即豆油、玉米油等) 优点:来源容易,价格低,使用简单; 缺点:如贮存不好,易变质,使酸值增高。 2、高碳醇 高碳醇是强疏水弱亲水的线型分子,在水体系里是有效的消泡剂。七十年代初前苏联学者在阴离子、阳离子、非离子型表面活性剂的水溶液中试验,提出醇的消泡作用,与其在起泡液中的溶解度及扩散程度有关。C7~C9的醇是最有效的消泡剂。 C12~C22的高碳醇借助适当的乳化剂配制成粒度为4~9μm,含量为20~50%的水乳液,即是水体系的消泡剂。 还有些成酯,如苯乙醇油酸酯、苯乙酸月桂醇酯等在青霉素发酵中具有消泡作用,后者还可作为前体。 3、聚醚类消泡剂 种类挺多,主要有以下几种: a.GP型消泡剂 以甘油为起始剂,由环氧丙烷,或环氧乙烷与环氧丙烷的混合物进行加成聚合而制成的 GP型的消泡剂亲水性差,在发泡介质中的溶解度小,所以宜使用在稀薄的发酵液中。它的抑泡能力比消泡能力优越,适宜在基础培养基中加入,以抑制整个发酵过程的泡沫产生。 b.GPE型消泡剂即泡敌 在GP型消泡剂的聚丙二醇链节末端再加成环氧乙烷,成为链端是亲水基的聚氧乙烯氧丙烯甘油,也叫。按照环氧乙烷加成量为10%,20%,……50%分别称为GPE10,GPE20,……GPE50。 GPE型消泡剂亲水性较好,在发泡介质中易铺展,消泡能力强,但溶解度也较大,消泡活性维持时间短,因此用在粘稠发酵液中效果较好。 c.GPES型消泡剂:有一种新的聚醚类消泡剂,在GPE型消泡剂链端用疏水基硬脂酸酯封头,便形成两端是疏水链,当中间隔有亲水链的嵌段共聚物。这种结构的分子易于平卧状聚集在气液界面,因而表面活性强,消泡效率高。 4、硅类 最常用的是聚二甲基硅氧烷,也称二甲基硅油。它表面能低,表面张力也较低,在水及一般油中的溶解度低且活性高。它的主链为硅氧键,为非极性分子。与极性溶剂水不亲和,与一般油的亲和性也很小。它挥发性低并具有化学惰性,比较稳定且毒性小。纯粹的聚二甲基硅氧烷,不经分散处理难以作为消泡剂。可能是由于它与水有高的界面张力,铺展系数低,不易分散在发泡介质上。因此将硅油混入SiO2气溶胶,所构成的复合物,即将疏水处理后的SiO2气溶胶混入二甲基硅油中,经一定温度、一定时间处理,就可制得。 有机硅消泡剂系由硅脂、乳化剂、防水剂、稠化剂等配以适量水经机械乳化而成。其特点是表面张力小,表面活性高,消泡力强,用量少,成本低。它与水及多数有机物不相混溶,对大多数气泡介质均能消泡。它具有较好的热稳定性,可在5℃-150℃宽广的温度范围内使用;

全氟聚醚润滑剂的研究进展

【摘要】综述了全氟聚醚润滑剂的制备方法和性能,并分别对全氟聚醚油,全氟聚醚酯,全氟聚醚薄膜的研究现状和应用前景做了介绍,对未来的发展作了展望。 【关键词】全氟聚醚;润滑剂;摩擦学性能 0.前言 全氟聚醚(英文名perfluoropolyethers简写pfpe)是一种高分子聚合物,常温下为油状液体。它具有宽温度范围、化学惰性、高的热稳定性和优良的耐磨蚀特性得以在一些苛刻条件下承担起长效润滑的重任[1,2]。对其的研究始于20世纪60年代,并且一直用于军事、航天和核工业等尖端科学领域的润滑剂。本文对全氟聚醚的合成及摩擦学性能研究现状进行了综述,并作了展望。 1.全氟聚醚润滑剂的制备技术 一般pfpe的制备就是利用全氟化单体的聚合作用而制备,根据聚合单体和方法的不同,可以获得k,y,d,z四种分子结构不同的pfpe[3]。pfpe的最早制备技术可以追溯到20世纪60年代,美国dupont公司生产的krytox和意大利montefluos的fomblin产品。dupont 的krytox产品采用的是全氟环氧化物的阴离子聚合法,以全氟环氧丙烷hfpo为原料,在非质子溶剂中以氟离子为催化剂,可得到含酰氟端基的全氟环氧丙烷齐聚物,最后将齐聚物的活泼酰氟端基稳定化处理。意大利montefluos公司采用全氟烯烃直接光氧化法,以四氟乙烯或六氟丙烯为原料,在低温下与氧一起紫外光照,氧化聚合而得到结构略有不同的聚醚。生产工艺流程为:四氟乙烯或六氟丙烯―光氧化聚合―粗醚蒸馏―碱洗或氟化精制―分馏―后处理―调配―pfpe。 目前pfpe的合成生产已经实现了工业化,但由于pfpe的制备技术较为复杂和原材料昂贵,造成了pfpe的产品价格非常昂贵,很大程度上影响了它的应用,因此对pfpe的制备技术进一步优化以及降低其合成成本,以推广其在多个领域内的应用就显的及为重要,已经有研究人员在探索pfpe的新的合成方法[4],采用tfe和hfe的共聚物来合成,可望在未来能降低其生产成本。 2.全氟聚醚润滑剂的优异性能 pfpe由于分子中的氢完全被氟取代,在分子中碳氟键能要远大于碳氢键能,氟原子的范德华原子半径小,从四周紧密的包围住碳链,使碳链不易受到外界的侵扰,而且氟原子极强的电负性造成了氟碳键的强极性,还有共用电子对偏向于氟原子,使氟原子带多余的负电荷,形成一种负电荷保护层,从而使带负电荷的亲核试剂难以接近碳原子,所以难以发生反应。pfpe具有独特的化学稳定性,与大部分腐蚀性化学试剂如酸、碱、卤素和氧化剂等都不发生反应,在270~300℃的范围内无有效催化剂条件下仍很稳定;pfpe有很好的粘温特性和低的凝点,还有非常低的蒸汽压,可以在高真空下使用,并有着优良的抗辐射性能,可以在核工业满足一些特殊工况的要求;pfpe与很多物质相容,如橡胶,塑料,仅在全氟化的有机溶剂中溶解。pfpe具有不可燃性,更适合于高温和苛刻的使用环境中,如被广泛用于航空机械各种元件的润滑上。 3.全氟聚醚润滑剂的摩擦学机理 全氟聚醚润滑剂最重要的性能就是其摩擦学性能,尤其是在超高低温下,荷载下能表现出优异的边界润滑性能,有人在文献[5]中分别用四球、falex、reichert、amsler、srv、te77等试验机械作了摩擦磨损试验,系统测试了y系列的全氟聚醚油摩擦学性能,结果显示了在极压负载条件下具有一种优良的润滑性能,而在一般条件下其润滑效果并不比普通烃类润滑剂明显。v.d.agostino [6]也在研究中发现150℃条件下,pfpe对铁轴承的润滑效果要比矿物油的好,在150℃,pv=0.4mn/ms时,pfpe润滑的铁轴承的寿命超过了150小时没有毁坏,比mpif的规定长出了5到6倍。这也说明了pfpe在苛刻条件下具有的边界润滑性能。

