当前位置:文档之家› 高程误差的分析

高程误差的分析

高程误差的分析
高程误差的分析

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

工程测量中三角高程测量误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法 戚忠 中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007 一引言 一直以来,为保证精度,高等级高程测量都采用几何水准的方法。而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 二三角高程测量误差分析 常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。对向观测法三角高程测量的高差公式为: (1) 式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量; 令。 对式(1)微分,则由误差传播定律可得高差中误差:

(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。 三减弱大气折光差的方法和措施 大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。下面具体分析。 3.1提高观测视线高度。由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。 3.2尽量选择短边传递高程。由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。但控制网的边长是由多种因素控制的,不能随意增加和减少。 3.3选择有利观测时间。中午前后(10~15时)垂直折光小,观测垂直角最有利。日出

工程测量中三角高程测量的误差分析及解决方法.doc

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 工程测量中三角高程测量的误差分析及解决方 法.doc 工程测量中三角高程测量的误差分析及解决方法摘要:通过对三角高程测量公式的分析,发现影响三角高程测量精度的因子,引进当下较为先进的设备与方法,从而提高三角高程测量的精度,使其可以替代几何水准测量。 该方法的实现可以弥补几何水准受地形条件等因素限制使工作效率慢,测绘成本高,人身、设备安全无法保障等缺点。 关键词: 三角高程测量;几何水准;误差分析;大气折光系数 1 引言一直以来,为保证精度,高等级高程测量都采用几何水准的方法。 而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。 随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。 三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 2 三角高程测量误差分析常见的三角高程测量有单向 1 / 6

观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。 对向观测法三角高程测量的高差公式为: 式中: D 为两点问的距离;a 为垂直角;(k2-k1)为往返测大气垂直折光系数差;i 为仪器高;v 为目标高;R 为地球曲率半径(6370km);为垂线偏差非线性变化量;令。 对式(1)微分,则由误差传播定律可得高差中误差: (2)由式(2)可知影响三角高程测量精度主要有: 1.竖直角(或天顶距)、 2.距离、 3.仪器高、 4.目标高、 5.球气差。 第 1、2 项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡 TCA2003 及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第 3、4 项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座 3 个方向量取,使 3 个方向量取的校差小于 0.2mm,并在测前、测后进行 2 次量测;第 5 项球气差也就是大气折光差,也是本课题的研究重点。 3 减弱大气折光差的方法和措施大气折光差: 是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。 大气折光对距离的影响,表现在电磁波测距中影响的量值相对较

测量误差基本知识

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。

图 4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差m γ。 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a-b ,求m 。 (2)已知a m =m =±6",β=a-c ,求βm 。 (3)已知a m =m =m ,S=100(a-b) ,求m 。 (4)已知D=() h S -,m =±5mm ,m =±5mm ,求m 。

工程测量规范GB-(高程控制)

工程测量规范GB-(高程控 制)

作者: 日期:

《工程测量规范》GB50026-2007条文说明--高程控制测量 4. 1 一般规定 4. 1 . 1高程控制测量精度等级的划分,仍然沿用《93规范》的等级系列。 对于电磁波测距三角高程测量适用的精度等级,《93规范》是按四等设计的,但未明确 表述它的地位。本次修订予以确定。 本次修订初步引入GPS拟合高程测量的概念和方法,现说明如下: 1从上世纪90年代以来,GPS拟合高程测量的理论、方法和应用均有很大的进展。 2从工程测量的角度看,GPS高程测量应用的方法仍然比较单一,仅局限在拟合的方 法上,实质上是GPS平面控制测量的一个副产品。就其方法本身而言,可归纳为插值和拟合两类,但本次修订不严格区分它的数学含义,统称为“GPS拟合高程测量”。 3从统计资料看(表9),GPS拟合高程测量所达到的精度有高有低,不尽相同,本次修订将其定位在五等精度,比较适中安全。 4. 1 . 2区域高程控制测量首级网等级的确定,一般根据工程规模或控制面积、测图比例尺或用途及高程网的布设层次等因素综合考虑,本规范不作具体规定。 本次修订虽然在4. 1. 1条明确了电磁波测距三角高程测量和GPS拟合高程测量的地位,但在应用上还应注意: 1四等电磁波测距三角高程网应由三等水准点起算(见条文4. 3. 2条注释)。 2 GPS拟合高程测量是基于区域水准测量成果,因此,其不能用于首级高程控制。 4. 1 . 3根据国测[1987]365号文规定采用“ 1985国家高程基准”,其高程起算点是位于青岛的“中华人民共和国水准原点”,高程值为72. 2604m。1956年黄海平均海水面及相应的水准原点高程值为72. 289m,两系统相差-0. 0286m。对于一般地形测图来说可采用该差值直接换算。但对于高程控制测量,由于两种系统的差值并不是均匀的,其受施测路线所经 过地区的重力、气候、路线长度、仪器及测量误差等不同因素的影响,须进行具体联测确定 差值。 本条“高程系统”的含义不是大地测量中正常高系统、正高系统等意思。 假定高程系统宜慎用。 4. 1 . 4高程控制点数量及间距的规定,是根据历年来工程测量部门的实践经验总结出来的,便于使用且经济合理。 4. 2水准测量 4. 2 . 1关于水准测量的主要技术要求: 1本规范水准测量采用每千米高差全中误差的精度系列与现行国家标准《国家一、二等水准测量规范》GB 12897和《国家三、四等水准测量规范》GB 12898相同。虽然这一系列对程 测量来讲并不一定恰当适宜,但从水准测量基本精度指标的协调统一出发,本规范未予变动。五等水准是因工程需要而对水准测量精度系列的补充,其每千米高差全中误差仍沿用《93 规范》的指标。 2本条所规定的附合水准路线长度,在按级布设时,其最低等级的最弱点高程中误差为3cm左右(已考虑起始数据误差影响)。 3本条中的附合或环线四等水准测量,工测部门都采用单程一次测量。实践证明是能达到规定精度的;因为四等水准与三等水准使用的仪器、视线长度、操作方法等基本相同,只 有单程和往返的区别;按此估算,四等水准单程观测是能达到规定精度指标的。 4关于山地水准测量的限差。

高程测量误差分析

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

水准测量误差分析及注意事项分析

龙源期刊网 https://www.doczj.com/doc/a911062771.html, 水准测量误差分析及注意事项分析 作者:赵杰 来源:《中国房地产业·下半月》2017年第01期 【摘要】在测量工作中,高程测量是一项不可缺少基本工作,一般使用的测量方法有三角高程测量与水准测量等,在高程测量中,水准测量具有较高的测量精准度。分析了水准测量误差分析及注意事项,以减弱水准测量误差影响。 【关键词】水准测量;误差;影响 因为多重因素的影响,如,外界环境及仪器等,不利把控水准测量。产生的错误不容易发现,使得基础资料不准确,进而导致水准点间高差出现错误,对工程施工造成直接影响,带来时间及经济损失。所以,分析水准测量误差的影响影响很重要。 1、水准测量误差分析 测量中难免存有误差,按照水准测量误差产生原因不同,可将误差划分为三个方面:外界条件引起的误差、仪器误差、观测误差。 1.1外界条件引起的误差 1.1.1地球曲率与大气折光误差 地球曲率影响高程测量,这点不能忽略,如果视距为100m,高程方面误差接近1mm,影响较大。该误差类1以于水准管轴不平行视准轴,以前后视距离相等的方法可消除该误差对高差带来的影响。地面上空气密度以梯度呈现,光线进入各密度媒介时,产生折射,通常从疏媒介向密媒介折射,因为水准仪视线不理想。通常大气层上层空气密度疏,下层空气密,视线经过大气层,变成了向下弯曲的曲线,导致尺上读数变小,与水平线出现差值,也就是遮光差。 山地连续下坡或上坡时,前后视线和地面的高度增大,遮光差产生的影响越来越大,体现相应的系统性,需要减少视线长度,提升视线高度,以此,将大气遮光影响减至较低。 如果天气晴朗,接近地面的温度比较高,使得下层空气密度相对较稀,这时视线变成了向上弯曲的曲线,导致尺上读数变大。视线线越接近地面,产生的折射越大,所以,通常视线要高出地面一定高度,比地面高出0.5m,就是为了减弱这种影响。如果地面平坦,地面覆盖的物体大致相同,前视距与后视距是相等的,前视距与后视距具有相同的遮光差方向,大小大致相同,能够很大程度上消除遮光差影响。 1.1.2尺子与仪器下沉误差

