当前位置:文档之家› 苏州某宾馆空调设计计算书

苏州某宾馆空调设计计算书

苏州某宾馆空调设计计算书
苏州某宾馆空调设计计算书

苏州xx宾馆

暖通空调负荷计算书

工程名称:工程编号:

建设单位:

计算人: 签名: 日期:

校对人: 签名: 日期:

审定人: 签名: 日期:

一工程概述

本工程为本工程为苏州xx宾馆,钢筋混凝土错层结构,最低三层,最高八层。一至三层为商业用房,四至八层为标准间等。业主已给出建筑平面图和各个房间的功能,要求设计本宾馆的中央空调系统,实现每个有人员房间的夏季空调供冷冬季供热。

二设计依据

2.1设计任务书

<<空调制冷课程设计提纲>>

2.2设计规范及标准

(1)采暖通风与空气调节设计规范(GBJ19-87 2001版)

(2)房屋建筑制图统一标准(GB/T50001-2001)

(3)采暖通风与空气调节制图标准(GBJ114-88)

三设计范围

(1)中央空调系统选型,空气处理过程的确定。

(2)空调箱、风机盘管、送风口、回风口的选型,风管布置。

(3)热泵机组、水泵、膨胀水箱的选型及水系统设计。

四设计参数[1]

室外气象资料

国家:中华人民共和国

地区:江苏省

城市:南京

纬度:32.0

经度:118.8

海拔高度(m):8.9

冬季大气压力(Pa):102520.0

夏季大气压力(Pa):100400.0

冬季平均室外风速(m/s):2.6

夏季平均室外风速(m/s):2.6

冬季空调室外设计干球温度(℃):-6.0

夏季空调室外设计干球温度(℃):35.0

冬季通风室外设计干球温度(℃):2.0

夏季通风室外设计干球温度(℃):32.0

冬季采暖室外计算干球温度(℃):-3.0

夏季空调室外设计湿球温度(℃):28.3

冬季空调室外设计相对湿度(%):73.0

最大冻土深度(cm):9.0

室内设计参数

建筑物:宾馆

楼层名称房间名称房间用途房间面积总冷指标总热指标

(m^2) (W/m^2) ------------------------------------------------------------------------ 楼层1 小超市商业用房 57.0 160 75

楼层1 办公室办公室 18.0 105 70

楼层1 商务房接待室 18.0 120 70

楼层1 咖啡厅酒吧 60.0 180 70

楼层1 大堂门厅 167.0 110 85

楼层1 大包间餐厅 40.0 250 100

楼层1 小包间5 餐厅 32.0 250 110

楼层1 小包间4 餐厅 32.0 250 110

楼层1 小包间3 餐厅 32.0 250 110

楼层1 小包间2 餐厅 32.0 250 110

楼层1 小包间1 餐厅 32.0 250 110

楼层1 大餐厅餐厅 330.0 350 110

楼层2 茶楼餐厅 180.0 200 100

楼层2 美容院美容、理发室 320.0 115 80

楼层2 泡池公共休息区室内游泳池 120.0 200 400

楼层2 男更衣室办公室 42.0 105 70

楼层2 女更衣室办公室 30.0 105 70

楼层3 小会议室会议室 122.0 250 85

楼层3 办公室3 办公室 25.0 105 70 楼层3 大会议室会议室 165.0 250 85 楼层3 夜总会舞厅、卡拉OK厅 630.0 300 115 楼层3 包间1 舞厅、卡拉OK厅 30.0 200 115 楼层3 包间2 舞厅、卡拉OK厅 30.0 200 115 楼层3 包间3 舞厅、卡拉OK厅 30.0 200 115 楼层3 包间4 舞厅、卡拉OK厅 30.0 200 115 楼层4 标间01 一般卧室 20.0 175 85 楼层4 标间02 一般卧室 20.0 175 85 楼层4 标间03 一般卧室 20.0 175 85 楼层4 标间04 一般卧室 20.0 175 85 楼层4 标间05 一般卧室 20.0 175 85 楼层4 标间06 一般卧室 20.0 175 85 楼层4 标间07 一般卧室 20.0 175 85 楼层4 标间08 一般卧室 20.0 175 85 楼层4 标间09 一般卧室 20.0 175 85 楼层4 标间10 一般卧室 20.0 175 85 楼层4 标间11 一般卧室 20.0 175 85 楼层4 标间12 一般卧室 20.0 175 85 楼层4 标间13 一般卧室 20.0 175 85 楼层4 标间14 一般卧室 20.0 175 85 楼层4 标间15 一般卧室 20.0 175 85 楼层4 标间16 一般卧室 20.0 175 85 楼层4 标间17 一般卧室 20.0 175 85 楼层4 标间18 一般卧室 20.0 175 85 楼层4 标间19 一般卧室 20.0 175 85 楼层4 标间20 一般卧室 20.0 175 85 楼层4 标间21 一般卧室 20.0 175 85 楼层4 标间22 一般卧室 20.0 175 85

楼层4 标间25 一般卧室 20.0 175 85 楼层4 标间26 一般卧室 20.0 175 85 楼层4 标间27 一般卧室 20.0 175 85 楼层4 标间28 一般卧室 20.0 175 85 楼层5 单间1 一般卧室 18.0 175 85 楼层5 单间2 一般卧室 18.0 175 85 楼层5 单间3 一般卧室 18.0 175 85 楼层5 单间4 一般卧室 18.0 175 85 楼层5 单间5 一般卧室 18.0 175 85 楼层5 单间6 一般卧室 18.0 175 85 楼层5 单间7 一般卧室 18.0 175 85 楼层5 单间8 一般卧室 18.0 175 85 楼层5 标间1 一般卧室 21.0 175 85 楼层5 标间2 一般卧室 21.0 175 85 楼层5 标间3 一般卧室 21.0 175 85 楼层6 单间1 一般卧室 18.0 175 85 楼层6 单间2 一般卧室 18.0 175 85 楼层6 单间3 一般卧室 18.0 175 85 楼层6 单间4 一般卧室 18.0 175 85 楼层6 单间5 一般卧室 18.0 175 85 楼层6 单间6 一般卧室 18.0 175 85 楼层6 单间7 一般卧室 18.0 175 85 楼层6 单间8 一般卧室 18.0 175 85 楼层7 卧室1 一般卧室 18.0 175 85 楼层7 卧室2 一般卧室 18.0 175 85 楼层7 卧室3 一般卧室 18.0 175 85 楼层7 卧室4 一般卧室 18.0 175 85 楼层7 会客室1 接待室 27.0 105 70 楼层7 会客室2 接待室 27.0 105 70

楼层8 卧室1 一般卧室 18.0 175 85

楼层8 卧室2 一般卧室 18.0 175 85

楼层8 卧室3 一般卧室 18.0 175 85

楼层8 卧室4 一般卧室 18.0 175 85

楼层8 会客室1 接待室 27.0 105 70

楼层8 会客室2 接待室 27.0 105 70

楼层8 会客室3 接待室 27.0 105 70

楼层8 会客室4 接待室 18.0 105 70

五、负荷计算方法及公式

(一)、外墙和屋面传热冷负荷计算公式

外墙或屋面传热形成的计算时刻冷负荷Qτ(W),按下式计算:

Qτ=KFΔtτ-ξ (1.1)

式中 F—计算面积,m^2;

τ—计算时刻,点钟;

τ-ξ—温度波的作用时刻,即温度波作用于外墙或屋面外侧的时刻,点钟;

Δtτ-ξ—作用时刻下,通过外墙或屋面的冷负荷计算温差,简称负荷温差,℃。

注:例如对于延迟时间为5小时的外墙,在确定16点房间的传热冷负荷时,应取计算时刻τ=16,时间延迟为ξ=5,作用时刻为τξ=16-5=11。这是因为计算16点钟外墙内表面由于温度波动形成的房间冷负荷是5小时之前作用于外墙外表面温度波动产生的结果。

当外墙或屋顶的衰减系数β<0.2时,可用日平均冷负荷Qpj代替各计算时刻的冷负荷Qτ:

Qpj=KFΔtpj (1.2)

式中Δtpj—负荷温差的日平均值,℃。

(二)、外窗的温差传热冷负荷

通过外窗温差传热形成的计算时刻冷负荷Qτ按下式计算:

Qτ=KFΔtτ (2.1)

式中Δtτ—计算时刻下的负荷温差,℃;

