当前位置:文档之家› 高程测量误差分析

高程测量误差分析

高程测量误差分析
高程测量误差分析

水准测量误差分析

3.5.1水准测量的误差分析

水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。

(一) 仪器误差

① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。

② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。

(二) 观测误差

①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为

m =ρτ'

'?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。

② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算

m v =ρ'

'?''D V 06 3-36 式中 V —望远镜的放大倍率;

60″—人眼的极限分辨能力。

③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。

④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。

(三)外界条件的影响

① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。

② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。

③ 地球曲率及大气折光影响 如式3-25所示

地球曲率与大气折光影响之和为

R

D f 2

43.0?= 3-37

如果使前后视距离D相等,由公式3-37计算的f值则相等,地球曲率和大气折光的影响将得到消除或大大减弱。

④温度影响温度的变化不仅引起大气折光的变化,而且当烈日照射水准管时,由于水准管本身和管内液体温度的升高,气泡向着温度高的方向移动,而影响仪器水平,产生气泡居中误差,观测时应注意撑伞遮阳。

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

三角高程测量与水准测量精度对比分析

中南林业科技大学本科毕业论文在工程测量中三角高程与水准高程的对比研究 三角高程测量与水准测量的精度对比分析 1 绪论 1.1 研究背景和意义 1.1.1 研究背景 在当今的高程测量中,水准测量是高程控制的最主要方法之一。但是,普通的水准测量速度比较慢。虽然国外有使用自动化水准测量,但是也没有显著提高它的效率,并且需要的劳动强度大。在长倾斜路线上受到垂直折光误差累积性影响,当前、后视线通过不同高度的温度层时,每公里的高差可能产生系统性的影响。尽管现在已有不少的研究人员提出了一些折光差改正的计算公式,但这些公式中仍然还存在系统误差??。并且,近年来还发现地球磁场对补偿式精密水准仪也有很影响。1 此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,这又是一项系统误差。由于上述原因,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。如果采用三角高程测量就比较容易实现。近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。再加上学者对三角高程测量的深入研究,使三角高程测量的精度也有很大的提高。三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,使三角高程测量在工程测量中得到广泛的应用。 1.1.2 研究意义 本文旨在研究在工程测量中三角高程测量和水准测量的精度对比研究,

通过对三角高程测量和水准测量的原理、方法、误差来源等进行分析。然后针对这些因素改善其观测条件,探求合适的观测方法来消减误差,并拟定相应的作业规程,对比在三等高程控制测量过程中二者的精度和效率。得出在一定的测量条件下,三角高程测量代替三等水准测量作业方法是可行的。以提高作业效率,减少劳动强度,并实现高程测量的自动化。 1.2 相关概念 1.2.1 水准测量 水准测量又名“几何水准测量”,是用水准仪和水准尺测定地面上两点间高差 第 1 页