聚醚改性硅油

聚醚改性硅油 聚醚改性硅油(简称聚醚硅油),是由性能差别很大的聚醚链段和聚硅氧烷链段,通过化学键连接而成。亲水性的聚醚链段赋予其水溶性,疏液、疏水性的聚二甲基硅氧烷链段赋予其低表面张力。因此,作为表面活性剂、有机类产品无法与其比拟,纯硅氧烷也相形见拙。聚醚硅油已广泛用作聚氨酯泡沫匀泡剂,乳化剂,个人保护用品原料,涂料流平剂,织物亲水、防静电及柔软整理剂,自乳化消泡剂及玻璃防雾剂等,并已形成改性硅油中产量最大的一个品种。 而聚醚链段与硅氧烷链段之间的连接又有两种方式,即通过Si ‐O ‐C 键或Si ‐C 键连接,前者不稳定,易被水解,故也成为水解型;后者对水稳定,也称非水解型。市售聚醚硅油的主要类型有以下5中。 (1) SiOC 类主链型 Me 3Si ‐O(Me 2SiO)m (C 2H 4O)a (C 3H 6O)b R (R 为H 、烷基、酰氧基,下同) (2) SiOC 类侧链型 Me 3SiO(Me 2SiO)m (MeSiO)n SiMe 3 2H 4O)a (C 3H 6O)b R (3) SiC 类侧链型 Me 3SiO(Me 2SiO)m (MeSiO)n SiMe 3 C 3H 6O(C 2H 4O)a (C 3H 6O)b R (4) SiC 类两端型 R(OC 3H 6)b (OC 2H 4)a OH 6C 3(Me 2SiO)n SiMe 2C 3H 6(C 2H 4O)a (C 3H 6O)b R (5) SiC 类单端型 R(OC 3H 6)b (OC 2H 4)a OH 6C 3(Me 2SiO)n SiMe 3 其中,SiC 类产品占据市场的主导地位。聚醚硅油的主要制法有两种。 (1) 缩合法制SiOC 聚醚硅油 即由含羟基的聚醚与含SiOR 、SiH 或SiNH2的硅氧烷通过 缩合反应而得,反应式如下(PE 表示聚醚)。 ≡SiOEt + HO ‐PE → ≡Si ‐O ‐PE + EtOH ≡SiOH + HO ‐PE → ≡Si ‐O ‐PE + H 2 ≡SiNH 2 + HO ‐PE → ≡Si ‐O ‐PE + NH 3 (2) 氢硅化法制SiC 型聚醚硅油 即由氢硅油与含链烯基的聚醚通过铂催化加成反应而 得。 ≡SiH + CH 2=CHCH 2O ‐PE → ≡SiC 3H 6OPE 甲基含氢硅油和含链烯基聚醚是制取聚醚改性硅油的主要原料,甲基含氢硅油的制法不再赘述。单端烯丙基的环氧乙烷与环氧丙烷共聚醚,是聚醚改性硅油的主要原料,通常由烯丙基醇作起始剂,在碱催化剂存在下环氧乙烷与环氧丙烷在高压釜中聚合反应制得,制得的单端烯丙基聚醚分子的另一端为羟基。如在500ml 不锈钢高压反应釜中,按计量加入烯丙基醇、KOH 、封闭反应釜,冲氮气,搅拌下加热至110°C ,按计量加入的环氧丙烷和环氧乙烷。在反应中,控制温度<125°C ,维持压力<0.5MPa 。当系统压力降至0.15MPa 时,降温,放空,在60~70°C 搅拌下抽真空,并通入氮气除去小分子。用酸性白土进行后处理,过滤,制得烯丙基嵌段共聚醚。 单端烯丙基聚醚在空气中受热或长期存放中很容易产生过氧化不纯物。这种过氧化不纯物会影响加成反应的反应速率和转化率,在使用前可以用抗坏血酸及其衍生物、柠檬酸及其衍生物进行分解处理。 此外,还可由含SiC 3H 6NH 2的硅油与含CH 2‐CHCH 2O 的聚醚出发,通过氨基与环氧基加成而 O ╱ ╲ Pt