K—传热系数,双层窗可取2.9,单层窗可取5.8,W/(m^2.℃)。

(三)、外窗太阳辐射冷负荷

透过外窗的太阳辐射形成的计算时刻冷负荷Qτ,应根据不同情况分别按下列各式计算:

1.当外窗无任何遮阳设施时

Qτ=FXgXdJwτ (3.1)

式中 Xg—窗户的构造修正系数;

Jwτ—计算时刻下透过无遮阳设施外窗的太阳总辐射负荷强度,W/m^2;

Xd—地点修正系数。

2.当外窗只有内遮阳设施时

Qτ=FXgXdXzJnτ (3.2)

式中 Jnτ—计算时刻下,透过有内遮阳设施外窗的太阳总辐射负荷强度,W/m^2; Xz—内遮阳系数。

3.当外窗只有外遮阳板时

Qτ=[F1Jwτ+(F-F1)Jwnτ]XgXd (3.3)

式中 F1—窗口太阳直射的面积,W/m2。

Jwnτ—计算时刻下,无内遮阳北向外窗的太阳总辐射负荷强度,W/m^2。

注:对于北纬27度以南地区的南窗,可不考虑外遮阳板的作用,直接按式

(3.1)计算。

4.当窗口既有内遮阳设施又有外遮阳板时

Qτ=[F1Jnτ+(F-F1)Jnnτ]XgXdXz (3.4)

式中 Jnnτ—计算时刻下,有内遮阳北向外窗的太阳总辐射负荷强度,W/m^2。

注:对于北纬27度以南地区的南窗,可不考虑外遮阳板的作用,直接按式

(四)、内围护结构的传热冷负荷

1.当邻室为通风良好的非空调房间时,通过内窗的温差传热负荷,可按式(

2.1)

计算。

2.当邻室为通风良好的非空调房间时,通过内墙和楼板的温差传热负荷,可按

式(1.1)计算,或按式(1.2)估算。此时负荷温差Δtτξ及其平均值Δtpj,应按 "零"朝向的数据采用。

3.当邻室有一定发热量时,通过空调房间内窗、隔墙、楼板或内门等内围护结

构的温差传热负荷,按下式计算:

Q=KF(twp+Δtls-tn) (4.1)

式中 Q—稳态冷负荷,下同,W;

twp—夏季空气调节室外计算日平均温度,℃;

tn—夏季空气调节室内计算温度,℃;

Δtls—邻室温升,可根据邻室散热强度采用,℃。

(五)、人体冷负荷

人体显热散热形成的计算时刻冷负荷Q,按下式计算:

Qτ=φnq1Xτ-T (5.1)

式中φ—群体系数;

n—计算时刻空调房间内的总人数;

q1—一名成年男子小时显热散热量,W;

T—人员进入空调房间的时刻,点钟;

τ-T—从人员进入房间时算起到计算时刻的时间,h;

Xτ-T—τ-T时间人体显热散热量的冷负荷系数。

(六)、灯光冷负荷

照明设备散热形成的计算时刻冷负荷Qτ,应根据灯具的种类和安装情况分别按下列各式计算:

1.白只灯和镇流器在空调房间外的荧光灯

Q=1000n1NXτ-T (6.1)

Q=1200n1NXτ-T (6.2)

3.暗装在吊顶玻璃罩内的荧光灯

Q=1000n0NXτ-T (6.3)

式中 N—照明设备的安装功率,kW;

n0—考虑玻璃反射,顶棚内通风情况的系数,当荧光灯罩有小孔,利用自然通风散热于顶棚内时,取为0.5-0.6,荧光灯罩无通风孔时,视顶棚

内通风情况取为0.6-0.8;

n1—同时使用系数,一般为0.5-0.8;

T —开灯时刻,点钟;

τ-T—从开灯时刻算起到计算时刻的时间,h;

Xτ-T—τ-T时间照明散热的冷负荷系数。

(七)、设备冷负荷

热设备及热表面散热形成的计算时刻冷负荷Qτ,按下式计算:

Qτ=qsXτ-T (7.1)

式中 T—热源投入使用的时刻,点钟;

τ-T—从热源投入使用的时刻算起到计算时刻的时间,h;

Xτ-T—τ-T时间设备、器具散热的冷负荷系数;

qs—热源的实际散热量,W。

电热、电动设备散热量的计算方法如下:

1.电热设备散热量

qs=1000n1n2n3n4N (7.2)

2.电动机和工艺设备均在空调房间内的散发量

qs=1000n1aN (7.3)

3.只有电动机在空调房间内的散热量

qs=1000n1a(1-η)N (7.4)

4.只有工艺设备在空调房间内的散热量

qs=1000n1aηN (7.5)

式中 N—设备的总安装功率,kW;

n1—同时使用系数,一般可取0.5-1.0;

n2—利用系数,一般可取0.7-0.9;

n3—小时平均实耗功率与设计最大功率之比,一般可取0.5左右;

n4—通风保温系数;

a—输入功率系数。

(八)、渗透空气显热冷负荷

1.渗入空气量的计算

(1) 通过外门开启渗入室内空气量G1(kg/h),按下式估算:

G1=n1V1pw (8.1)

式中 n1—小时人流量;

V1—外门开启一次的渗入空气量,m^3/h;

pw—夏季空调室外干球温度下的空气密度,kg/m^3。

(2) 通过房间门、窗渗入空气量G2(kg/h),按下式估算:

G2=n2V2pw (8.2)

式中 n2—每小时换气次数;

V2—房间容积,m^3。

2.渗透空气的显冷负荷Q(W),按下式计算:

Q=0.28G(tw-tn) (8.3)

式中 G—单位时间渗入室内的总空气量,kg/h;

tw—夏季空调室外干球温度,℃;

tn—室内计算温度,℃。

(九)、食物的显热散热冷负荷

进行餐厅冷负荷计算时,需要考虑食物的散热量。食物的显热散热形成的冷负荷,可按每位就餐客人9W考虑。

(十)、伴随散湿过程的潜热冷负荷

1.人体散湿和潜热冷负荷

(1) 人体散湿量按下式计算

式中 D—散湿量,kg/h;

g—一名成年男子的小时散湿量,g/h。

(2) 人体散湿形成的潜热冷负荷Q(W),按下式计算:

Q=φnq2 (10.2) 式中 q2—一名成年男子小时潜热散热量,W;

φ—群体系数。

2.渗入空气散湿量及潜热冷负荷

(1) 渗透空气带入室内的湿量(kg/h),按下式计算:

D=0.001G(dw-dn) (10.3) (2) 渗入空气形成的潜热冷负荷(W),按下式计算:

Q=0.28G(iw-in) (10.4) 式中 dw—室外空气的含湿量,g/kg;

dn—室内空气的含湿量,g/kg;

iw—室外空气的焓,kJ/kg;

in—室内空气的焓,KJ/KG。

3.食物散湿量及潜热冷负荷

(1) 餐厅的食物散湿量(kg/h),按下式计算:

D=0.012φn (10.5) 式中 n—就餐总人数。

(2) 食物散湿量形成的潜热冷负荷(W),按下式计算:

Q=688D (10.6) 4.水面蒸发散湿量及潜热冷负荷

(1) 敞开水面的蒸发散湿量(kg/h),按下式计算:

D=Fg (10.7) (2) 敞开水面蒸发形成的显热冷负荷(W),按下式计算:

Q=0.28rD (10.8) 式中 F—蒸发表面积,m^2;

g—单位水面的蒸发量;

r—汽化潜热,kJ/kg。

六、空调负荷统计数据 (冷热负荷W,湿负荷g/h,冷热指标W/m^2)

编号用途总冷指标总冷负荷总热指标总热负荷新风量新风负荷

(W/m^2) (W/m^2) m3/h w ------------------------------------------------------------------------

小超市商业用房 160 9120 75 4275

办公室办公室 105 1890 70 1260

商务房接待室 120 2160 70 1260

咖啡厅酒吧 180 10800 70 4200

大堂门厅 110 18370 85 14195

大包间餐厅 250 10000 100 4000

小包间5 餐厅 250 8000 110 3520

小包间4 餐厅 250 8000 110 3520

小包间3 餐厅 250 8000 110 3520

小包间2 餐厅 250 8000 110 3520

小包间1 餐厅 250 8000 110 3520

大餐厅餐厅 350 115500 110 36300 2700 27

楼层1 商业用房 239 207867 96 83090

茶楼餐厅 200 36000 100 18000

大堂上空门厅 110 5500 85 4250

美容院美容、理发室 115 36800 80 25600 1900 19 泡池公共休息区室内游泳池 200 24000 400 48000 全新风男更衣室办公室 105 4410 70 2940