“测量误差、不确定度和数据处理”作业参考答案

“测量误差、不确定度和数据处理”作业参考答案(总分:40分) 1.(3分) 1 5 8 9 2 3 2. (3分) (1) 5位 1.08 (2) 5位 0.862 (3) 5位 27.0 (4) 6位 3.14 (5) 4位 0.00200 (6) 5位 4.52?103 3. (2分) A 正确,其他结果的平均值和不确定度的最后一位没有对齐; 4.(2分) (3) 5. (4分) (1) A=(1.70±0.01)?104km, P=95%; (2) B=(1.7±0.5)?10-3m, P=95%; (3) C=(1.08±0.02)?10cm, P=95%; (4) D=(9.95±0.02)?10?C, P=95%; 6. (4分) (1) 216.5-1.32=215.2 (2) 0.0221?0.0221=0.000488 (3) 55100.60.11000.66.1160.121500400?=?=-? (4) 15cm=1.5?102mm=1.5?105μm 7. (5分) (1) 98.754+1.3=100.0 (2) 107.50–2.5=105.0 (3) 27.6÷0.012=2.3?103 (4) 121×10= 1.2×103 (5) 00.20.3800.760.200.4000.76==- (6) 0.100 .11000.200.50)001.000.1)(0.3103()3.1630.18(00.50=??=+--? (7) ()()23101.20.11010 0.11000.10.110000.100.10.100.1000.110000.100.7700.78412.46.50.100?=+??=+??=+?-+? (8) 27.30 .47915680.4790.9436250.4790.943252==+=+ (9) 6630.148030.1410080.030.141005 .20.230.141005.23.213.23=-=-?=-?=-?- 8. (9分) 解:n=6,一般取置信概率P=95%,查表知t p =2.45 ()mm D D i i 836.9836.9837.9834.9838.9836.9835.96 16161=++++++==∑= ()()()()()mm mm D D t U i i p B A D 3366225 2估2 仪22222估2仪6122 2 10510241017108200010004030 101452166000100020002000010452166-----=?≈?≈?+?=++??=?+?+-++-+++-?=?+?+--=?+?=∑.......... 因此 ()mm D 005.0836.9±=, (P =95%) 9. (8分) 解: 3322485478520 9534214225444cm g cm g h D m .....==???==ππρ 3 3661022 222222222222222210510097410181106151062020901053420050414225400204-----?≈?≈?+?+?=+?+=++=?? ? ????+??? ????+??? ????==..........ln ln ln h U D U m U U h U D U m U E h D m h D m ρρρρρρ 32310252100974485cm g E U --?≈??==...ρρρ 因此()303.048.5cm g ±=ρ, (P =95%)或()302304785cm g ..±=ρ, (P =95%) 分析: 相对不确定度大的直接测量量D 对间接测量量ρ的不确定度贡献最大; 相对不确定度小的直接测量量m 对间接测量量ρ的不确定度贡献最小; 这是乘除表达式构成的间接测量量共同的规律。

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

三角高程测量的方法与精度分析

南昌工程学院 毕业论文 水利与生态工程系(院)测绘工程专业毕业论文题目全站仪三角高程测量的方法与误差分析 学生姓名倪忠利 班级07测绘工程 学号2007101191 指导教师陈伟 完成日期 2010年 06月 17 日

全站仪三角高程测量的方法与误差分析 Total Station trigonometric leveling method and error analysis 总计毕业设计(论文) 25 页 表格 2 个 插图 3 幅

本文介绍了三角高程测量原理以及全站仪三角高程测量的不同方法,对于每种方法所能达到的精度进行分析。在相同条件下采用不同的方法, 对高差精度的影响是不同的, 所能达到的测量精度等级要求也是不一样的。从而在实际生产应用中可针对不同的精度要求和具体的客观实际情况选择不同的测量方法。 关键词:三角高程测量单向观测对向观测中间自由设站精度分析

This paper introduces the measuring principle and triangular elevation of trigonal height measurement method for each different, the precision of the method can be analyzed.Under the same conditions used different methods, the influence of accuracy of elevation is different, can achieve the measurement precision level requirement is different.Thus in the actual production application can be in view of the different accuracy and the objective reality of specific select different measuring methods Key word: trigonometric levelling ;One-way observation ;Two-way observation ;Free among set up observation;Precision analysi

工程测量中三角高程测量误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法 戚忠 中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007 一引言 一直以来,为保证精度,高等级高程测量都采用几何水准的方法。而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 二三角高程测量误差分析 常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。对向观测法三角高程测量的高差公式为: (1) 式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量; 令。 对式(1)微分,则由误差传播定律可得高差中误差:

(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。 三减弱大气折光差的方法和措施 大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。下面具体分析。 3.1提高观测视线高度。由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。 3.2尽量选择短边传递高程。由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。但控制网的边长是由多种因素控制的,不能随意增加和减少。 3.3选择有利观测时间。中午前后(10~15时)垂直折光小,观测垂直角最有利。日出

