当前位置:文档之家› 基于FPGA的差分信号阻抗匹配研究

基于FPGA的差分信号阻抗匹配研究

基于FPGA的差分信号阻抗匹配研究
基于FPGA的差分信号阻抗匹配研究

阻抗匹配

差分的匹配多数采用终端的匹配;时钟采用源端匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL 或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。 双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:

电路阻抗匹配设计

何為"阻抗匹配"? 更多相关:https://www.doczj.com/doc/a87942961.html, 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载 时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说 ,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 . 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1

阻抗匹配基本概念以及高频阻抗匹配

英文名称:impedance matching 基本概念 信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。 匹配条件 ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。 ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 共轭匹配 在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 匹配分类 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 1. 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代

差分线对在高速PCB设计中的应用

差分线对在高速PCB设计中的应用 时间:2007-04-28 来源: 作者:王延辉谢锘点击:3269 字体大小:【大中小】 摘要:在高速数字电路设计过程中,工程师采取了各种措施来解决信号完整性问题,利用差分线传输高速数字信号的方法就是其中之一。在PCB中的差分线是耦合带状线或耦合微带线,信号在上面传输时是奇模传输方式,因此差分信号具有抗干扰性强,易匹配等优点。随着人们对数字电路的信息传输速率要求的提高,信号的差分传输方式必将得到越来越广泛的应用。 1 用差分线传输数字信号 如何在高速系统设计中考虑信号完整性的因素,并采取有效的控制措施,已成为当今国内外系统设计工程师和PCB设计业界的一个热门课题。利用差分线传输数字信号就是高速数字电路中控制破坏信号完整性因素的一项有效措施。 在印刷电路板上的差分线,等效于工作在准TEM模的差分的微波集成传输线对,其中,位于PCB顶层或底层的差分线等效于耦合微带线;位于多层PCB的内层的差分线,正负两路信号在同一层的,等效于侧边耦合带状线,正负两路在相邻层的,等效于宽边耦合带状线。数字信号在差分线上传输时是奇模传输方式,即正负两路信号的相位相差180°,而噪声以共模的方式在一对差分线上耦合出现,在接受器中正负两路的电压(或电流)相减,从而可以获得信号,消除共模噪声。而差分线对的低压幅或电流驱动输出实现了高速集成功耗的要求。 2 差分线的阻抗匹配 差分线是分布参数系统,因此在设计PCB时必须进行阻抗匹配,否则信号将会在阻抗不连续的地方发生反射,信号反射在数字波形上主要表现为上冲、下冲和振铃现象。式(1)是一个信号的上升沿(幅度为E G)从驱动端经过差分传输线到接收端的频率响应: 其中信号源的电动势为E G,内阻抗为:Z G,负载阻抗为Z L;Hl(ω)为传输线的系统函数;ΓL和ΓG分别是信号接收端和信号驱动端的反射系数,由以下两式表示: 由式(1)可以看出,传输线上的电压是由从信号源向负载传输的入射波和从负载向信号源传输的反射波的叠加。只要我们通过阻抗匹配使ΓL和ΓG等于0,就可以消除信号反射现象。在实际工程应用中,一般只要求ΓL=0,这是因为只要接收端不发生信号反射,就不会有信号反射回源端并发生源端反射。

以太网信号质量问题之收发器驱动偏置电阻的处理

以太网信号质量问题之收发器驱动偏 置电阻的处理 一前言 关于系统设计人员来讲,模数混合电路中最困难的地点在于模拟部分的设计,其中最具代表性的确实是我们经常要面对的物理层收发器(PHY)及其收发回路和匹配网络的设计。即使关于应用比较成熟的以太网物理层设计而言,DAC驱动电流的基准偏置,差分信号线对的走线,乃至于匹配电阻的位置,都有可能阻碍到其物理层的信号质量并通过接口技术指标测试暴露出来。 二以太网口信号质量测试分析 1 100Base-TX接口测试环境及其设置 100Base-TX接口测试原理 100Base-TX接口的测试采纳业内比较通用的诱导发包的方法来引导DUT发出扰码后的IDLE进行测试,更多细节请参考美国力科公司《Ethernet solution-QualiPHY》专项技术文档, 测试设备: 测试拓扑如图1:

图1 Ethernet接口指标测试连接框图 2 测试中显现的咨询题 此次测试将要紧验证产品上4个以太网100Base-TX接口的技术指标。关于其中比较直观的100Base-TX物理层的眼图模板,《ANSI+X3_263-1995》标准中有着明确的眼图模板定义见图2。 图2 100Base-TX 眼图模板 关于100Base-TX接口技术指标的测试方法,《IEEE Std 802.3-2000》标准中也有详细的讲明,工程师按照诱导发包的测试方法进行了网口眼图的测试,测试过程中发觉测试网口显现了信号波形碰触模板的咨询题,波形见图3: 图3 以太网口测试眼图_FAIL 3 咨询题分析解决 从眼图初步分析来看,发送信号的幅度应该是满足要求的。然而能够明显的发觉信号边沿依旧比较缓,而且从单个波形来看边沿有不单调的咨询题。方案的原厂是一家通讯业内用心于I P宽带解决方案的国际型大公司,其以太网模块部分应该通过详细验证过。最大的可能是二次开发过程中板级系统设计时的一些关键技术参数的配合咨询题。工程师在进行了信号幅度以及上升下降时刻等细节指标的测试之后证明了之前的判定,信号的幅度是满足要求的,但信号的上升下降时刻与其他的方案

PCB阻抗匹配总结

PCB阻抗匹配总结 网名:chinawei97qq: 1219658831 做硬件工程师好几年,有最初的不做阻抗,到后面认为做阻抗是PCB厂家的事情,导致设计的pcb交给pcb厂家后重新修改修改布线,影响项目进度,下面把总结写在后面,以面再犯同样的错误。 做4层板,正片工艺,这样就对做半孔工艺带来加工不方便,半孔工艺会带来价格的增加,单价增加0.05元/cm2 1.6mm厚度的4层PCB板加工,建议做阻抗设计的时候按照1.5mm厚度进行设计,剩下0.1mm厚度留给工厂作为其他工艺要求用(后制诚厚度,绿油、丝印等)。 (1)满足我们TOP层及BOTTOM层5mil线宽单端阻抗控制为55ohm,见附图一;

(2)满足差分线阻抗为100ohm,见附图二

附图二 一般是通过调整层与层之间的填充(如FR-4)的厚度来满足整个板厚及阻抗控制(单端阻抗与填充厚度及导线宽度有关)的要求。 0.5OZ的铜相当于1.2mil ,1OZ的铜相当于1.9mil 。4层板来说,第一、第二层的厚度和第三、第四层的厚度相同,这样平衡对称有利用PCB板加工和使用,放置翘板。采用了外层1.7mil 内层1.4mil 的填充工艺。采用外层1OZ,内存0.5OZ 的工艺。 附图一中H1为第一层、第二层的间距为3MIL 这样第三层、第四层也为3MIL; 整板厚度为1.6mm,取1.5mm 等于 60mil 。叠层设计的厚度为:1.7+1.7+1.4+1.4+3+3+47.8,大致设计以后可以参考candece下面的计算,见附图三。具体阻抗要求 还是以工厂为准。

附图三 差分阻抗比单端阻抗还要多一个影响参数间距,和要设置Coupling Type 对线的类型,参考附图二的trace separation 中S1 参数为 6.5mil ,allegro 计算如附图四。 附图四

阻抗匹配的原理与方法

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

简易阻抗匹配方法.

在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,在此只对几种简单常用的端接方法进行介绍。为什么要进行阻抗匹配呢?无外乎几种原因,如减少反射、控制信号边沿速率、减少信号波动、一些电平信号本身需要等等。 端接阻抗匹配一般有 5种方法: 1. 源端串联匹配, 2. 终端并联匹配, 3. 戴维南匹配, 4.RC 网络匹配, 5. 二极管匹配。 1. 串联端接匹配: 一般多在源端使用, Rs (串联电阻 =Z0(传输线的特性阻抗 -R0(源阻抗。例如:若 R0为 22,Z0为55Ω,则 Rs 应为33Ω。 优点:①器件单一; ②抑制振铃,减少过冲; ③适用于集总线型负载和单一负载; ④增强信号完整性,产生更小 EMI 。 缺点:①当 TTL,CMOS 器件出现在相同网络时,串联匹配不是最佳选择; ②分布式负载不是适用,因为在走线路径的中间,电压仅是源电压的一般; ③接收端的反相反射仍然存在;