有机硅消泡剂简单介绍

有机硅消泡剂简单介绍 含硅表面活性剂作为有机硅化合物中的一族,从60年代起就用 于各工业领域,但大规模和全面的快速发展,是从80年代开始的。 作为有机硅消泡剂,其应用领域也十分广泛,越来越受到各行各业的重视。 1、有机硅消泡剂的发展与现状 德国实验物理学家Quincke首先提出用化学方法来消泡,例如用乙醚蒸气可消除肥皂泡。19世纪的胶体化学家J.Plateau曾对液体起泡性进行过研究,提出表面张力小、黏度大的起泡性强。日本胶体化学家佐佐木恒孝在二次大战之前就开始研究泡沫问题,战后连续发表许多文章,成为消泡方面的一位专家。美国胶体化学家SRoss在二次大战期间,研究润滑油的消泡问题,战后连续发 表许多篇关于消泡的研究报告,在消泡剂的作用机理方面作出了突出贡献。1952年,美国道康宁(DowCorning)公司的CCCurrie对当时的消泡剂文献做了较大规模的整理,对造纸、发酵、锅炉等方面的消泡技术进行了全面系统的研究。1954年,美国Wa gnd-ott公司首先投产聚醚型消泡剂,已经得到迅速发展。但 广泛应用和研究是从近几年随着聚醚工业的发展而开始的。 50年代,我国开始对发酵、造纸工业的消泡问题进行探索性的 研究。60年代初,我国开始对润滑油、传动油的消泡问题进行系统 研究,从而有助于飞机、内燃机车、舰艇、轿车方面的发展。后来又进行了造纸、印染、发酵、天然气脱硫、混凝土等方面的研究。60 年代末,我国开始研究聚醚型消泡剂,70年代以来,开始生产聚醚 型消泡剂,首先应用于抗菌素发酵,并逐渐推广到其他领域,品种也

由当时的单一品种甘油聚醚GP发展到现今的GPE、PPE、BAPE等。80年代,各种各样的消泡剂大量涌现,消泡技术也在我国各行各业得到了广泛的应用。 2、有机硅消泡剂的消泡机理 泡沫是一种有大量汽泡分散在液体中的分散体系,其分散相为气体,连续相为液体。当体系中加有表面活性剂时,在气泡表面吸附着定向排列的一层表面活性剂分子,当其达到一定浓度时,气泡壁就形成了一层坚固的薄膜。表面活性剂吸附在气液界面上,造成液面表面张力下降,从而增加了气液接触面,这样气泡就不易合并。气泡的相对密度比水小得多,当上升的气泡透过液面时,把液面上的一层表面活性剂分子吸附上去。因此,暴露在空气中的吸附有表面活性剂的气泡膜同溶液里的气泡膜不一样,它包有两层表面活性剂分子,形成双分子膜,被吸附的表面活性剂对液膜具有保护作用。消泡剂就是要破坏和抑制此薄膜的形成,消泡剂进入泡沫的双分子定向膜,破坏定向膜的力学平衡而达到破泡。 消泡剂必须是易于在溶液表面铺展的液体。此种液体在溶液表面铺展时会带走邻近表面的一层溶液,使液膜局部变薄,于是液膜破裂,泡沫破坏。在一般情况下,消泡剂在溶液表面铺展越快,则使液膜变的越薄,迅速达到临界厚度,泡沫破坏加快,消泡作用加强。一般能在表面铺展、起消泡作用的液体,其表面张力较低,易于吸附于溶液表面,使溶液表面局部表面张力降低(即表面压增高),发生不均衡现象。于是铺展即自此局部发生,同时会带走表面下一层邻近液体,致使液膜变薄,从而气泡膜破坏。因此,消泡的原因一方面在于易于铺展,吸附的消泡剂分子取代了起泡剂分子,形成了强度较差的膜;同

聚醚改性有机硅

缩合固化 ? 经过缩合处理,溶剂型有机硅树脂、反应性(羟基硅油)液体和多数RTV 弹性体固化(交联)。简单的硅醇缩合过程将会产生副产物水。 ? 其他常见反应包括: ≡ SiH + HOSi ≡ ≡ SiOSi ≡ + H 2 ≡ SiOOCCH 3 + HOSi ≡ ≡ SiOSi ≡ + CH 3COOH ≡ SiONR 2 + HOSi ≡ ≡ SiOSi ≡ + R 2NOH ≡ SiOH + HOSi ≡ ≡ SiOSi ≡ + H 2O ≡ Si-Cl + HOSi ≡ ≡ SiOSi ≡ + HCl ≡ Si-OR + HOSi ≡ ≡ SiOSi ≡ + ROH ? 多种催化剂可引发并加速缩合固化。胺类化合物如氨丙基硅烷衍生物、铅、锡和锌的碳酸盐均为常用催化剂,并研究了铁、钙、钡、锑、锆和镉的有机盐。辛酸、月桂酸和油酸锡以及二丁基锡盐特别有效。除了催化活性外,最关键因素是催化剂在有机硅聚合物结构中的溶解性。强酸(Br?nsted 和Lewis 型)和强碱影响缩合,但反应难以控制。 CH 3 CH 3 HO –– Si –– O –– Si –– O –– Si –– OH 3 3 3333 “工具箱” 文件号: 26-1354-40