关于地球曲率、大气折射对三角高程测量误差分析

关于地球曲率、大气折射对三角高程测量误差分析 一、三角高程测量一般可以替代四等水准测量,也就是说它可以满足四等水准测量的精度要求! 二、当地形高低起伏太大,导致高差太大不便于水准测量,可以用三角高程测量原理测量两点间的高差和点位的高程; 三、误差来源:由于地球是一不规则椭圆,我们姑且把它看成一个半径为6371km 的圆,我们来看一下水准面的定义:处处与铅垂线(重力线)垂直的连续封闭曲面;而我们假想的是用一个水平面代替水准面(这里大家要注意一下水准面与水平面的区别);受地球曲率影响,导致了一个误差的来源。所以我们在等级测量中需要计算一个地球曲率改正数对现场测量的高程加以修正。我们称其为球差改正f =D2/2R(其实这公式也不难推导) 1 我们来个简单的几何分析:f1=根号下D2+R2-R 举例:0.5km误差达到20mm,则有f1=根号下0.52+63712-6771=20mm; 由上图我们可以看出,所实测点位的高程偏小,所以用全站仪单向观测时,计算高程时应加上球差改正f1;若进行对向或是中间观测时不必考虑球差改正;等精度观测可以抵消误差 (导线测量要求边长大致相等); 大气折射对三角高程测量的影响:由于低层空气密度大于高层空气密度,观测竖直角的视线穿越不均匀的介质时,导致竖直角偏大或偏小。所有我们在计算高程时需要考虑大气折射的影响。f2(气差改正数)= -k*D2/2R(k为大气垂直折光系数)但水准测量几乎不受大气折射影响,因为水准测量提供的是一条水平的视线;但水准测量计算高 程时需要考虑地球曲率的影响; K一般取0.14,由于k受地区、气候、季节等诸多因数的影响,人们很难精确的测定k的值,正是这个原因,《城市测量规范》中规定测量边长不应大于1km。 综合以上:两者误差改正数f=f1+f2=(1-k)*D2/2R;

GPS高程测量误差探析

GPS高程测量误差探析 摘要:本文针对GPS测量的特点,对GPS高程测量的误差进行了分析,通过分析得出GPS高程测量是可以达到四等水准的测量精度的。 关键词:GPS;高程测量;误差;大地高;正高和正常高;高程异常 P216 1 问题的提出 众所周知,GPS能实时地提供三维坐标,在三、四等控制及一、二级控制中,用GPS测量方法进行平面控制已为绝大部分测绘生产部门所采用,但GPS所提供的高程控制部分还在很大程度上不能满足测绘生产的相应要求,因为GPS所提供的高程为大地高,即WGS-84椭球高,而测绘生产作业中所要提供的高程一般为正常高或正高,他们之间存在着差异-高程异常和大地水准面差距。若能准确在求出高程异常和大地水准面差距,并能及时地注意GPS测量本身的误差影响,我们就能解决GPS高程测量的问题,充分地发挥GPS定位的优越性。 2 GPS定位误差分析 2.1 GPS定位测量的误差来源 GPS定位测量的误差主要来源于以下几个方面: (1)来自卫星部分的误差:主要有星历误差、卫星钟误差、相对论效应; (2)来自信号传播有关的误差:主要有电离层折射误差的影响、对流层折射误差的影响、多路径效应。 (3)与信号接收有关的误差:主要有接收机钟误差、接收机的位置误差、天线相位中心位置的偏差。 (4)其它方面的误差影响:如地球自转和地球潮汐的影响。 2.2 减弱GPS测量误差的措施和方法 (1)加入全球的卫星监测网站,以获得高精度的卫星星历; (2)利用同步观测值在不同的卫星与卫星之间、历元与历元之间进行差分处理; (3)进行调周模糊度解算,经实验得出若同步观测时间在1h以上,可获得