④影响信号上升时间并增加信号延时。 2. 并联端接匹配: 此 Rt 电阻值必须等于传输线所要求的电阻值, 电阻的一端接信号,一端接地或电源。简单的终端并联匹配一般不用于 TTL,COMS 电路,因为在高逻辑状态时,此方法需要较大的驱动电流。 优点:①器件单一; ②适用于分布式负载; ③反射几乎可以完全消除; ④电阻阻值易于选择。 缺点:①此电阻需要驱动源端的电流驱动,增加系统电路的功耗; ②降低噪声容限。 此电阻值必须等于传输线所要求的电阻值。电阻的一端接信号,一端接地。简单的终端并联匹配一般不用于 TTL,COMS 电路,因为他们无法提供强大的输出电流。 3. 戴维南端接匹配: 一个电阻上拉,一个电阻下拉,通常采用 R1/R2=220/330的比值。戴维南等效阻抗必须等于走线的特性阻抗。对于大多数设计 R1>R2,否则 TTL/COMS电路将无法工作。 优点:①适用于分布式负载; ②完全吸收发送波,消除反射。 ; 缺点:①增加系统电路的功耗;

高速PCB设计中的阻抗匹配

阻抗匹配 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。 PCB走线什么时候需要做阻抗匹配? 不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。导线延时一般取值为150ps/inch。 特征阻抗 信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。特征阻抗可以使用软件计算。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。 常见阻抗匹配的方式 1、串联终端匹配 在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。 匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。 常见应用:一般的CMOS、TTL电路的阻抗匹配。USB信号也采样这种方法做阻抗匹配。 2、并联终端匹配

PCB阻抗设计参考

前言 为保证信号传输质量、降低EMI干扰、通过相关的阻抗测试认证,需要对PCB关键信号进行阻抗匹配设计。本设计指南是综合常用计算参数、电视机产品信号特点、PCB Layout实际需求、SI9000软件计算、PCB供应商反馈信息等,而最终得出此推荐设计。适用于大部分PCB供应商的制程工艺标准和具有阻抗控制要求的PCB板设计。 一、 双面板阻抗设计 100欧姆差分阻抗推荐设计 ①、包地设计:线宽、间距 7/5/7 mil 地线宽度≥20mil 信号与地线距离6mil,每400mil内加接地过孔; ②、不包地设计:线宽、间距 10/5/10mil 差分对与对之间距离≥20mil(特殊情况不能小于10mil) 建议整组差分信号线外采用包地屏蔽,差分信号与屏蔽地线距离≥35mil (特殊情况不能小于20mil)。 90欧姆差分阻抗推荐设计 ①、包地设计:线宽、间距 10/5/10mil 地线宽度≥20mil 信号与地线距离6mil或5mil,每400mil内加接地过孔; ②、不包地设计:线宽、间距 16/5/16mil 差分对与对之间距离≥20mil 建议整组差分信号线外采用包地屏蔽,差分信号与屏蔽地线距离≥35mil (特殊情况不能小于20mil)。 要领:优先使用包地设计,走线较短并且有完整地平面可采用不包地设计; 计算参数:板材FR-4,板厚1.6mm+/-10%,板材介电常数4.4+/-0.2,铜厚1.0盎司(1.4mil)阻焊油厚度 0.6±0.2mil,介电常数 3.5+/-0.3 图1 包地设计图2 不包地设计 二、四层板阻抗设计 100欧姆差分阻抗推荐设计 线宽、间距 5/7/5mil 差分对与对之间距离≥14mil(3W准则) 注:建议整组差分信号线外采用包地屏蔽,差分信号与屏蔽地线距离≥35mil(特殊情况不能小于20mil)。 90欧姆差分阻抗推荐设计 线宽、间距 6/6/6mil 差分对与对之间距离≥12mil(3W准则)