有限保证信息 – 请仔细阅读 此处信息是准确无误的。然而,由于使用本公司产品的条件和方法非我们所能控制,本信息不能取代客户为确保道康宁产品安全、有效、并完全满足于特定的最终用途,而进行的测试。我们所提供的使用建议,不得被视为侵犯任何专利权的导因。 道康宁的唯一保证,是产品满足发货时的道康宁销售说明。 若道康宁违反该保证,您所能获得的补偿仅限于退还购货价款或替换不符合保证的产品。 道康宁特别声明,不作任何其他明示或暗示对特定目的适用性或适销性的保证。 道康宁声明,对任何间接或附带性的损害概不负责。 道康宁和Silastic是道康宁公司的注册商标。 所有其他商标或品牌名是各自所有者的财产。 ?2005 道康宁公司保留所有权利 AGP7191文件号: 26-1354-40

聚醚类合成润滑油

ArChine聚醚类(PAG)合成润滑油 ArChine PAG 基础油系列产品介绍: ArChine聚醚类合成润滑油(PAG),它是由环氧乙烷和环氧丙烷聚合而成的,其通式 为: ArChine Arcfluid PAG 50-A系列是一种醇作为起始剂的含有相同重量的环氧丙烷基团的聚合物,末端带有一个羟基。该系列产品在室温上可溶于水,并且有不同的分子量和粘度等级。 ArChine Arcfluid PAG 75-W系列是一种二醇作为起始剂的聚合物,含75%重量百分比的环氧乙烷基团和25%重量百分比的环氧丙烷基团,带有两个末端羟基。该系列产品在75℃下是可溶于水,且具有多种不同的分子量和粘度等级。 ArChine PAG 基础油系列产品应用: 1.ArChine Arcfluid PAG 50-A-系列 ●用于生产金属加工液 ●用于生产齿轮、轴承润滑油 ●用于生产橡胶脱模润滑剂 ●用于生产纺织纤维润滑剂(纺纤油) ● ArChine Arcfluid PAG 50-A-460/680/1000可用作消泡剂 2.ArChine Arcfluid PAG 75-W-系列 ●用于生产水-乙二醇液压油 ●用于生产金属加工液 ●用于生产橡胶脱模润滑剂 ●用于生产纺织纤维润滑剂(纺纤油) ● ArChine Arcfluid PAG 75-W-18000/75-W-55000还可以用于生产淬火液 典型数据参数 产品ISO 粘度 等级 粘度 指数 (VI) SUS 100°F 粘度 40°C (cSt) 粘度 100°C (cSt) 闪点 (°C)COC 倾点 (°C) 比重 (20/20° C) 平均 分子量 M.W.

端氨基聚醚的合成及应用_莫蛮

Vol.43No.3(2012) ZHEJIANG CHEMICAL INDUSTRY 文章编号:1006-4184(2012)03-0024-03 端氨基聚醚的合成及应用 莫蛮田静刘学民蒋惠亮 (江南大学化学与材料工程学院,江苏无锡214122) 收稿日期:2011-09-04 作者简介:莫蛮(1986-),男,硕士生,主要从事精细化学品合成方面的研究。 端氨基聚醚是一类分子主链为聚醚骨架,末端被氨基封端的聚氧化烯化合物。自从Texaco 化学公司[1]率先完成端氨基聚醚的工业化生产以来,人们对该类型产品的合成方法及其应用进行了深入而广泛的研究。由于端氨基的反应活性,使其能与多种反应性基团作用,该类型制品的应用日益广泛。目前有关端氨基聚醚的合成方法,已有诸多文献报道[2-3],有些已用于工业化生产。本文概述了脂肪族端氨基聚醚的几种常用合成方法,并介绍了端氨基聚醚在环氧树脂固化剂、聚氨酯工业及汽油清净分散剂领域的应用。 1端氨基聚醚的合成方法 1.1催化还原胺化法 这种合成方法是将聚醚多元醇、氨、氢气和催化剂在一定的温度及压力下进行临氢催化还原胺化反应,使羟基转化成端氨基。Jefferson 公司的Yeakey 等[4]研究了T 系列(三度官能团)端氨基聚氧化丙烯醚的合成工艺,认为反应历程为:羟基脱氢生成羰基、羰基氨化并脱水变成烯亚胺、(烯亚胺)加氢还原转化成端氨基。 x 、y 、z 为整数。通过选用含不同x 、y 、z 的聚醚多 元醇,便可以合成出相应分子量的端氨基聚醚。可选用间歇式或连续型高压反应器,通常反应温度 150℃~275℃、压力3.5~35MPa ,选用具有脱氢-加 氢功能的金属催化剂(如Ni 、Gu 、Cr 、Al 、Ru 等)[5]。催化剂的制备方法和工艺对转化率和选择性有很大的影响,常用的制备方法是:首先用浸渍-沉淀法或浸渍法使所需活性组分的易溶盐负载于载体上,然后置于110℃下干燥数小时,再在400℃~450℃焙烧,自然降温后即得催化剂前驱体,最后经氢气还原可得所需催化剂[6-7]。常用催化剂金属组分如表1所示: 摘要:讨论了脂肪族端氨基聚醚的几种常用合成方法,介绍了端氨基聚醚在环氧树脂固化剂、 聚氨酯工业及汽油清净分散剂领域的应用。 关键词:端氨基聚醚;催化胺化;应用 精细化 工 24--