女更衣室办公室 105 3150 70 2100

楼层2 商业用房 151 108879 140 100890

小会议室会议室 250 30500 85 10370

办公室1 办公室 105 2625 70 1750

办公室2 办公室 105 2625 70 1750

大会议室会议室 250 41250 85 14025

夜总会舞厅、卡拉OK厅 300 189000 115 72450 7000 70 服务台 200 9000 115 5175

包间1 舞厅、卡拉OK厅 200 6000 115 3450

包间2 舞厅、卡拉OK厅 200 6000 115 3450

包间3 舞厅、卡拉OK厅 200 6000 115 3450

包间4 舞厅、卡拉OK厅 200 6000 115 3450

楼层3 舞厅、卡拉OK厅 263 301695 104 121070

标间01 一般卧室 175 3500 85 1700

标间02 一般卧室 175 3500 85 1700

标间03 一般卧室 175 3500 85 1700

标间04 一般卧室 175 3500 85 1700

标间05 一般卧室 175 3500 85 1700

标间06 一般卧室 175 3500 85 1700

标间07 一般卧室 175 3500 85 1700

标间08 一般卧室 175 3500 85 1700

标间09 一般卧室 175 3500 85 1700

标间10 一般卧室 175 3500 85 1700

标间11 一般卧室 175 3500 85 1700

标间12 一般卧室 175 3500 85 1700

标间13 一般卧室 175 3500 85 1700

标间14 一般卧室 175 3500 85 1700

标间15 一般卧室 175 3500 85 1700

标间16 一般卧室 175 3500 85 1700

标间17 一般卧室 175 3500 85 1700

标间18 一般卧室 175 3500 85 1700

标间19 一般卧室 175 3500 85 1700

标间20 一般卧室 175 3500 85 1700

标间21 一般卧室 175 3500 85 1700

标间22 一般卧室 175 3500 85 1700

标间24 一般卧室 175 3500 85 1700 标间25 一般卧室 175 3500 85 1700 标间26 一般卧室 175 3500 85 1700 标间27 一般卧室 175 3500 85 1700 标间28 一般卧室 175 3500 85 1700 楼层4 一般卧室 174 98000 84 47600 单间1 一般卧室 175 3500 85 1700 单间2 一般卧室 175 3500 85 1700 单间3 一般卧室 175 3500 85 1700 单间4 一般卧室 175 3500 85 1700 单间5 一般卧室 175 3500 85 1700 单间6 一般卧室 175 3500 85 1700 单间7 一般卧室 175 3500 85 1700 单间8 一般卧室 175 3500 85 1700 标间1 一般卧室 175 3500 85 1700 标间2 一般卧室 175 3500 85 1700 标间3 一般卧室 175 3500 85 1700 楼层5 一般卧室 136 38500 66 18700 单间1 一般卧室 175 3500 85 1700 单间2 一般卧室 175 3500 85 1700 单间3 一般卧室 175 3500 85 1700 单间4 一般卧室 175 3500 85 1700 单间5 一般卧室 175 3500 85 1700 单间6 一般卧室 175 3500 85 1700 单间7 一般卧室 175 3500 85 1700 单间8 一般卧室 175 3500 85 1700 楼层6 一般卧室 175 28000 85 13600 卧室1 一般卧室 175 3500 85 1700 卧室2 一般卧室 175 3500 85 1700 卧室3 一般卧室 175 3500 85 1700

会客室1 接待室 105 2835 70 1890

会客室2 接待室 105 2835 70 1890

会客室3 接待室 105 2835 70 1890

会客室4 接待室 105 2835 70 1890

楼层7 一般卧室 124 25340 70 14360

卧室1 一般卧室 175 3500 85 1700

卧室2 一般卧室 175 3500 85 1700

卧室3 一般卧室 175 3500 85 1700

卧室4 一般卧室 175 3500 85 1700 会客室1 接待室 105 2835 70 1890

会客室2 接待室 105 2835 70 1890

会客室3 接待室 105 2835 70 1890

会客室4 接待室 105 2835 70 1890

楼层8 一般卧室 124 25340 70 14360

宾馆 202 833621 99 413670 七新风系统划分

系统名:XF-1

宾馆~楼层1~大餐厅

系统名:XF-2

宾馆~楼层2~泡池公共休息区

系统名:XF-3

宾馆~楼层3~夜总会

八排风系统

系统名:PF-1

宾馆~楼层1~大餐厅

总排风量:6000m^3/h

十 水系统的设计

1 水系统方案的确定

水系统选择闭式等温变流量的形式,利用集水器和分水器之间的压差旁通阀调节负荷。冷冻水从制冷机组出来后进入分水器后分二路,分别进入宾馆的北区、南区立管。集水器回水后再由冷冻水泵泵入冷冻机组的蒸发器。冷冻水泵前连接膨胀水箱。系统采用垂直同程,水平异程的供回水方式。

2 管路的布置和管径的确定

冷冻水供回水管<DN50时采用镀锌钢管;≥50时采用无缝钢管;空调凝结水管采用UPVC 管。

按冷冻水供回水7/12℃计算流量,水泵压出口流速取2.4~3.6m/s ,吸入口取1.2~2.1m/s ,主干管流速取1.2~4.5m/s ,一般管道取1.5~3m/s ,闭式系统选表面当量绝对粗糙度K =0.2mm ,确定主要管段流量、流速、管径。相关公式及依据如下:

冷量(W)=1.1 * 实际冷负荷(W); 1W =0.86kcal/h ; 流量(kg/s)=冷量(kcal/h )/3600(s/h)/5(℃); 流速(m/s)=4*流量(kg/s)/0.001/3.14/管径(mm )^2; 比摩阻(Pa/m)根据K 、流速、管径查设计手册水力计算表。 凝结水管径按下表选取:

各主要管段冷冻水管及凝水管管径见附表(水系统水力计算书)。 3水管保温层厚度的确定

冷冻水管及冷凝水管都采用泡沫塑料保温材料(λ=0.034w/m ?K),按下列公式计算保温层厚度:[8]

???

?

??+??? ??++=--0

002ln 211d d d t t t t w n δ

δλα 式中 t —空气干球温度,以最热有室外空气平均温度计算,℃;

t n —管道或设备内介质的温度,℃;

t w —保温层表面温度,比最热月室外空气的平均温度高2℃左右,℃; α—空气与保温层外表面的表面传热系数,一般取5.8W/(m2·K); δ—保温层厚度,m ;

λ—保温材料的热导率,W/(m ·K);

按上式代入本工程数据:

???

?

??+??? ??++=--0002ln 2034.018.516.266.286.28d d d t n δ

δ 由于上式为超越方程,使用数学计算软件Matlab 对其数值求解,按供水管、回水管、冷凝水管t n 分别取7℃、12℃、20℃来计算,绘出不同温度下的d 0—δ的曲线。由于实际当中保温材料厚度是有规格的,所以实际选用要取整。根据曲线,下表列出不同水管保温层厚度的建议取值(精确到1mm ):

十一 制冷机组的选型

全楼室内冷负荷和新风负荷总计833621W ,北区总冷负荷:298KW ,南区总冷负荷:535KW 。根据系统特点,选择两台约克空气源热泵机组。

AWHC-L100一台,参数如下:(北区)

AWHC-L150一台,参数如下:(南区)

十二 冷冻水泵选型

水泵的流量取主机流量的1.1倍(安全系数,设置单台水泵取1.1),则水泵流量: 1、 北区冷冻水泵:G=58*1.1=63.8 m3/h 2、 南区冷冻水泵:G=94*1.1=103.4 m3/h 扬程按下式计算[5]:

m d f P h h h H ++=

式中h f 、h d -水系统总的沿程阻力和局部阻力损失,Pa ;

h m -设备阻力损失,Pa ;

1、 北区冷冻水泵:

主机水阻:.36KPa 立管阻力:23.3KPa 最远端水平管阻力:64KPa 机房部分管段阻力:4.2KPa

Hp =36+23.3+64+4.2=127.6 kPa (12.8m 水柱),取1.1安全系数,则水泵扬程H=14 mH 2O 。

选择ISW80-125型管道离心泵一台,性能参数如下:

水泵不考虑备用。 2、 南区冷冻水泵:

主机水阻:.30KPa 立管阻力:14KPa 最远端水平管阻力:64KPa 机房部分管段阻力:7.3KPa

Hp =30+14+64+7.3=115.4 kPa (11.5 m 水柱),取1.1安全系数,则水泵扬程H=12.6 mH 2O 。

选择ISW100-100型管道离心泵一台,性能参数如下:

水泵不考虑备用。

十三 膨胀水箱的选型

膨胀水箱选型[5]

计算系统内冷冻水总容量时,按全空气系统每平米建筑0.4L 取,空气-水系统按每平米建筑1L 取。 1、北区:总冷冻水容量 Vs=1660*1=1660L

取最大水温变化为值大约为28.5-5.5=23℃。体积膨胀系数取 L 0006.0=α/℃。 则膨胀水箱容积:

S P tV V ?=α=0.0006×23×1660=23 L

按采暖通风图集T905(二)选用规格型号圆型-2。规格尺寸和配管的公称直径如下: 公称容积0.3m 3;有效容积0.33m 3;内径DN800mm ; 高800mm ; 溢流管DN40mm ; 排水管DN32mm ; 膨胀管DN25mm ; 信号管DN20mm ; 循环管DN20mm 。

膨胀水箱安置在三楼屋顶,水箱自重119.4kg 。 2、南区:总冷冻水容量 Vs=860*1+1400*0.4=1420 L

取最大水温变化为值大约为28.5-5.5=23℃。体积膨胀系数取 L 0006.0=α/℃。 则膨胀水箱容积:

S P tV V ?=α=0.0006×23×1660=19.6 L

按采暖通风图集T905(二)选用规格型号圆型-2。规格尺寸和配管的公称直径如下: 公称容积0.3m 3

;有效容积0.33m 3

;内径DN800mm ; 高800mm ; 溢流管DN40mm ; 排水管DN32mm ; 膨胀管DN25mm ; 信号管DN20mm ; 循环管DN20mm 。

膨胀水箱安置在三楼屋顶,水箱自重119.4kg。

十四参考资料

[1] 采暖通风与空气调节设计规范(GBJ19-87)北京:中国计划出版社. 2001

[2] 陆耀庆. 实用供热空调设计手册. 北京:中国建筑工业出版社. 1993

[3] 赵荣义等. 简明空调设计手册. 北京:中国建筑工业出版社. 1998

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录

抱箍法施工计算书 1、计算依据 《路桥施工计算手册》 《辽宁省标准化施工指南》 《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况 盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。 浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。 图1 抱箍法施工示意图 3、横梁计算 荷载计算 盖梁钢筋砼自重:G1=×26KN/m3= 挡块钢筋砼自重:G2=×26KN/m3= 模板自重:G3=98KN 施工人员:G4=2KN/m2××= 施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。 横梁自重G6=××27= 横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2 += 每根横梁上所受荷载:q1= G7/15=27= 作用在每根横梁上的均布荷载:q2= q1/==m

两端悬臂部分只承受施工人员荷载,可以忽略不计。力学模型 图2 力学模型 分配梁抗弯与挠度计算 由分析可知,横梁跨中弯矩最大,计算如下: Mmax=q 2l2/8- q 2 l 1 2/2=××2=·m 图3 分配梁弯矩示意图 Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W= ①抗弯计算 σ= Mmax/W= ×103=<[σ]=170Mpa 结论:强度满足施工要求。 ②挠度计算 f max = f=ql4(5-24λ2)/384EI =×(5-24×22)/(384××105×712×10-5)=<l/400= 结论:挠度变形满足施工要求。 4、纵梁计算 Q235 I45C工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=35278cm4,截面抵抗矩W= 荷载计算 每根纵梁上所承受的荷载为: 横梁自重G8=××27= 纵梁自重G9=×15= 纵梁上总荷载:G9=G7/2+G8/2+G9=2+2+= 纵梁所承受的荷载假设为均布荷载:q3=G9/==m 同样,两端悬臂部分所受施工人员荷载安全防护装置荷载可忽略不计。 力学计算模型 图4 纵梁计算力学模型 (1)中间段在均布荷载作用下的弯矩

空调机组系统设计计算书汇总

家庭专用中央空调机组 设计计算书

目录 1. 机组简介 (3) 2. 设计条件[1] (3) 3. 热力计算 (3) 4. 冷凝器设计计算 (5) 4.1 有关温度参数及冷凝热负荷确定 (5) 4.2 翅片管簇结构参数选择与计算 (6) 4.3 计算冷凝风量 (7) 4.4 计算空气侧换热系数 (7) 4.5 计算制冷剂侧换热系数 (8) 4.6 计算冷凝器总传热系数K (9) 5. 室外机风叶电机的选型 (10) 6. 蒸发器的设计计算 (10) 6.1 结构规划 (10) 6.2 翅片管各部分传热面积计算 (11) 6.3 确定冷却空气的状态变化过程 (12) 6.4 计算空气侧换热系数 (13) 6.5 计算管内表面传热系数i 和传热面积A0 (14) 7. 风侧阻力计算与内风机选型 (15) 8. 毛细管的选型 (15) 9. 配管设计 (16) 9.1 压缩机吸气管管径的计算 (16) 9.2 压缩机排气管管径的计算 (17) 9.3 冷凝器到毛细管前的液体管路管径的计算 (18) 参考文献: (18)

1. 机组简介 该XXX机组主要由压缩机、蒸发器、冷凝器、节流机构以及电控系统等组成。它通过直接向空调区域送冷却空气来达到调节室内空气环境的目的,适用于面积在约10-25㎡的办公室、酒店客房、小型营业场所或家居等场所。 2. 设计条件[1] 根据GB/T 18836-2002《风管送风式空调(热泵)机组》的要求,名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃。 3. 热力计算 根据名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃,初步确定:冷凝温度t k 为47℃,对应的冷凝压力P k为18.12bar(绝对压力,下同);蒸发温度t0为4℃,对应的蒸发压力P0为5.66bar,并做如下假设:冷凝器过冷度为6℃,蒸发器过热度为6℃,蒸发器出口到压缩机入口的温升为2℃,冷凝器出口到膨胀阀前的温降为1℃。压缩机的指示效率ηi为0.8,忽略系统中的压力损失,循环参数及压焓图如下:

盖梁抱箍法计算书

附件6 抱箍法计算书 二道窝铺大桥最大的盖梁为C30钢筋砼,总方量为36.03m3,砼容重取25KN/m3。采用两根50a工字钢作为纵梁,间距1.6~2m,纵梁长12m,纵梁上布置14工字钢作为横梁,横梁长4m,间距为40cm,共31根。抱箍采用两块半圆形钢板制作,钢板厚12mm,高66cm,抱箍牛腿钢板厚20mm,宽35cm,采用30根M24的高强螺栓连接,为提高墩柱与抱箍之间的摩擦力,保护墩柱混凝土面,墩柱与抱箍之间设置3mm厚的橡胶垫。布置结构如图所示: 1、荷载大小 ⑴施工人员、机具、材料荷载取值: P1=2.5KN/㎡ ⑵混凝土冲击及振捣混凝土时产生的荷载取值: P2=2.5KN/㎡ ⑶盖梁钢筋混凝土自重荷载: ①变截面处: P31=30.625KN/㎡ ②均截面处: P32=40KN/㎡

⑷模板支架自重荷载取值: P4=1.5KN/㎡ 2、I14工字钢受力检算 14工字钢的弹性模量E=2.1×105MPa,惯性矩I=712cm4,截面系数W=102 cm3,理论重量m=16.89kg/m,Q235钢的抗剪强度f v取85 MPa,抗弯强度f m取145MPa,则以单根横梁为例进行验算。 ⑴荷载计算 ①施工人员、机具、材料荷载: q1=P1l=2.5×0.4=1KN/m ②混凝土冲击及振捣混凝土时产生的荷载: q2=P2l=2.5×0.4=1KN/m ③盖梁钢筋混凝土自重荷载: q31=P31l=30.626×0.4=12.25KN/m;q32=P32l=40×0.4=16KN/m ④模板、支架及横梁自重荷载 q4=P4l+ g k=1.5×0.4+0.17=0.77KN/m 考虑分项系数,其中①②项为1.4,③④项为1.2,则均截面处的荷载为: (1+1)×1.4+(16+0.77)×1.2=22.924 KN/m 变截面处的荷载为: (1+1)×1.4+(12.25+0.77)×1.2=18.424KN/m 横梁的受力模型为简支结构,则根据弯矩计算公式: M max= ql2/8=22.924×22/8=11.462KN.m, 抗弯强度验算: 应力σ= M max /W=11.462 KN.m /(102cm3)=114 MPa<f m=145 MPa,符合要求。 挠度验算: ω=5ql4/384EI=5×22.924×16×1012/384×2.1×105×712×104=0.003mm<[ω] =l/800=2.5mm,符合要求 3、I50a工字钢受力检算 50a工字钢的弹性模量E=2.1×105MPa,惯性矩I=46500cm4,截面系数W=1860 cm3,理论重量m=93.654kg/m,Q235钢的抗剪强度f v取85 MPa,抗弯强度f m取145MPa,纵梁的跨距为7m,则以单根纵梁为例进行验算。