简易阻抗匹配方法

在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,在此只对几种简单常用的端接方法进行介绍。为什么要进行阻抗匹配呢?无外乎几种原因,如减少反射、控制信号边沿速率、减少信号波动、一些电平信号本身需要等等。 端接阻抗匹配一般有5种方法: 1.源端串联匹配, 2.终端并联匹配, 3.戴维南匹配, 4.RC网络匹配, 5.二极管匹配。 1.串联端接匹配: 一般多在源端使用,Rs(串联电阻)=Z0(传输线的特性阻抗)-R0(源阻抗)。例如:若R0为22,Z0为55Ω,则Rs应为33Ω。 优点:①器件单一; ②抑制振铃,减少过冲; ③适用于集总线型负载和单一负载; ④增强信号完整性,产生更小EMI。 缺点:①当TTL,CMOS器件出现在相同网络时,串联匹配不是最佳选择; ②分布式负载不是适用,因为在走线路径的中间,电压仅是源电压的一般; ③接收端的反相反射仍然存在; ④影响信号上升时间并增加信号延时。 2.并联端接匹配: 此Rt电阻值必须等于传输线所要求的电阻值,电阻的一端接信号,一端接地或电源。简单的终端并联匹配一般不用于TTL,COMS电路,因为在高逻辑状态时,此方法需要较大的驱动电流。 优点:①器件单一; ②适用于分布式负载; ③反射几乎可以完全消除; ④电阻阻值易于选择。 缺点:①此电阻需要驱动源端的电流驱动,增加系统电路的功耗; ②降低噪声容限。 此电阻值必须等于传输线所要求的电阻值。电阻的一端接信号,一端接地。简单的终端并联匹配一般不用于TTL,COMS电路,因为他们无法提供强大的输出电流。 3.戴维南端接匹配: 一个电阻上拉,一个电阻下拉,通常采用R1/R2=220/330的比值。戴维南等效阻抗必须等于走线的特性阻抗。对于大多数设计R1>R2,否则TTL/COMS电路将无法工作。 优点:①适用于分布式负载; ②完全吸收发送波,消除反射。; 缺点:①增加系统电路的功耗; ②降低噪声容限;

差分线对在高速PCB中的应用

差分线对在高速PCB 中的应用 一、差分信号的概念 差分信号就是驱动端发送两个等值、反相的信号,接受端通过比较这两个新信号的电压的差值来判断逻辑状态是0还是1,而承载差分信号的那一对走线就是差分线。差分信号也称差动信号,用两根完全一样、极性相反的信号传输一路数据,依靠两根信号电平差进行判断,为了保证两根信号完全一致,在布线时要保持并行,线宽、线间距保持不变。 二、差分信号的优点 ① 很容易的识别小信号 因为你可以自己控制“基准”电压,从差分信号中恢复出来的信号在很大程度上与基准电压的精确值无关,而是在一个范围内。 ② 对外部电磁干扰高度免疫 因为干扰源几乎同时影响到差分信号的每一端,而差分信号通过电压差异判断逻辑电平,所以可以有效的抑制共模干扰。 ③ 在单电源系统中,能够精确地处理“双极”信号 在单电源系统中的双极信号,我们必须在地和电源干线之间建立一个虚地,用高于虚地的电压表示正极信号,低于虚地的电压表示负极信号,接下来,必须把虚地均匀的分布在整个系统中,而对于差分信号,我们不需要这样一个虚地,这就使我们处理和传播双极信号有一个高真度,而无须依赖虚地的稳定性。 三、差分线的阻抗匹配 差分线是分布参数系统,就像是河流一样,当信号在差分线中传输时,如果遇到不匹配的情况就会发生发射。信号反射在数字波形上主要表现为上冲、下冲和振铃现象。信号上升沿从驱动端经过差分传输线到接受端的频率响应为: 式中:G E 为驱动端端的电动势,G Z 为源端的内阻抗,0Z 为差分线之间的特性阻抗,1H (W)为传输线的系统函数,L Γ为信号接收端的反射系数,G Γ为信号驱动端的反射系数。 由上式可以看出传输线上的电压是由从信号源向负载传输的入射波河从负载向信号源传输的反射波的叠加,在这里我们只要保证信号接受端的反射系数为0,就可以避免信号因为反射造成的干扰,因为,如果接受端不存在反射现象,那么在驱动端就不会发生源端反射。可见,只要L Z 与0Z 相等就可以抑制反射干扰。