聚醚改性硅油

聚醚改性硅油是采用聚醚与二甲基硅氧烷接枝共聚而成的一种性能独特 的有机硅非离子表面活性剂,在制作产品时,通过改造硅油链节数或改变 聚醚Eo与Po之配比及改变其链节数和末端基团可获得性能各异的各种有 机硅表面活性剂,以满足多种行业的需要。 用途 1、在塑料大棚业:可作为内添加剂加入塑料中,用于生产无滴膜大 棚起防雾、提高透光率作用。2、用于织物整理剂:起柔软作用,特 别适于内衣、床单、毛巾等整理,不仅柔软,还吸水吸汗,穿着舒适。3、用于油漆及聚氨酯浆料的流平剂,可降低其分子的内摩擦力、应力,从而 起流平、消泡的作用。4、用于制作高效切削液,高档清洗剂。5、用作硬泡聚氨酯体系发泡的匀泡剂,使泡孔细密均匀。6、本产品在化妆品业用于制作膏霜类产品,起润滑皮肤、保湿抗皱功效。7、农 药行业用作草甘磷的润湿展着剂,提高药效,减少公害。8、聚醚改 性硅油是配制自乳化消泡剂和炼油行业延迟焦化消泡剂的关键成分。 9、其它未尽的新应用领域. 特点 1. 具有良好的润滑性,适于制作高档切削液。2、具有更低的 表面张力,适用作防雾剂。3、更好的柔软特性及抗静电性能,适于 用作织物柔软剂。4、良好的流平性,适于在多种树脂(聚氨酯用树 脂、油漆用树脂、塑料用树脂等)添加,可很好地改善这些树脂的分子间的应力,克服这些树脂本身的缺点,获取新的性能5、它具有较好的破乳性,适用于某些特定场合的油水分离。6、在其它新领域的应用。 本产品与聚二甲基硅氧烷相比,可以任意比例与水互溶,也与极性有机溶 剂如醇、DMF、醚、酯等互溶,与甲苯、烷烃等非极性溶剂部分或完全相 溶。使用时很方便。。因本产品是一种系列产品,用户如需要特殊规格可 与我厂联系定做。 用法 作流平剂使用时体系添加量为0.1~1%,作柔软剂时在浸轧液或浸渍液中的含量为1~5%,作化妆品添加剂时体系中加量为2.5~5%,其它应用在0.1~10%之间参考选择添加量或通过先锋实验予以确定。 注意事项 高温下或混入酸碱物质及储存期过长有粘度增大甚至交联的倾向。 包装储存 1、存于干燥、阴凉处,避免与强酸、强碱等接触。 2、本品为 非危险品,按一般货物运输即可。

润滑剂的基础资料

润滑剂的基础资料 1:行业来源:即为什么要生产和使用润滑油 润滑行业属于为零件制造和使用服务的,因为零件运转中因热量、磨损、腐蚀等,导致零件寿命下降,浪费严重,所以需要采取润滑保护措施。 这时候我们发现某种材料(如油性的物质)可以起到这种保护作用,能大大提高零件的使用寿命,于是我们就来寻找合适的润滑材料,并称之为润滑剂。 常用的润滑材料有气体、油、脂、固体粉末等,它们各有不同的摩擦系数,耐高速从大到小,耐负荷从小到大。 2:润滑原理:即如何起到润滑作用 润滑概念:加入到表面物质,减少或控制摩擦力 作用机理:物体表面成膜防止直接接触,除热。 润滑剂的作用 (1)减摩抗磨,降低摩擦阻力以节约能源,减少磨损以延长机械寿命,提高经济效益; (2)确定合适的摩擦系数,便于精确数学控制 (3)减少损耗其中热量损失占20% 摩擦造成零件寿命损失50% (4)冷却,要求随时将摩擦热排出机外; (5)密封,要求防泄漏、防尘、防窜气; (6)抗腐蚀防锈,要求保护摩擦表面不受油变质或外来侵蚀; (7)清净冲洗,要求把摩擦面积垢清洗排除; (8)应力分散缓冲,分散负荷和缓和冲击及减震; (9)动能传递,液压系统和遥控马达及摩擦无级变速等。 3:润滑剂总论润滑剂分类及润滑方式 气体:阻力小、承载有限、允许速度高。 油类:动植物油、矿物油、合成油、合成液、乳状液、液体动力膜,主要是冲洗和散热。 脂类:矿物基础油、合成基础油、皂基、脂肪、石蜡主要是不流失、密封、抗蚀。 固体类:高分子、粉末等 润滑方式: 循环润滑:润滑剂送至摩擦点进行润滑后又回到油箱再循环使用的润滑方式。 全损耗性润滑:润滑剂送至摩擦点进行润滑后不再返回油箱循环使用的润滑方式。 浸油润滑:即油浴润滑。