GPS(RTK)控制测量平面及高程精度分析

GPS(RTK)控制测量平面及高程精度分析 摘要:近年来随着gps发展采用载波相位实时动态差分技术进行相对定位的gps rtk方法,能够在野外实时地得到厘米级定位精度,可以极大地提高作业效率。本文对gps rtk的精度进行试验研究,利用实测数据对其校正精度进行对比分析,并探讨影响校正精度的主要因素。 关键词:gps rtk 控制测量控制点精度 1、gps(rtk)控制测量 为了确定动态gps(rtk)控制测量的精度,笔者在哈尔滨对已布设了d级gps控制网进行了动态gps(rtk)测量和静态gps测量成果的比较。并联测了四等水准的1个d级gps点,进行了水准测量和用动态gps(rtk)测量高程的比较。设计方案如下:使用南方9600 gps 接收机进行动态gps(rtk)测量的实验。选择3个分部比较均匀地已知点进行解算转换参数。基准站设定在测区中央,地势较高,周围无遮挡物,对d级gps控制网进行了动态gps(rtk)测量,并且联测了四等水准的1个d级gps点。共观测了15个重复点。 本次观测采用南方9600 gps接收机进行动态gps(rtk)测量的实验。 1.1 对测区转换参数的确定 选择3个分部比较均匀地已知点进行解算转换参数。 操作:工具→计算七参数

为了获得更精确的七参数坐标转换,这时用户需要知道三个已知点的地方坐标和这三个点的wgs-84坐标,可以计算出七个参数,即wgs-84坐标转换到地方坐标的七个转换参数,用户单击确定,就会输入到七参数对话框中。可以直接输入三个已知点的地方坐标和这三个点的wgs-84坐标,按右上方的“ok”按钮,就会计算出七参数,计算出七参数后,系统会自动打开参数开关,单击“ok”按钮,则在测量中就可以利用该参数进行校正得出测量点的正确坐标。 1.2 使用两点校正 步骤如下: (1)使用测量菜单下的校正向导菜单。选中菜单后,界面如下图1.1: 图1.1 校正模式选择 选择下一步后,界面如下图1.2: 图1.2 基准站架设在未知点(向导1) 根据向导提示,输入已知坐标后,直接校正。 (2)完成移动站1的单点校正后,到第二个移动站使用测量菜单下的校正向导菜单。选中菜单后,界面如下图1.3: 图1.3 校正模式选择 选择下一步后,界面如下图1.4: 图1.4 基准站架设在未知点(向导1)

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

工程测量中三角高程测量的误差分析及解决方法.doc

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 工程测量中三角高程测量的误差分析及解决方 法.doc 工程测量中三角高程测量的误差分析及解决方法摘要:通过对三角高程测量公式的分析,发现影响三角高程测量精度的因子,引进当下较为先进的设备与方法,从而提高三角高程测量的精度,使其可以替代几何水准测量。 该方法的实现可以弥补几何水准受地形条件等因素限制使工作效率慢,测绘成本高,人身、设备安全无法保障等缺点。 关键词: 三角高程测量;几何水准;误差分析;大气折光系数 1 引言一直以来,为保证精度,高等级高程测量都采用几何水准的方法。 而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。 随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。 三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 2 三角高程测量误差分析常见的三角高程测量有单向 1 / 6

观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。 对向观测法三角高程测量的高差公式为: 式中: D 为两点问的距离;a 为垂直角;(k2-k1)为往返测大气垂直折光系数差;i 为仪器高;v 为目标高;R 为地球曲率半径(6370km);为垂线偏差非线性变化量;令。 对式(1)微分,则由误差传播定律可得高差中误差: (2)由式(2)可知影响三角高程测量精度主要有: 1.竖直角(或天顶距)、 2.距离、 3.仪器高、 4.目标高、 5.球气差。 第 1、2 项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡 TCA2003 及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第 3、4 项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座 3 个方向量取,使 3 个方向量取的校差小于 0.2mm,并在测前、测后进行 2 次量测;第 5 项球气差也就是大气折光差,也是本课题的研究重点。 3 减弱大气折光差的方法和措施大气折光差: 是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。 大气折光对距离的影响,表现在电磁波测距中影响的量值相对较