钢结构设计计算书模板

MINNAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 《钢结构设计原理》课程设计 计算书 专业:土木工程____________ 姓名 _______________ 学号:_____________________ 指导老师:__________________

目录 设计资料和结构布置 ---------------------------------1 1. 铺板设计 1.1 初选铺板截面----------------------------- 2 1.2 板的加劲肋设计---------------------------- 3 1.3 荷载计算------------------------------- 4 3. 次梁设计 3.1 计算简图-------------------------------- 5 3.2 初选次梁截面----------------------------- 5 3.3 内力计算------------------------------- 6 3.4 截面设计------------------------------- 6 4. 主梁设计 4.1 计算简图 --------------------------------- 7 4.2 初选主梁截面尺寸 ---------------------------- 7 5. 主梁内力计算 5.1 荷载计算------------------------------- 9 5.2 截面设计------------------------------- 9 6. 主梁稳定计算 6.1 内力设计 --------------------------------- 11 6.2 挠度验算 --------------------------------- 13 6.3 翼缘与腹板的连接 ---------------------------- 13 7 主梁加劲肋计算 7.1 支撑加劲肋的稳定计算 --------------------------- 14 7.2 连接螺栓计算----------------------------- 14 7.3 加劲肋与主梁角焊缝 -------------------------- 15 7.4 连接板的厚度 -------------------------------15 7.5 次梁腹板的净截面验算------------------------ 15 8. 钢柱设计 8.1 截面尺寸初选----------------------------- 16 8.2 整体稳定计算----------------------------- 16 8.3 局部稳定计算 -------------------------------17 8.4 刚度计算------------------------------- 17 8.5 主梁与柱的链接节点 -------------------------- 18 9. 柱脚设计 9.1 底板面积 --------------------------------- 21 9.2 底板厚度------------------------------- 21 9.3 螺栓直径 --------------------------------- 21 10. 楼梯设计 10.1 楼梯布置------------------------------ 22

通风空调系统设计计算常用数据.

通风空调系统设计计算常用数据 普通洁净厂房 一. GMP对洁净度的要求 名称 空气洁净度≥0.5μm 微粒 粒/m3 ≥5μm微 粒 粒/m3 浮游 菌 个/m3 沉降菌 (Φ90 皿·0.5h) (个/皿 静态动态静态动态静态动态静态动态 中国 98版 GMP 百级≤3.5*103不作0 不作≤5不作≤1不作万级≤3.5*105不作≤2*103不作≤100不作≤3不作 10万 级 ≤3.5*106不作≤2*104不作≤500不作≤10不作 30万 级 ≤10.5*106不作≤6*104不作不作不作≤15不作 中国兽 药 GMP ≤3.5*103不作0 不作≤5不作≤0.5不作≤3.5*105不作≤2*103不作≤50不作≤1.5不作 ≤3.5*106不作≤2*104不作≤150不作≤3不作

≤10.5*106不作≤6*104不作≤200不作≤5不作二. 药厂洁净车间应控制的设计参数 应控制的参数GMP(1998)兽药GMP(修订稿) 空气洁净度级别(含细菌 要求要求 浓度) 换气次数(送入洁净室的 未要求要求 风量/室体积) 工作区截面风速未要求要求 静压差要求要求 温、湿度要求要求 照度要求要求 噪声未要求要求 新风量未要求未要求 三. 洁净室一般净时间: 1. 100级 2min; 2. 1万级 30min; 3. 10万级 40min;

4. 30万级 50min; 四. 几种GMP推荐的换气次数空气 洁净度级别中国GMP (1992) 中国GMP实 施指南 (1992) 中国GMP (1998) 中国兽药 GMP实施细 则 (1994) 中国兽 药GMP (修订 稿) 中国药品包 装用材料、 容器注册验 收通则 (2000) 1万级≥20 ≥25 未要求 ≥20 ≥20 ≥20 10万级≥15 ≥15 未要求 ≥15 ≥15 ≥15 30万级未要求 未要求 未要求 未要求 ≥10 ≥12 100万级未要求 ≥10 未要求 未要求 未要求 未要求 一般不大于30%; 五. 工作区截面要求 1. 气体流向:垂直单向流、水平单向流; 2. 单向流气体速度: 空气 洁净度级别中国GMP (1992) 中国GMP 实施指南 (1992) 中国GMP (1998) 中国兽药 GMP实施细 则 (1994) 中国 兽药 GMP (修 订 中国药品 包装用材 料、容器 注册验收

某宾馆空调设计计算书

XXX宾馆 暖通空调负荷计算书 工程名称:某宾馆 工程编号: 建设单位:某房产公司 计算人:XXX 签名: 日期: 校对人:XXX 签名: 日期: 审定人:XXX 签名: 日期:

一工程概述 本工程为本工程为苏州市和乔丽晶宾馆,钢筋混凝土错层结构,最低三层,最高八层。一至三层为商业用房,四至八层为标准间等。业主已给出建筑平面图和各个房间的功能,要求设计本宾馆的中央空调系统,实现每个有人员房间的夏季空调供冷冬季供热。 二设计依据 2.1设计任务书 <<空调制冷课程设计提纲>> 2.2设计规范及标准 (1)采暖通风与空气调节设计规范(GBJ19-87 2001版) (2)房屋建筑制图统一标准(GB/T50001-2001) (3)采暖通风与空气调节制图标准(GBJ114-88) 三设计范围 (1)中央空调系统选型,空气处理过程的确定。 (2)空调箱、风机盘管、送风口、回风口的选型,风管布置。 (3)热泵机组、水泵、膨胀水箱的选型及水系统设计。 四设计参数[1] 室外气象资料 国家:中华人民共和国 地区:江苏省 城市:南京 纬度:32.0 经度:118.8 海拔高度(m):8.9 冬季大气压力(Pa):102520.0 夏季大气压力(Pa):100400.0 冬季平均室外风速(m/s):2.6 夏季平均室外风速(m/s):2.6 冬季空调室外设计干球温度(℃):-6.0 夏季空调室外设计干球温度(℃):35.0 冬季通风室外设计干球温度(℃):2.0

夏季通风室外设计干球温度(℃):32.0 冬季采暖室外计算干球温度(℃):-3.0 夏季空调室外设计湿球温度(℃):28.3 冬季空调室外设计相对湿度(%):73.0 最大冻土深度(cm):9.0 室内设计参数 建筑物:宾馆 楼层名称房间名称房间用途房间面积总冷指标总热指标 (m^2) (W/m^2) ------------------------------------------------------------------------ 楼层1 小超市商业用房 57.0 160 75 楼层1 办公室办公室 18.0 105 70 楼层1 商务房接待室 18.0 120 70 楼层1 咖啡厅酒吧 60.0 180 70 楼层1 大堂门厅 167.0 110 85 楼层1 大包间餐厅 40.0 250 100 楼层1 小包间5 餐厅 32.0 250 110 楼层1 小包间4 餐厅 32.0 250 110 楼层1 小包间3 餐厅 32.0 250 110 楼层1 小包间2 餐厅 32.0 250 110 楼层1 小包间1 餐厅 32.0 250 110 楼层1 大餐厅餐厅 330.0 350 110 楼层2 茶楼餐厅 180.0 200 100 楼层2 美容院美容、理发室 320.0 115 80 楼层2 泡池公共休息区室内游泳池 120.0 200 400 楼层2 男更衣室办公室 42.0 105 70 楼层2 女更衣室办公室 30.0 105 70 楼层3 小会议室会议室 122.0 250 85 楼层3 办公室1 办公室 25.0 105 70

抱箍计算

武冈至靖州(城步)高速公路土建工程第三合同段 (K21+400~K32+300) 中国中铁 盖梁施工抱箍 受力计算书 中铁五局(集团)有限公司 武靖高速公路第三合同段项目经理部