长距离差分信号

LVDS驱动器能以超过155.5Mbps的速度驱动双绞线对,距离超过10m。 2.1 PCB板 (A)至少使用4层PCB板(从顶层到底层):LVDS信号层、地层、电源层、TTL信号层;(B)使TTL信号和LVDS信号相互隔离,否则TTL可能会耦合到LVDS线上,最好将TTL 和LVDS信号放在由电源/地层隔离的不同层上; (C)使LVDS驱动器和接收器尽可能地靠近连接器的LVDS端; (D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;(E)电源层和地层应使用粗线,不要使用50Ω布线规则;(F)保持PCB地线层返回路径宽而短; (G)应该使用利用地层返回铜线(ground return wire)的电缆连接两个系统的地层 H)使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过孔焊盘以减少线头。 2.2 板上导线 (A)微波传输线(microstrip)和带状线(stripline)都有较好性能;(B)微波传输线的优点:一般有更高的差分阻抗、不需要额外的过孔;(C)带状线在信号间提供了更好的屏蔽。 2.3 差分线 (A)使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集成芯片后立刻尽可能地相互靠近(距离小于10mm),这样能减少反射并能确保耦合到的噪声为共模噪声; (B)使差分线对的长度相互匹配以减少信号扭曲,防止引起信号间的相位差而导致电磁辐射; (C)不要仅仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离; (D)尽量减少过孔和其它会引起线路不连续性的因素; (E)避免将导致阻值不连续性的90°走线,使用圆弧或45°折线来代替;(F)在差分线对内,两条线之间的距离应尽可能短,以保持接收器的共模抑制能力。在印制板上,两条差分线之间的距离应尽可能保持一致,以避免差分阻抗的不连续性。 2.4 终端 (A)使用终端电阻实现对差分传输线的最大匹配,阻值一般在90~130Ω之间,系统也需要此终端电阻来产生正常工作的差分电压; (B)最好使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值各为50Ω的电阻,并在中间通过一个电容接地,以滤去共模噪声。 2.5 未使用的管脚 所有未使用的LVDS接收器输入管脚悬空,所有未使用的LVDS和TTL输出管脚悬空,将未使用的TTL发送/驱动器输入和控制/使能管脚接电源或地。 2.6 媒质(电缆和连接器)选择 (A)使用受控阻抗媒质,差分阻抗约为100Ω,不会引入较大的阻抗不连续性; (B)仅就减少噪声和提高信号质量而言,平衡电缆(如双绞线对)通常比非平衡电缆好;(C)电缆长度小于0.5m时,大部分电缆都能有效工作,距离在0.5m~10m之间时,CAT 3(Categiory 3)双绞线对电缆效果好、便宜并且容易买到,距离大于10m并且要求高速率时,建议使用CAT 5双绞线对。 2.7 在噪声环境中提高可靠性设计 LVDS 接收器在内部提供了可靠性线路,用以保护在接收器输入悬空、接收器输入短路以及

差分信号之剖析与探讨

Introduction 驱动端发送两个大小相等,方向相反的信号,接收端会有一个相减器,比较这两信号的差值,来判断逻辑位是0或是1,此即所谓的差分讯号[1]。 而下图是实际PCB的差分走线[1]。

Advantage 使用差分讯号的第一个好处,就是具错误更正效果[2]。 由上图知道,如果在单端讯号中有噪声,则会直接进入接收器,严重一点可能会造成逻辑误判。在那些对于时序有很精密要求的系统中,会有很重大的影响。然而前述已知,接收端会有一个相减器,因此对差分讯号而言,即便有噪声,其噪声会透过相减器相消。

由于差分信号的逻辑判断,是仰赖两个信号的交点,如下图[4] : 不像单端信号依靠高低两个电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是采用差分讯号型式[5-6],下图是LVDS Connector的图片[7] :

第二个好处,可以有较小的EMI辐射干扰,由于数字信号在逻辑切换时,会 因电压变换产生电场,进而产生EMI辐射,对邻近走线造成干扰[9,15],如下图[12-14] : 由于高速数字讯号逻辑切换速度越来越快,而逻辑切换速度越快,则耗电流就越大,同时频率也越高,由[9]可知,EMI辐射强度与电流大小,以及频率成正比,这等同于更进一步加大了EMI辐射干扰。而由[11]可知,电磁波会有磁场与电场成份,这表示若能降低磁场或电场大小,便能减少EMI辐射干扰。

而差分讯号所产生的磁场,会彼此相消,所产生的电场,会因彼此紧密地耦合在一起,进而减少发散向外的机会[8-10]。 由于差分讯号可以减少磁场份量,以及减少发散向外的电场,进而降低EMI辐射干扰,这也是为什么高速数字讯号一般都用差分讯号[1]。

阻抗匹配及应用设计实战

阻抗匹配及应用设计实战(老外的经典诠释) 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r), 可以看出,负载电阻R越小,则输出电流越大。 负载R上的电压为:Uo=IR=U/[1+(r/R)], 可以看出,负载电阻R越大,则输出电压Uo越高。 再来计算一下电阻R消耗的功率为: P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r) =U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即, 当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流

电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。 如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。 为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上