三角高程测量误差分析报告

三角高程测量 1 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。 在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距)和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。三角高程测量 由图中各个观测量的表示方法,AB两点间高差的公式为: H=S0tanα+i1-i2①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而 就可以得到两个观测量:直觇: h AB= S往tanα往+i往-v往+c往+r往② 反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高;

c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(h AB- h BA) =0.5[( S往tanα往+i往-v往+c往+r往)-( S返tanα返+i返-v返+c返+r tanα往-S返tanα返+i往-i返+v返-v往) ④返)] =0.5(S往 与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。 1.3中间观测法 中间观测法是模拟水准测量而来的一种方法,它像水准测量一样,在两个待测点之间架设仪器,分别照准待测点上的棱镜,再根据三角高程测量的基本原理,类似于水准测量进行两待测点之间的高差计算。此种方法要求将全站仪尽量架设在两个待测点的中间位置,使前后视距大致相等,在偶数站上施测控制点,从而有效地消除大气折光误差和前后棱镜不等高的零点差,这样就可以像水准测量一样将地球曲率的影响降到最低。而且这种方法可以不需要测量仪器高,这样在观测时可以相对简单些,而且减少了一个误差的来源,提高观测的精度。全站仪中间观测法三角高程测量可代替三、四等水准测量。在测量过程中,应选择硬地面作转点,用对中脚架支撑对中杆棱镜,棱镜上安装觇牌,保持两棱镜等高,并轮流作为前镜和后镜,同时将测段设成偶数站,以消除两棱镜不等高而产生的残余误差影响。 与对向观测法相比,中间观测法有自己的优点,但当两观测点间的水平距离小于或等于1km 时,对向观测法三角高程测量精度一般高于中间观测法三角高程测量精度,而当两观测点间的水平距离大于1km 时,中间观测法三角高程测量精度一般高于对向观测法三角高程测量精度。在长距离、高低起伏大的区域高程测量中,可选择用中间观测法三角高程测量,其精度可达三、四等水准测量精度,在提高观测条件的情况下,理论上可达二等水准测量精度。 2 三角高程测量的误差分析 根据三角高程测量的基本原理,以及在观测过程中的各种影响因素,三角高程法测量高差主要的误差来源有:测距误差、测量高度角的误差、测量仪器高和棱镜高的误差、大气折光误差、以及地球曲率所引起的误差。 2.1 测距误差 在上述的基本计算式中,用到的平距或者斜距都是用全站仪直接测量所得,而仪器本身有其精度限制,因而不可避免的会产生误差。因此,可以采用相对精确的测距仪器来获取两点之间的水平距离或者斜距。然后根据仪器本身提供的相 关参数对测得的数据进行相应的改正,提高数据的精度。 2.2 测角误差 垂直角观测误差mα对高差的影响随边长D的增大而增大。竖直角观测误差包括仪器误差、观测误差及外界条件的影响等。仪器误差不可避免,可以根据具体情况选取更精密的