盖梁施工抱箍受力计算书 一、抱箍结构设计 抱箍具体尺寸见抱箍设计图,主要包括钢带与外伸牛腿的焊接设计两方面的内容,其中牛腿为小型构件,一般不作变形计算,只作应力计算。 二、受力计算 1、施工荷载 1)、盖梁混凝土和钢筋笼(2**=方,平均密度吨/3m)自重为: ×=(吨) 2)、钢模自重为:吨 3)、支垫槽钢(采用10型槽钢,理论线密度10kg/m,共17根,每根长)自重为: ××17=(吨) 4)、工字钢(采用40b型工字钢,理论线密度为m,共2根,每根长18m)自重为:2×18×=(吨) 5)、连接工字钢的钢板(共4块,每块重79kg)自重为: 4×=(吨) 6)、钢模两翼护衬(单侧护衬重150kg)自重为: 2×=(吨) 7)、施工活荷载: 10人+混凝土动载+振捣力=10×+×+=(吨) 8)、总的施工荷载为: ++++++=(吨) 9)、考虑安全系数为,则施工总荷载为: ×=(吨) 10)、单个牛腿受力: ÷=(吨) 2、计算钢带对砼的压应力 σ可由下式计算求得: 钢带对立柱的压应力 1 μσBπD=KG 1 其中: μ—摩阻系数,取 B—钢带宽度,B=600mm D—立柱直径,D=1800mm K—荷载安全系数,取 G—作用在单个抱箍上的荷载,G=848kN σ=KG/(μBπD)=×848×1000/×600××1800)=<[]cσ 则: 1 =,满足要求。 其中:

模板计算书(最终版)

附录一: 1 模板及外挂架计算书 1.1墙体定型大模板结构模板计算 该模板是按《大模板多层住宅结构设计与施工规程》(JGJ20-84)﹑《钢结构设计规范》(GBJ17-88)与《混凝土结构工程施工及验收规范》(GB50204-2002)的要求进行设计与计算的。 已知:层高为2900mm,墙厚200mm,采用全刚模数组合模板系列,2根[10#背楞,采用T30穿墙螺栓拉结,混凝土C30﹑Y=24KN/m2,混凝土塌落度13cm,采用泵送混凝土,浇筑速度1.8m/h,温度T=25,用插入式振动器捣实,模板挠度为L/400(L为模板构件的跨度)。 模板结构为:面板6mm厚普热板,主筋为[8#,间距h=300mm,背楞间距L1=1100mm,L2=300mm,穿墙螺栓水平间距L3=1200mm。L=5400mm。 1.1.1 模板侧向荷载 混凝土侧压力标准值: F=0.22Y*β1β2ν1/2*250/(T+15) =0.22*24*1*1.15*1.81/2*250/(25+15) =50.92KN/m2 混凝土侧压力设计值: F1=50.92*1.2=61.1KN/m2 有效压头高度:h=61.1/24=2.55m 2.混凝土倾倒力标准值:4KN/m2 其设计值:4*1.4=5.6KN/m2 1.1.2 面板验算 由于5400/250=21.6>2,故面板按单向板三跨连续梁计算。1. 强度验算: 取1m宽的板条为计算单元 F3=F1+F2=48.88+5.6=54.48KN/m2=0.05448N/mm2 q=0.05448*1*0.85=0.046308N/mm

M max=K mx ql y2=0.117*0.046308*2602=366.26N.mm 则: W x=1/6*1*62=6mm3 所以: δmax=M max/(γx W x)=366.26/1*6=61.04N/mm2

华中科技大学暖通空调毕业设计—西安市某办公楼空调系统设计

毕业设计[论文] 任务书姓名班号院系 同组姓名指导老师 一、课题名称 西安市某办公楼空调系统设计 二、课题内容 1.设计地点:西安 2.夏季室内设计温度:26-28℃ 3.夏季制冷,冬季供暖系统设计 三、课题任务要求 1.空调系统冷负荷,热负荷计算 2.空调系统水力计算 3.用CAD绘制空调系统施工图及系统图 4.空调系统设备选型 5.完成毕业设计论文

四、同组设计者 五、主要参考文献 1.陆耀庆,《实用供热空调设计手册》,中国建筑工业出版社; 2.赵荣玉,《空气调节》,中国建筑工业出版社; 3. 采暖通风空气调节设计规范 GBJ19-87 4.有关空调设计资料、图集; 5. 柴慧娟,《高层建筑空调设计》,中国建筑工业出版社. 指导老师签字_____________ 教导主任签字_____________ 年月日 (此任务书装订时放在毕业设计报告第一页)

空调工程设计任务书 一、设计原始资料 1、某办公楼建筑图纸(8层),包括建筑平、剖面图13张图纸,本建筑为八 层综合大楼,以中小型办公室,标准客房为主。 2、本建筑位于西安市,按当地气象条件计算。 3、动力资料:按选定的冷热源形式进行设计,本设计采用夏季冷源,冬季 热源,均由风冷热泵机组提供。 二、设计内容与要求 设计内容包括:设计计算书和设计图纸 (一)计算说明部分 1、空调负荷计算 2、空调系统方案选择 3、空调设备选择计算 4、空调房间气流组织计算 5、空调系统风道设计 6、水系统设计计算 7、管道保温消声设计与设备减震设计 8、设计及施工说明 (二)设计图纸部分 1、设计与施工说明1:100 2、设备材料表1:100 3、空调系统水原理图1:100 4、空调系统风管平面图1:100 5、空调系统水管平面图1:100 6、空调设备安装大样图1:10 7、空调水管轴侧图1:50 (三)设计要求 1、设计说明书按一定格式编写,除设计要求部分外要有封面,目录, 后附参考资料名称。设计计算部分可适当采用表格。要求计算准确,

盖梁抱箍法施工设计计算书

盖梁抱箍法施工设计计算书 一、设计检算说明 1、计算原则 (1)在满足结构受力情况下考虑挠度变形控制。 (2)综合考虑结构的安全性。 (3)采取比较符合实际的力学模型。 (4)尽量采用已有的构件和已经使用过的支撑方法。 2、贝雷架无相关数据,根据计算得出,无资料可附。 3、对部分结构的不均布,不对称性采用较大的均布荷载。 4、本计算未扣除墩柱承担的盖梁砼重量。以做安全储备。 5、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。 二、侧模支撑计算 1、荷载计算(按最大盖梁) 砼浇筑时的侧压力:P m =K 丫h 式中:K---外加剂影响系数,取 1.2 ; Y--砼容重,取26kN/m 3; h--- 有效压头高度。 砼浇筑速度v按0.3m/h,入模温度按20 C考虑。 则:v/T=0.3/20=0.015<0.035 h=0.22+24.9v/T=0.22+24.9 X 0.015=0.6m P m= K yh=1.2 X 26 X 0.6=19kPa 砼振捣对模板产生的侧压力按4kPa 考虑。 则:P m=19+4=23kPa 盖梁长度每延米上产生的侧压力按最不利情况考虑(即砼浇筑至盖梁顶时) P=P m X(H-h)+P m X h/2=23 X 2+23 X 0.6/2=53.9kN 2 、拉杆拉力验算 拉杆(0 20圆钢)间距1.2m , 1.2m范围砼浇筑时的侧压力由上、下两根拉杆承受。则有:(y= (T1+T2)/A=1.2P/2 n2 =1.2 X 53.9/ (2 nXO.01 2)=102993kPa=103MPa<[ c]=160MPa(可) 3 、竖带抗弯与挠度计算 设竖带两端的拉杆为竖带支点,竖带为简支梁,梁长l0=2.2m ,砼侧压力按均布荷载 q0 考虑。 竖带[14b的弹性模量E=2.1 x 105MPa;惯性矩lx=609.4cm 4;抗弯模量Wx=87.1cm

(完整版)模板计算书范本.docx

剪力墙计算书: 一、参数信息 1.基本参数 次楞 (内龙骨 )间距 (mm):200 ;穿墙螺栓水平间距 (mm):600; 主楞 (外龙骨 )间距 (mm):500 ;穿墙螺栓竖向间距 (mm):500; 对拉螺栓直径 (mm):M14 ; 2.主楞信息 龙骨材料 :钢楞;截面类型 :圆钢管 48×3.5; 钢楞截面惯性矩 I(cm4):12.19;钢楞截面抵抗矩 W(cm3):5.08; 主楞肢数 :2; 3.次楞信息 龙骨材料 :木楞; 宽度 (mm):60.00;高度 (mm):80.00; 次楞肢数 :2; 4.面板参数 面板类型 :木胶合板;面板厚度 (mm):17.00; 面板弹性模量 (N/mm 2 ):9500.00; 面板抗弯强度设计值 f c(N/mm 2):13.00; 面板抗剪强度设计值 (N/mm 2 ):1.50; 5.木方和钢楞 方木抗弯强度设计值 f c(N/mm 2):13.00;方木弹性模量 E(N/mm 2):9500.00;方木抗剪强度设计值 f t(N/mm 2):1.50;