聚醚改性硅与聚醚和有机硅消泡剂的区别

聚醚改性硅和聚醚和有机硅消泡剂的区别聚醚改性硅与聚醚消泡剂和有机硅消泡剂的区别在于:聚醚改性硅结合了聚醚消泡剂跟有机硅消泡剂二者的优点,具有无毒无害,对菌种无害,添加量极少,是一种高性价比的产品。聚醚改性有机硅,是在硅氧烷分子中因如聚醚链段制得的聚醚-硅氧烷共聚物(简称硅醚共聚物)。 聚硅氧烷类消泡剂具有消泡迅速,抑泡时间长和安全无毒等特点,但它难溶于水,耐高温,耐强碱性差,聚醚类消泡剂,耐高温,耐强碱性强,但其消泡速度和抑泡时间都不甚理想,经过缩合技术接枝在聚硅氧烷链上引入聚醚链,使之具有二类消泡剂的优点,成为一种性能优良,有广泛应用前景的消泡剂。在硅醚共聚物的分子中,硅氧烷段是亲油基,聚醚段是亲水基。聚醚链段中聚环氧乙烷链节能提供亲水性和起泡性,聚环氧丙烷链节能提供疏水性和渗透力,对降低表面张力有较强的作用。聚醚端基的基团对硅醚共聚物的性能也有很强的影响。 常见的端基有羟基、烷氧基等。调节共聚物中硅氧烷段的相对分子质量,可以使共聚物突出或减弱有机硅的特性。同样,改变聚醚段的相对分子质量,会增加或降低分子中有机硅的比例,对共聚物的性能也会产生影响。聚醚改性有机硅消泡剂很容易在水中乳化,亦称作“自乳化型消泡剂”,在其浊点温度以上时,失去对水的溶解性和机械稳定性,并耐酸、碱和无机盐,可用于苛刻条件下的消泡,广泛用于涤纶织物高温染色工艺、发酵工艺中的消泡。此外,也可用于二乙醇胺脱硫体系的消泡及各种油剂、切削液、不冻押、水性油墨等体系的消泡,也适用于即印刷行业感光树脂制版后,洗掉未固化树脂的消泡,是一种很有代表性、性能优良、用途广泛的有机硅消泡剂。聚硅氧烷消泡剂通常由聚二甲硅氧烷和二氧化硅两个主要组成物质适当配合而成,以聚二甲基硅氧烷为基材的消泡剂是消泡体系中一类理想的消泡剂,就是因为其不溶于水,较难乳化,聚二甲基硅氧烷比碳链烃表面性能低,因此比通常

有机硅聚醚复合消泡剂

复合消泡剂 分类名称:有机硅聚醚复合消泡剂 活性成分:聚硅氧烷、聚醚共聚物、高效分散剂 性状:本品为乳白色粘稠液体;不挥发物:25±1%; PH值:6-8;稳定性(3000转/20分钟):不分层; 离子特性:非离子型; 耐温特性:130℃不破乳、不漂油、不分层。 用途:1、本品可广泛用于红霉素、洁霉素、阿维菌素、庆大霉素、青霉素、土霉素、四环霉、泰乐菌素、谷氨酸、赖氨酸、柠檬酸、黄原胶等发酵工业的消泡、抑泡; 2、广泛应用于纺织、印染、涂料、染料、造纸、油墨、油田、污水处理、制糖、食品加工等领域的消泡抑泡。 产地:宿州华润化工 性能特点:本品是采用进口原料,专为高温、高压、酸碱等使用条件苛刻的环境而研制的长效抑泡型聚醚改性有机硅消泡剂。本品选择亲水性强,抑泡持久的聚醚共聚物和疏水性强、破泡迅速的聚硅氧烷为主要成分复配生产。本品不同于一般的乳液消泡剂,它具有自乳化特性,在经受高温灭菌后,能自动恢复乳液状态,不会在发泡体系中破乳、漂油、分层,具有耐高温、高压,耐酸碱,高剪切,消泡迅速,抑泡持久的极佳性能。由于采用了高效分散剂,在发泡体系中分散均匀,消泡、抑泡效果显著,与同规格普通有机硅消泡剂相比,仅需60%用量即可达到消泡、抑泡要求,性价比较高。同时,本品在中常温和常规使用条件下的消泡、效能同样卓越,在发酵行业中可替化聚醚消泡剂。 使用方法:1、发酵工业:不具备分期消毒条件的可在基础料中一次性添加0.1-0.3‰,然后在发酵周期流加或滴加,一般使用量0.3-0.5‰;2、纺织印染行业:用于喷射溢流染色、漂染、印花制浆,一般使用量0.1-0.3‰;3、涂料行业:稀释后添加,用量0.1-0.2‰;4、造纸行业:制浆、洗浆、抄纸、涂胶工序均可在稀释后添加,用量0.1-0.3‰。 5、本品具有优异的抑泡能力,建议在介质未发泡前添加,可有效抑泡,稀释时可按1:5-1:20的比例任意调节。 包装贮运:25kg塑料桶或200kg内涂塑铁桶包装;贮于阴凉处,按无毒、非危险品运输,注意防冻。