高程测量的误差分析与控制方法

2012年1月 内蒙古科技与经济 Januar y 2012 第2期总第252期 Inner M o ngo lia Science T echnolo gy &Economy N o .2T o tal N o .252 高程测量的误差分析与控制方法 X 张 莉 (包头铁道职业技术学院,内蒙古包头 014040) 摘 要:在水准测量中,误差受各种条件的制约,直接影响测量结果。水准测量中仪器误差、观测误差和外界条件影响均会对测量结果产生影响,本文对造成水准测量误差的各项影响因素进行分析,提出消除或减弱各项误差、提高观测精度的相应措施。 关键词:水准测量;仪器误差;观测误差;外界条件;措施 中图分类号:T B22 文献标识码:A 文章编号:1007—6921(2012)02—0067—02 测量工作的实质,是确定地面点的位置,而地面点的位置包含点的平面位置和高程。为解决地面点的高程,在测区中常常将水准路线布设为闭合水准路线、附合水准路线和支水准路线等形式,通过外业实测高差来计算未知点的高程。水准测量是直接测定地面点高程的一种方法。在测量中仪器误差、观测误差和外界条件均会对测量结果产生影响,使水准路线的高差闭合差超限,达不到相应的精度要求;且有些误差在一个测站上反映不出来,但随着测站的增加,误差累积使高差闭合差超限。下面就水准测量误差产生的原因进行分析,提出消除或减弱各项误差,提高观测精度的相应措施。1 仪器误差 仪器误差主要包含仪器校正后的残余误差和水准尺误差。 1.1 仪器校正后的残余误差(i 角误差) i 角误差是指水准仪的水准管轴与望远镜视准轴不平行产生的误差。水准仪在测量前虽经检校,仍有残余误差存在,因此导致当水准管气泡居中时,望远镜视准轴发生倾斜,致使读数产生误差。A 、B 两点间的高差为:h AB =(a -△1)-(b -△2)或h =(a -b)-(△1-△2),式中(△1-△2)就是i 角误差对高差的影响。i 角误差与距离成正比且i 角随外界温度的变化而变化。在测量中重新调焦或外界温度的变化均会引起i 角的变化,故只有当i 1=i 2且观测中通过中间法(前、后视距相等)和距离补偿法(前视距离的和等于后视距离的总和),便可消除或减弱此项 误差的影响。 图1 i 角误差 1.2 水准尺误差 1.2.1 水准尺刻度不准确,尺长变化,尺身弯曲,会影响水准测量的精度,在水准测量精度要求较高时,应将尺进行检验,并在测量中加以修正。1.2.2 一对水准尺尺底零点差的误差。一对水准尺的零点不为零,且不相等,其差值就称为尺底零点差。尺底零点差的存在,必将影响到水准测量前、后视的读数,且影响值不等。对于此项误差的控制,可 以通过在一个水准测段内,将两根水准尺交替使用,(本测站用作后视尺,下测站则用作前视尺),并将测站数布设为偶数站,即可在高差计算中相互抵消,同时还可以减弱水准尺刻划误差和尺长误差的影响。也可在前、后视中使用同一根水准尺来消除。 1.2.3 水准尺倾斜误差,立于尺垫上的水准尺,观测时前俯、后仰都会使读数增大。实验结果表明:水准尺倾斜引起的误差与读数大小以及水准尺倾斜角度的平方成正比,可用下式表示:$b =b ?-b =b ?(1 -co s A );变形得$b= 1 2 b ?(A Q ")2。实际立尺时,立尺员均采用目估法将尺尽量立直,而目估立尺A 可达到2°。按最不利的情况考虑b ?=3m 时,$b =1.8mm ;若要求读数误差小于0.5mm,取b ′=3m 时,A =63′;若要求读数误差小于1m m ,仍取b ′=3m 时,A =89′。故在一般工程测量中,只要立尺员认真负责,目估立尺可达到要求的精度。但若要使读数误差$b ≤0.1m m ,A ≤28′,目估立尺达不到此项要求,故此时应采用装圆水准器的水准尺进行观测。在山地进行水准测量,水准尺倾斜的误差要引起重视。往测在计算测站高差时,后视减前视虽可抵消一部分,但在连续上坡时,后视读数总是大于前视读数,各站累积结果使该项误差为正,与高差符号相同,总高差数值会增大;返测时(连续下坡),该项误差符号为负,高差符号为负值,总高差绝对值也是增大的,故往、返测结果不能抵消水准尺倾斜误差的影响,故在此类地区作业时,立尺工作更要认真,最好使用装有 圆水准器的标尺。 图2 水准尺误差 2 观测误差 该项误差主要是由于仪器操作不规范造成的。包含符合水准管气泡居中误差、读数误差和视差的影响。 2.1 符合水准管气泡居中误差 水准测量中,视线的水平是以水准管气泡居中为根据的。由于符合水准管气泡未能做到严格居中,造成望远镜视准轴倾斜,产生读数误差,读数误差的 ? 67?X 收稿日期:2011-11-29