2 钢楞弹性模量 E(N/mm ):210000.00; 钢楞抗弯强度设计值 f c(N/mm 2):205.00; 墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值 : 其中γ--混凝土的重力密度,取24.000kN/m3; t --新浇混凝土的初凝时间, 可按现场实际值取,输入0时系统按200/(T+15)计算,得 5.714h; T --混凝土的入模温度,取20.000℃; V --混凝土的浇筑速度,取 2.500m/h; H --模板计算高度,取3.000m;

某电信办公楼空调设计工程毕业设计计算书

前言 暖通空调作为一门应用性学科同样存在着普及与提高两大任务。随着国民经济的飞速发展,空气调节技术已是保证室良好环境的一种必不可少的技术。经济的发展使从事空调设计人员越来越多,对设计要求也越来越高。许多其它行业的人也越来越多地关心空调系统设计的合理性和经济性。尤其是近年来能源危机的出现、环保意识的不断提高,对空调设计提出了新的更为严峻的挑战。 在设计过程中,本着合理和经济的要求,经过复杂而缜密的计算后,认真比较了多种空调方案,结合实际情况确定出最优方案。满足方案合理的同时,对空调设备进行多方面的综合考虑,选择最经济最适宜的型号。 设计中涉及到如下方面的容: 空调系统冷负荷及湿负荷的计算、空调系统布置、空调设备及附件选择、空调系统水力计算、通风系统的设计布置等。 由于我个人无论是实践经验还是理论基础都还比较薄弱。在设计过程中难免存在错误和不足,恳请各位老师批评指正。

第1章概况 1.1工程概论 本工程为(蒙)某电信办公楼空调工程设计,该楼共12层,建筑总面积约23636.98平米。该建筑地下1层,地上12层。地下1层为库房和设备用房,地上1至3层为营业厅,地上4至12层为办公用房。 1.2设计原始资料 1.2.1土建资料 层高:地下一层层高为4.5m,首层层高为5.4 m ,2—3层层高均为4.5m,4-11层层高为3.8 m,12层层高为7.6 m。围护结构:地下为钢筋混凝土墙,地上为加气混凝土墙,铝塑窗中空玻璃,铝合金门中空玻璃。浅色窗帘,不设外遮阳。 1.2.2气象资料 ①室参数: 空调房间:夏季温度26℃ 相对湿度:夏季湿度60% 营业厅每人最小新风量:20 m3/h办公室每人最小新风量:30 m3/h 房间人员单位容量(人/m2):营业厅0.5 办公室0.2 房间照明单位容量:营业厅40W/㎡办公室30W/㎡ 房间设备发热量:办公室500W ②室外参数: 查《空气调节设计手册》得呼和浩特市室外气象参数值为: 地理位置:北纬 40°49′东经111°41′ 大气压力(mbar):冬季900.9 夏季889.4 室外计算干球温度: 冬季室外干球温度:-22℃ 夏季室外干球温度:29.9℃ 夏季空调室外计算湿球温度:20.8℃ 相对湿度: 冬季空调室外计算相对湿度:56 夏季空调室外计算相对湿度:64

抱箍计算书

3.3.3钢抱箍及主梁、分配梁安装 钢抱箍安装前要根据设计盖梁底标高、底模厚度、分配梁厚度、主梁高度准确计算出钢抱箍顶面位置,并将钢抱箍顶面位置用石笔画在立柱上。再用起重机分片或整体吊装钢抱箍,然后将主梁(槽钢)放到钢抱箍上,并用对拉螺杆将两主梁对拉起来。最后在主梁上摆放好分配梁。钢抱箍、主梁、分配梁安全验算。 (1) 主梁计算 ①荷载计算: a) 盖梁自重荷载P1 P1=γBH=26KN/m3×1.8 m×1.4m=65.6KN/m, 换算到每根主梁:均布荷载q1=P1/2=32.8KN/m; b) 模板、分配横梁自重 分配横梁采用[10槽钢,间距50cm,q2=0.12×2/0.5×7.5/2=0.15KN/m; 模板自重q3=0.5×(2×1+1.9×1×2)/2=1.45KN/m; c) 施工荷载(人员、机具、材料、其它临时荷载) 按q4=2.5KN/m均布荷载计; ②荷载组合: q=q1+q2+q3+q4=32.8+0.5+1.45+2.5=37.25KN/m; ③计算简图: ④计算: a) 解除B点约束,代以支反力R B,用力法解得R B=q(6a2+5b2)/(4b)=463.5KN,R A=q(a+b)-R B/2=200.7KN,

b) 弯矩图: c) 最大弯距: A 、 B 点弯矩:M 1=-1/2×q×2.42=-2.88q=-155.1KN·m , 跨中弯矩 :M 2=1/2×q×(32-2.42)=1.62q=87.2KN·m , 则:M max =M 1=155.1KN·m ; d) 截面抗弯模量W 拟选用工字钢为主梁,允许应力[σ]=170MPa , [σ]=M max /w , w= M max /[σ]=155.1×103/(170×103)=0.91m 3=910cm 3, 初步选用40a 工字钢W=1090cm 3>910cm 3,可满足强度要求; ⑤ 挠度验算: 将均布力q 由A 、B 点分成三段进行挠度叠加计算,计算结果公式如下(以竖直向上位移为正): a) c 、d 点挠度: EI q EI l l M EI l ql l l EI ql y c 2832.3624)34(242113211231-=??+?++-=, b) 跨中挠度: EI q EI ql EI l y 915.3384516M 242221-=-??-=跨中, c) 最大挠度验算: I40a 惯性矩:I=21720cm 4=2.172×10-4m 4 ,弹性模量E=2×105MPa , 221qa 22 1qa

MBR系统设计计算书(模板).docx

MBR系统(按照美能参数计算) 代表设计代表参项目基本资料 : 值数取值供水量360m3/d15m3/h 膜组件备用比例20%18m3/h 水源类型:工业污水 水温最高35℃最低5℃ (通量设计水温25℃温度系数 1 变化 系统设计参数 设计产水量 :360m3/d18m3/h 设计污泥浓度6000 ppm 设计回流比 2.5 :1(回流量 :产水量) 计算膜池总进水流量 :63m3/h 膜设计参数 膜组件型号SMM -1520 每只膜组件的膜面积20 m2/module 设计通量14.0l/m2/h10-15 每片膜组件的产水能力0.28m3/h 膜组件数量计算值64 片双数,不宜 每套膜装置的膜组件数量64 片超过 70 每套膜装置的产水量17.9m3/h 每个操作单元的膜装置数量 1 套每单元容积m3 每个操作单元的产水量 3 17.9m /h MBR系统的操作单元数量 1 个 膜组件实际数量64 片 膜装置实际数量 1 套 应用的膜面积数量1280 m2 核算平均设计通量14.1 l/m2/h 核算平均通量11.7 l/m2/h 每支膜组件的实际产水量0.28 m3/h 操作运行参数 过滤产水 :10分 停止过滤气洗 :1分 每只膜组件的吹扫空气量 3.0Nm3/h 每个操作单元的吹扫空气量192 Nm3/h 3.2 m3/min 膜系统的吹扫空气量192 Nm3/h 3.2 m3/min 化学药剂耗量