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

测量误差基本知识

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。

图 4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差m γ。 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a-b ,求m 。 (2)已知a m =m =±6",β=a-c ,求βm 。 (3)已知a m =m =m ,S=100(a-b) ,求m 。 (4)已知D=() h S -,m =±5mm ,m =±5mm ,求m 。

实验数据误差分析和数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

工程测量规范GB-(高程控制)

工程测量规范GB-(高程控 制)

作者: 日期:

《工程测量规范》GB50026-2007条文说明--高程控制测量 4. 1 一般规定 4. 1 . 1高程控制测量精度等级的划分,仍然沿用《93规范》的等级系列。 对于电磁波测距三角高程测量适用的精度等级,《93规范》是按四等设计的,但未明确 表述它的地位。本次修订予以确定。 本次修订初步引入GPS拟合高程测量的概念和方法,现说明如下: 1从上世纪90年代以来,GPS拟合高程测量的理论、方法和应用均有很大的进展。 2从工程测量的角度看,GPS高程测量应用的方法仍然比较单一,仅局限在拟合的方 法上,实质上是GPS平面控制测量的一个副产品。就其方法本身而言,可归纳为插值和拟合两类,但本次修订不严格区分它的数学含义,统称为“GPS拟合高程测量”。 3从统计资料看(表9),GPS拟合高程测量所达到的精度有高有低,不尽相同,本次修订将其定位在五等精度,比较适中安全。 4. 1 . 2区域高程控制测量首级网等级的确定,一般根据工程规模或控制面积、测图比例尺或用途及高程网的布设层次等因素综合考虑,本规范不作具体规定。 本次修订虽然在4. 1. 1条明确了电磁波测距三角高程测量和GPS拟合高程测量的地位,但在应用上还应注意: 1四等电磁波测距三角高程网应由三等水准点起算(见条文4. 3. 2条注释)。 2 GPS拟合高程测量是基于区域水准测量成果,因此,其不能用于首级高程控制。 4. 1 . 3根据国测[1987]365号文规定采用“ 1985国家高程基准”,其高程起算点是位于青岛的“中华人民共和国水准原点”,高程值为72. 2604m。1956年黄海平均海水面及相应的水准原点高程值为72. 289m,两系统相差-0. 0286m。对于一般地形测图来说可采用该差值直接换算。但对于高程控制测量,由于两种系统的差值并不是均匀的,其受施测路线所经 过地区的重力、气候、路线长度、仪器及测量误差等不同因素的影响,须进行具体联测确定 差值。 本条“高程系统”的含义不是大地测量中正常高系统、正高系统等意思。 假定高程系统宜慎用。 4. 1 . 4高程控制点数量及间距的规定,是根据历年来工程测量部门的实践经验总结出来的,便于使用且经济合理。 4. 2水准测量 4. 2 . 1关于水准测量的主要技术要求: 1本规范水准测量采用每千米高差全中误差的精度系列与现行国家标准《国家一、二等水准测量规范》GB 12897和《国家三、四等水准测量规范》GB 12898相同。虽然这一系列对程 测量来讲并不一定恰当适宜,但从水准测量基本精度指标的协调统一出发,本规范未予变动。五等水准是因工程需要而对水准测量精度系列的补充,其每千米高差全中误差仍沿用《93 规范》的指标。 2本条所规定的附合水准路线长度,在按级布设时,其最低等级的最弱点高程中误差为3cm左右(已考虑起始数据误差影响)。 3本条中的附合或环线四等水准测量,工测部门都采用单程一次测量。实践证明是能达到规定精度的;因为四等水准与三等水准使用的仪器、视线长度、操作方法等基本相同,只 有单程和往返的区别;按此估算,四等水准单程观测是能达到规定精度指标的。 4关于山地水准测量的限差。

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

全站仪三角高程测量精度分析

全站仪三角高程测量精度 分析 Prepared on 22 November 2020

全站仪三角高程测量精度分析 作者修涛 内容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析 Total Station trigonometric leveling accuracy analysis Abstract Total Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction.

相关主题
文本预览
相关文档 最新文档