浅析公路施工测量高程控制误差及控制方法

浅析公路施工测量高程控制误差及控制方法 浅析公路施工测量高程控制误差及控制方法 摘要:水准测量是高程测量精度较高常用方法,也是公路施工工程测量高程最有效方法之一,在实施工作中,测量误差由于仪器和人为因素影响,而且测量误差不容易控制,易出现隐蔽性错误,这直接影响公路工程施工质量。本文主要阐述公路施工测量高程控制误差以及控制方法。 关键词:公路施工水准测量施工控制误差分析误差控制 1.引言 公路工程中标定高程最常用方法就是水准测量,水准测量过程受到多种因素影响,在测量过程中不可避免会出现误差。重大水准测量误差会导致工程质量问题、使工程不能正常施工,甚至造成公路项目返工。水准测量误差是不可能完全消除,因此,提高公路工程施工水准测量精度,以及加强水准测量控制显得尤为重要。 2.公路高程控制测量存在的问题 水准测量的工作原理是几何方法,利用视线水平来测定两点之间高差。公路工程高程测量一般使用DS3型自动安平水准仪,每公里往返测量中误差可以达到3mm。在实际测量过程中按这一个固定顺序进行测量,在每测段完后进行复核测量结果。 1)测量误差累积 一条公路必须采用同一个高程系统,公路高程测量方法是基平测量和中平测量,实际测量过程是两种测量同时测量完成,水准仪观测一个后视水准尺完成后,再进行间视以及转点测量,为了增加工作效率,可以同时采用两台水准仪甚至多台仪器同时进行测量,测量检查是非常必要的,不仅仅要在每一测站进行认真计算检查、复核,而且还要在一个水准测段测量完成后检核,否则误差积累后会造成重大施工误差乃至于错误,容易造成返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,因此,有必要分析水准测量误差,找出控制纠正方法,避免错误出现,保证项目顺利施工。

全站仪高程控制测量精度与误差分析

全站仪高程控制测量精度与误差分析 【摘要】水准测量操作简单,数据量相对较小,容易计算与处理,而且精度高。但是,由于位置差异,在一些特殊的地理位置采用全站仪进行高程控制测量更能提高效率。例如在一些山区、丘陵地带,应用几何水准测量效率就很会很低,在应用全站仪进行高程测量的时候,采用什么方法来进行数据处理也是非常重要的。为了提高计算精度与工作效率,更有利于设计最佳方案进行测量工作,那么我们将采用几种方法进行精度与误差分析比较。精度与误差也是我们最需要关注的。经过实践操作证明,使用全站仪进行山地水准测量能够达到三、四等要求。因此,采用全站仪进行高程控制测量能够达到精度要求,大大提高了工作效率。 【关键词】全站仪;高程;精度分析;误差分析 1.引言 随着测绘专业的不断发展,全站仪的应用越来越广泛,并以其操作简捷,电脑计算,大大提高工作效率,而被广大测绘人员所青睐。目前,人们对全站仪的研究也是越来越深入,希望能够将它应用到更多的工作中,而在山地高程控制测量中,使用水准仪的传统方式进行测量虽然精度高,但是工作量大,耗时长,效率太低;而采用三角高程控制测量虽不受地形限制,但是它受地球曲率、棱镜高和仪器高的因素的影响,精度与水准测量相比过低,误差相对较大。那么,使用全站仪绝对是一个很好的发展方向,这就可以摆脱传统的水准测量方式,减少了数据量,降低了工作难度,不受地区地形限制,影响测量精度因素较少。我们通过实践与研究,对全站仪高程测量精度与误差进行了分析。 2.全站仪高程测量原理与精度分析 (1)基本原理 全站仪高程测量的基本原理是把全站仪当作水准仪来使用,使棱镜高相同,达到抵消仪器高和棱镜高的目的,从而不必量取棱镜高和仪器高,这样既能在地形复杂地区进行快速的高程传递,又能确保足够的高程测量精度。如果在较短的距离内不考虑两差对高差测量的影响,那么观测计算得到的A,B两点高差只受垂直角测量和距离测量精度的影响。如果两点间高差较大或距离较远,仅安置一次仪器不能测出其高差时,就可以在两点间安置多次仪器,加设多个转点,然后再分段设站观测。图1中各符号所含意义如下:SCA为后视斜距;SCB为前视斜距;DCA为后视平距;DCB为前视平距;iA为后视点棱镜的高度;iB为前视点棱镜的高度;VC为全站仪的高度;hAC为后点A至测站点C的高差;hCB为测站点C至前点B的高差;h1为后视棱镜中心至全站仪横轴的高差;h2为全站仪横轴至前视棱镜中心的高差;hAB为后视点A至前视点B的地面高差;A1为全站仪观测后视棱镜中心点的竖直角(俯角或仰角);A2为全站仪对前视棱镜中心点的竖直角(俯角或仰角)。原理图如下:

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

GPS高程测量误差分析

GPS高程测量的制约因素 3.1 高程基准面的制约因素 3.1.1 大地水准面模型方面的限制 利用GPS求得的是地面点在WGS一84坐标系中的大地高,而我国的《中华人民共和国大地测量法式(草案)》规定,我国高程采用正常高。要想使GPS高程在工程实际中得到应用,必须实现GPS大地高向我国正在使用的正常高的转化。 由上面GPS的测量原理可知,为了得到正常高H,,我们要知道高程异常值爹。对于长距离,GPS测量也能非常有效地得到大地高,但会遇到大地水准面和高程基准面方面的问题。由于大地水准面按经典的说法是:设想一个静止的海水面向陆地延伸而形成一个封闭的曲面,其中通过平均海水面的那个水准面称为大地水准面。但是,随着现代大地测量的发展、测量精度的提高和多方面的需要,再把它说成与平均海水面重合就不能认为是严格的了。因此,我国的黄海高程基准实际上是近似高程系统。 这样的一个大地水准面模型,其相对精度是很低的,从而也制约了GPS高程测量的精度。 3.1.2 高程基准方面的制约因素 由于我国高程基准面比较多,有大连高程基准、大沽高程基准、废黄河基准、吴淞基准、1956年黄海高程基准等等,每一个高程基准都由一高程原点推算,有时一个点的高程值由一个或几个高程基准面来决定。

如果这些高程面的海洋测量或水准测量有误,都将会使高程基准面的基准偏离真实的重力模型,都会影响GPS高程转换的精度。 3.2 GPS高程测f方面的制约因素 3.2.1 相位整周模糊度解算对GPS高程的制约 相位整周模糊度解算是否可靠,直接影响三维坐标的精度。在控制测量中,无论采用快速静态或实时动态测量技术,都必须精确解算得到相位整周数,然而相位整周数模糊度的解算常常会出现解算错误的可能性,从而会影响高程测量的精度。 3.2.2 多路径效应的制约因素 所谓多路径效应是指测站附近反射物反射来自卫星的信号与卫星直接发射的信号同时被接收机接受,这两种信号产生相互影响,使其观测值偏离其真值,产生多路径误差。多路径效应的影响分为直接的和间接的,并能对三维坐标产生分米级影响。 3.2.3 电离层延迟对高程刚量的影响 电离层对GPS测量的影响主要有:电离层群延(绝对测距误差);电离层载波相位超前(相对测距误差);电离层多普勒频移(距速误差);振幅闪烁信号衰减;磁暴、太阳耀斑等,这些电离层的变化都会延迟GPS信号的传播路线。从而影响GPS的高程测量的精度。 3.2.4 星历和参考坐标对高程的制约 卫星的星历是描述卫星运行轨道的信息,精确的轨道信息是GPS 定位的基础。另外,为测定某点的高程就必须获得该地区的一个理想的用WGS一84参考位置。卫星星历质量的好坏及用WGS一84参考位

相关主题
文本预览
相关文档 最新文档