有机硅消泡剂概述

有机硅消泡剂概述 应用化学专业某本科生 南京师范大学化学与材料科学学院 摘要:该文探讨了有机硅消泡剂的消泡机理,介绍了各种有机硅消泡剂的特点和性能,论述了有机硅消泡剂的发展现状。简要介绍了有机硅消泡剂的使用 关键词:有机硅消泡剂;消泡机理;种类和性能;失活与再生;展望 在工业生产过程中(如印染、造纸、发酵和天然气脱硫等)若有大量的泡沫存在,不仅操作不便,浪费设备容量,而且会影响产品的质量造成次品,极大地降低生产能力。[1]一般消除泡沫可通过静置、减压、加温等办法达到目的。但在当今工业生产规模越来越大,生产效率要求越来越高的条件下,需要在尽可能短的时间内迅速而有效的消除不断产生的泡沫,就需要用新的、更有效的方法来消除泡沫。自从德国物理学家Quincke首先提出用化学方法消除泡沫以来,消泡剂获得了很大发展。各类消泡剂目前已广泛应用于造纸、印染、食品及化工生产中,其用量也在不断地增加。[2]目前国内外市场上的商品消泡剂品种繁多,性能各异。按消泡剂的形式可分为油型、溶液性、乳液型、粉末型和复合型;按消泡剂的组成可分为聚醚型、有机硅型、非硅型和硅醚混合型。其中有机硅类消泡剂由于具有以下特点获得广泛应用:[2] ①表面张力低,表面活性高,消泡力强。具有正铺展系数,能在发泡系统中的气液界面迅速铺展开;[3] ②热稳定性好,挥发性低。这保证了有机硅油消泡剂可在较宽的温度范围内使用; ③化学稳定性好。由于Si-O链及Si-C链结合比较稳定, 所以有机硅的化学惰性好, 很难与其它物质发生化学反应,能在苛刻的条件下使用; ④无生理毒性。一般用作消泡剂的二甲基硅油聚合度较高,而脱除了低聚物的二甲基硅油是无生理毒性的; 1.有机硅消泡剂的作用机理 1.1泡沫的产生 ①必须有气液两相的接触,较多的气体分散在较少液体中形成两相体系——泡沫产生的必要条件; ②必须有表面活性剂的存在,以使发泡速度高于破泡速度,产生一个稳定的气液分散系统——泡沫产生的充分条件。 1.2泡沫不易消失的原因 当含有表面活性剂的溶液或粘度较大的液体受到搅动时, 常常会产生不易消失的泡沫。这些泡沫较为稳定不易消失的原因主要有两点:[2] ①表面活性剂溶液产生的泡沫具有抗拒泡沫壁破裂的"自我痊愈"效应; ②液膜表面各相邻表面活性剂分子间的相互作用或溶液本身的高粘度,使得泡沫的表面粘度较高。 1.3消泡机理 消泡就是泡沫稳定化的反过程, 有机硅消泡剂一般是由下列两种作用达到消除泡沫的目的: 一是有机硅消泡剂在泡沫液膜上具有很好的铺展性能, 能立即散布于泡沫表面,形成很薄的双膜层。低表面张力的消泡剂分子在扩散展开的过程中,将泡沫液膜表面具稳定作用的表面活性剂分子排开, 降低了泡沫壁局部的表面张力, 破坏了泡沫的"自我痊愈"效应, 使泡沫破裂。 二是当有机硅消泡剂分散在起泡液体中, 其分子可能插入到泡沫液壁,形成混合液壁。混合液壁的结构不均匀,导致其内聚性不佳, 局部粘度下降, 同样造成泡沫破裂。[2-5,6] 1.4有机硅消泡剂的优势 一种性能良好的消泡剂必须同时兼具消、抑泡作用, 即不但能迅速使泡沫破裂, 而且