常见的阻抗匹配方式

常见的阻抗匹配方式 1、源端串联匹配 在信号源阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。 匹配电阻选择原则,匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗,常见的COMS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能这种考虑。链状拓扑结构的信号王不适合使用串联终端匹配,所有负责必须接到传输线的末端。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。 常见应用:一般的CMOS、TTL电路的阻抗匹配。USB信号也采样这种方法做阻抗匹配。 2、并联终端匹配 在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 匹配电阻选择原则:在芯片的输入阻抗很高的情况下,对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等;对双电阻形式来说,每个并联电阻值为传输线特征阻抗的两倍。 并联终端匹配优点是简单易行,而易见的缺点是会带来直流损耗:单电阻方式的直流功耗与信号的占空比紧密相关;双电阻方式则无论信号是高电平还是低电平都有直流功耗,但电流比单电阻方式少一半。 常见应用:以高速信号应用较多 (1)DDR、DDR2等SSTL驱动器。采用单电阻形式,并联到VTT(一般为IOVDD的一半)。其中DDR2数据信号的并联匹配电阻使内置在芯片中的。 (2)TMDS等高速串行数据接口。采用单电阻形式,在接受设备端并联到IOVDD,单端阻抗为50欧姆(差分对间为100欧姆)。 3.RC匹配 4.二极管匹配

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

戴维南端接匹配简易阻抗匹配方法

戴维南端接匹配简易阻抗匹配方法 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,在此只对几种简单常用的端接方法进行介绍。为什么要进行阻抗匹配呢?无外乎几种原因,如减少反射、控制信号边沿速率、减少信号波动、一些电平信号本身需要等等。 端接阻抗匹配一般有5种方法: 1.源端串联匹配, 2.终端并联匹配, 3.戴维南匹配, 4.RC网络匹配, 5.二极管匹配。 1.串联端接匹配: 一般多在源端使用,Rs(串联电阻)= Z0(传输线的特性阻抗)- R0(源阻抗)。例如:若R0为22,Z0为55Ω,则Rs应为33Ω。 优点:①器件单一; ②抑制振铃,减少过冲; ③适用于集总线型负载和单一负载; ④增强信号完整性,产生更小EMI。 缺点:①当TTL,CMOS器件出现在相同网络时,串联匹配不是最佳选择; ②分布式负载不是适用,因为在走线路径的中间,电压仅是源电压的一般; ③接收端的反相反射仍然存在; ④影响信号上升时间并增加信号延时。 2.并联端接匹配:

此Rt电阻值必须等于传输线所要求的电阻值,电阻的一端接信号,一端接地或电源。简单的终端并联匹配一般不用于TTL,COMS电路,因为在高逻辑状态时,此方法需要较大的驱动电流。 优点:①器件单一; ②适用于分布式负载; ③反射几乎可以完全消除; ④电阻阻值易于选择。 缺点:①此电阻需要驱动源端的电流驱动,增加系统电路的功耗; ②降低噪声容限。 此电阻值必须等于传输线所要求的电阻值。电阻的一端接信号,一端接地。简单的终端并联匹配一般不用于TTL,COMS电路,因为他们无法提供强大的输出电流。 3.戴维南端接匹配: 一个电阻上拉,一个电阻下拉,通常采用R1/R2 = 220/330的比值。戴维南等效阻抗必须等于走线的特性阻抗。对于大多数设计R1>R2,否则TTL/COMS 电路将无法工作。 优点:①适用于分布式负载; ②完全吸收发送波,消除反射。; 缺点:①增加系统电路的功耗; ②降低噪声容限; ③使用两个电阻,增加布局、布线难度; ④电阻值不易于选择。 4.RC网络匹配:

EMC-高速PCB设计中的阻抗匹配

高速PCB设计中的阻抗匹配 阻抗匹配 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。 PCB走线什么时候需要做阻抗匹配? 不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。导线延时一般取值为150ps/inch。 特征阻抗 信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。特征阻抗可以使用软件计算。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。 常见阻抗匹配的方式 1、串联终端匹配 在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。 匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。 常见应用:一般的CMOS、TTL电路的阻抗匹配。USB信号也采样这种方法做阻抗匹配。 2、并联终端匹配 在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 匹配电阻选择原则:在芯片的输入阻抗很高的情况下,对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等;对双电阻形式来说,每个并联电阻值为传输线特征阻抗的两倍。 并联终端匹配优点是简单易行,显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关;双电阻方式则

相关主题
文本预览
相关文档 最新文档