端氨基聚醚

端氨基聚醚(Amine-Terminated Polyethers ,缩写为ATPEs) 的合成研究始于20 世纪50 年代,由美国Texaco 公司率先完成工业化生产,并于20 世纪60年代开始销售系列端氨基聚醚类固化剂,商品牌号为Jeffamine 。直到1981 年该公司发现可将高分子量聚醚多胺替代第二代RIM 体系配方中的聚醚多元醇部分,产生了在聚合过程中仅形成脲键的新一代RIM体系,即聚脲RIM体系,并在20 世纪80 年代中期成功开发出了喷涂聚脲弹性体技术( SprayPolyurea Elastomer ,缩写为SPUA) ,这时端氨基聚醚的开发才引起了较多的关注。此后多家公司相继完成了端氨基聚醚的工业化生产。比较目前各种端氨基聚醚类产品,可以看出端氨基聚醚是一类具有柔软的聚醚骨架,末端以氨基或胺基(一般为含有活泼氢的仲胺基、伯胺基或多胺基基团) 封端的化合物,结构变化包括聚氧乙烯二胺、聚氧丙烯二胺、聚氧乙烯/ 氧丙稀二胺、聚氧丙烯三胺和聚四甲撑醚二胺等的变化;且多是以相应的聚醚多元醇为原料,通过对末端羟基进行化学处理而得到的,因此在许多文献中也称之为聚醚多胺(Polyether Polyamine) 。另外,按照分子链是否含有芳香基团,又可将其分为芳香族端氨基聚醚和脂肪族端氨基聚醚, 一般来说脂肪族的较芳香族的活性高、粘度低。由于端氨基聚醚的合成过程中不改变分子的主链,只发生末端官能团的改换,所以从结构上看,除了末端官能团外,端氨基聚醚与相应的端羟基聚醚并无差异,两者的性质也基本相似。例如都可以用作环氧树脂固化剂、润滑油添加剂、聚氨酯/ 脲材料的合成原料等。但是正是由于末端官能团的改换使得端氨基聚醚的反应活性得到了相当大的提高,尤其是在聚氨酯工业中,目前的报道表明,端氨基聚醚同异氰酸酯的反应极为迅速,已使聚氨酯反应注射成型(RIM) 体系的循环周期缩短为1~115 min ,并且无须使用催化剂,而聚醚多元醇聚氨酯的RIM 体系需要使用大量催化剂才能使循环周期缩短;另外端氨基聚醚在固化反应中同异氰酸酯形成脲基(-NHCONH-) 代替了聚醚聚氨酯中的氨基甲酸酯基(-NHCOO-) ,所以不会降低甚至会提高胶粘剂的性能。目前在聚氨酯RIM 体系、SPUA 弹性体中的应用均表明使用端氨基聚醚的制品较用聚醚多元醇的在性能上优异得多。因而端氨基聚醚在室温固化体系及SPUA 技术中具有极大的应用优势。1 合成综合目前有关端氨基聚醚合成方法的报道,其研究思路主要有二种: (1) 从聚醚多元醇的末端羟基着手,通过氨解反应用氨(胺) 基取代其末端羟基。这也是目前端氨基聚醚工业合成的主要方法,一般称之为催化还原胺化法; (2) 从聚醚多元醇末端羟基的活泼氢着手,用带有易离去基团或不饱和基团(-NCO、- NO2 、- CN 等) 的化合物与活泼氢作用进行封端,然后通过相应的处理后得到端氨基聚醚,这一类方法包括水解法、氰烷基化法、硝基封端法等; 另外以乙醇胺为引发剂,使环氧化物开环聚合,可以形成一端为氨基、一端为羟基的聚合物,这种方法多用于合成具有多个末端羟基的高活性聚醚,习惯上并不将其纳入端氨基聚醚类产品的合成方法中。下面详细介绍端氨基聚醚的各处合成方法: 1.1 催化还原胺化法催化还原胺化法是目前研究最详细、报道最多的合成端氨基聚醚的方法之一,也是目前端氨基聚醚工业生产的主要方法,其实质是聚醚多元醇同氨、氢气在相应的催化剂(如含Ni 催化剂、Ni/ Cu/ Cr 催化剂、Raney Ni/ Al 催化剂) 的存在下进行的氨解反应,所采用的催化剂均为氢化- 脱氢催化剂,可以根据Houben - Weyl 的有机化学方法第111 卷126~131 页中的介绍进行选择。根据路径的不同,可以大致分为两种路径:直接催化还原胺化法和间接催化还原胺化法。1.1.1 直接催化还原胺化法这种方法是将聚醚多元醇、氨、氢气的混合物在一定温度、压力及催化剂存在下直接进行催化还原胺化以生产端氨基聚醚。一般认为整个反应历程包含了醇的脱氢、醛的加成氨化、羟基胺的脱水、和烯亚胺的加氢 还原成胺等步骤。但是这种还原胺化的方法需要较高的压力和温度,一般要求反应温度在200 ℃左右,反应压力约~5000 psig (约3.45~34.5 MPa) ,对生产设备的要求很高。可能是反应温度及压力较高的原因,这种方法仅适于短链的聚醚多元醇的催化还原胺化。而高相对分子质量的端氨基聚醚的生产一般采用间接催化胺化法。1.1.2 间接催化还原胺化法这种催化胺化的方法是在将聚醚多元醇转化为其衍生物基础上,对该衍生物进行催化胺化。这些衍生物主要是通过用较好的离去基团(如乙酸基、苯甲酸基等) 取代聚醚多元醇中羟基的位置而获得。例如首先将端羟基聚醚与乙酰氯、苯甲酰氯、对甲苯甲酰氯等进行酯化反应,生成相应的酯后,再用这些酯同氨及氢气在催化剂存在下进行催化还原胺化。这种方法一定程度上降低了反应所需的温度及压力,但并未对成本产生实质性的影响。 例如Hollingsworth 等人实现了用聚四氢呋喃的双乙酸酯在Ni/ Cu/ Cr/Mo 存在下的催化还原胺化的方法, 但反应温度及压力同样较高, 温度约为220 ℃,反应压力则高达350 psig(约2.51 MPa) 。总的来说,催化还原胺化法的产物以脂肪族伯胺为主,尤适于喷涂聚脲弹性体技术的工艺要求。2.2 水解法早在1957 年,Simons 就在其专利中讨论过异氰酸酯预聚体经水解反应得到端氨基聚醚的可行性,后来日本人进行过酸性条件下异氰酸酯预聚体水解合成端氨基聚醚的研究,然而水解反应中生成的胺会进一步与未反应的异氰酸酯反应形成相应的脲,而且这一副反应在酸性条件下无法抑制,即使使用过量的无机强酸也是如此。1982 年Rasshofer 等人提出将聚醚多元醇与异氰酸酯反应形成的预聚体在碱性条件下水解先生生成含氨基甲酸基的中间体,再进一步加热分解得到端氨基聚醚的方法。该方法要求预聚体的水解反应须在低温(18~20 ℃) 下进行,以抑制聚脲的形成这一方法的优点在于控制碱性水解反应在低温下进行,使得反应生成的氨基甲酸酯基在此种条件下比较稳定,并且在分子链的末端实际上形成了氨基甲酸盐基团,抑制了聚脲的形成,所以没有明显的扩链反应。从而保证了预聚体的NCO 基团水解反应时的高选择性,因而最终产物的粘度主要取决于预聚体的起始粘度和体系中残留

相关主题
文本预览
相关文档 最新文档