推荐的化学药品浓度NaOCl H2SO4(或 HCl) 通量维持清洗 (MC) MC使用的清洗药剂NaOCl 方案 1 在线反洗每平米膜 每个操作单元 MC需NaOCl原液 量15.0L 每次 MC清洗所需 NaOCl原液量30 L 每年的 MC清洗次数122 次每年 MC清洗所需 NaOCl原液量 3.7 m3 通量恢复清洗 (RC)每隔 (1) NaOCl 10%;密度 50%;密度 3日1次 1L 药液浓度 3.3 吨 天或者当跨 180膜压差超过 5 ppm;(2) HSO 24 1.18 kg/L kg/L 1.14 (17% 200 ppm RC使用的清洗药剂溶液 每个操作单元 RC需NaOCl原液量112.9L 每次 RC清洗所需 NaOCl原液量226 L 每年的 RC清洗次数 3 次每年 RC清洗所需 NaOCl原液量0.68 m3每个操作单元 RC需H2SO4原液量267 L 每次 RC清洗所需 H2SO4原液量533 L 每年的 RC清洗次数 3 次每年 RC清洗所需 H2SO4原液量 1.61m3500溶液0.5% 0.8 吨 1.8 吨 推荐的主要设备参数各操作单 选择运行方案2元共用产 空气吹扫风机28Nm3/min@5mH1用1备37.0KW 产水泵86 m3/h@ 10 mH2用1备 3.7 KW 循环泵490m3/h@ 10 mH1用1备7.5KW 空压机0.22 m3/min0.8MPa1用1备 2.2 KW 压缩空气罐1m31MPa1套 真空泵0.53-0.09MPa1用1备 2.2 KW m /min 真空罐 1 m3-0.09MPa1套 NaOCl加药泵678L/h@ 10 mH1用1备0.03KW 酸加药泵1599L/h@ 10 mH1台0.06KW 次MC清 0.53可进行洗 NaOCl加药罐m7次R C清 酸加药罐 1.0m3可进行 1.9洗 主系统仪表 浊度仪0-20NTU4-20mA1套 PH & ORP计pH-14, -1000~1000mV4-20mA1套 每个操作单元的仪表和阀门总计产水流量传感器0-300 m3/h4-20mA1套 2 套产水压力传感器-0.09~0Mpa4-20mA1套 2 套

某空调系统设计计算书

沈阳城市学院 课程设计 专业:建筑环境与设备工程 班级: 姓名: 2013年月日

课程设计任务书

第一章 工程概况 1.1. 已知参数 1) 工程概况:围护结构性能参数 外墙:属于Ⅱ型结构,外表面为浅色,传热系数K =1.50W /(m 2·℃); 屋顶:Ⅴ型结构,K =1.07W/(m 2·℃),屋面吸收系数 9.0=ρ。 外窗:双层玻璃钢窗,玻璃采用3mm 厚的普通玻璃,内挂白色窗帘。 围护结构外表面放热系数为)(6.182 C m W ??=ωα,围护结构内表面放热系数 )/(82C m W N ??=α。窗户高度均为1.5m 。 2) 气象资料,查阅《规范》及相关手册 3) 土建资料 建筑平面图(首层平面图、标准层平面图)、剖面图 本设计的室外计算参数以设计地点的室外计算参数为依据。室内计算参数按照房间用途和空调分区合理选取。 4) 动力资料 空调:冷冻水由统一的冷冻机房提供;热媒为三个表压的高压蒸汽,由集中锅炉房供给。 1.2. 设计参数 1) 重庆市纬度北纬29°31′,经度东经106°29′。 2) 室外计算干球温度35.5℃,室外计算湿球温度26.5℃。 3) 重庆市夏季大气压力963.8hPa ,冬季大气压力980.6hPa 。 室内计算干球温度26℃,室内空气相对湿度59%。

第二章 房间夏季冷负荷计算 空调房间的冷负荷包括建筑围护结构传入室内热量形成的冷负荷,人体散热形成的冷负荷,灯光照明散热形成的冷负荷以及其他设备散热形成的冷负荷。通过围护结构传入室内的热量形成的冷负荷存在延迟和衰减,所以空调房间夏季设计冷负荷适宜按照冷负荷系数法计算各种热源引起的负荷,再按各项逐时冷负荷的综合最大值确定。 以2008房间(办公室)为例,该房间平面图如图2.1所示 图2.1 1. 外墙、屋顶瞬变传热形成的冷负荷 在日射和室外气温综合作用下,外墙 和屋顶瞬时冷负荷可按下式计算 )(/ t t X N wl KF CL -= (2-1) k k t t t d wl wl ρα)(/+= (2-2) 式中,CL —外墙或屋顶瞬变传热形成的逐时冷负荷)(W K —外墙和屋顶传热系数,W/(m 2 ·℃) F —外墙和屋面的面积2m t wl /—外墙和屋顶冷负荷计算温度的逐时值 t X N —夏季空调室内计算温度(℃) t wl —以北京地区的气象条件为依据计算出的外墙和屋顶冷负荷计算温度的逐时值(℃) t d — 同类型构造外墙和屋顶的地点修正值(℃) k α—外表面放热系数修正值

暖通空调最常用的设计计算公式

暖通空调最常用的设计计算公式 常用设计计算公式 总热量:Unit:kcal/h 1RT=3.5kw 1P=2.324kw 1kw=860kcal/h 1k=4.27J 1.QT=QS+QL 空气冷却:QT=0.24*&*L*(h1-h2) QT-----空气的总热量QS-----空气的显热量 QL-----空气的潜热量& -----空气的比重取1.2 kg/m3 L -----室内总送风量M3/H h1 -----空气的初焓值kJ/kg H2 -----空气的终焓值kJ/kg 2,显热量: Unit:kcal/h QS=Cp*&*L*(T1-T2) Cp ---空气的比热取0.24kcal/ kg T1 --空气最初的干球温度 T2 -----空气最终的干球温度 3,潜热量: Unit:kcal/h QL=600*&*L*(W1-W2) W1 ----空气最初水分含量kg/ kg W2 ----空气最终水分含量kg/ kg 4,冷冻水量: Unit:L/S V1=Q1/4.187*(T1-T2) Q 1-----主机制冷量(KW), T1-T2 -----主机进出水温差 5,冷却水量: Unit:L/S V2=Q2/4.187*(T1-T2)

Q2=Q1+N Q2-----冷却热量KW T1-T2 -----主机冷却水进出水温度 N -----制冷机组耗电功率KW 6,电机满载电流计算: Unit:A FAL=N/1.732*U*COS@ 7,新风量: Unit:M3/H L0 =n*V n -----房间换气次数V -----房间体积 8,送风量: Unit:M3/H 空气冷却:L= QS/ Cp*&*(T1-T2) QS -----显热量kcal/h Cp ---空气的比热取0.24kcal/ kg T1 --空气最初的干球温度T2 --空气最终的干球温度 & -----空气的比重取1.2 kg/m3 9,风机功率: Unit:KW N1=L1*H1/102*n1*n2 L1 -----风机风量(L/S) H1 -----风机风压(mH2O) n1 -----风机效率n2-----传动效率,直联传动取1;皮带传动取0.9 10,水泵功率: Unit:KW N2=L2*H2*r/102*n3*n4 L2 -----水流速(L/S) H2 -----水泵压头(mH2O) n3 -----水泵效率=0.7~0.85 n4 -----传动效率=0.9~1.0 r -----液体比重(水的比重为1kg/l) 11,水管管径: Unit:mm D=35.68*根号L2/ v L2 -----水流速(L/S) v -----水设计流速(m/s) 12,空气加湿量: Unit:g R=LX*1.3*(h1-h2)

抱箍的计算

抱箍的计算 抱箍所能承受的荷载可由抱箍与墩柱之问的摩擦力平衡,其摩擦系数μ由墩柱面的平整度和粗糙程度而定,一般可取为μ=0.3—0.5。设计时应选择拧紧螺栓的数量,并验算其抗剪强度,同时应验算抱箍钢板的局部抗剪强度和抗挤压强度。 抱箍法力学原理:是利用在墩柱上的适当部位安装抱箍并使之与墩柱夹紧产生的最大静摩擦力,来克服临时设施及盖梁的重量。 2.1 抱箍的结构形式 抱箍的结构形式涉及箍身的结构形式和连接板上螺栓的排列。 a箍身的结构形式 抱箍安装在墩柱上时必须与墩柱密贴。由于墩柱截面不可能绝对圆,各墩柱的不圆度是不同的,即使同一墩柱的不同截面其不圆度也千差万别。因此,为适应各种不圆度的墩身,抱箍的箍身宜采用不设环向加劲的柔性箍身,即用不设加劲板的钢板作箍身。这样,在施加预拉力时,由于箍身是柔性的,容易与墩柱密贴。在施工当中,为保证密贴的效果更加明显,一般在抱箍与柱子之间垫以土工布。 b连接板上螺栓的排列 抱箍上的连接螺栓,其预拉力必须能够保证抱箍与墩柱间的摩擦力能可靠地传递荷载。因此,要有足够数量的螺栓来保证预拉力。如果单从连接板和箍身的受力来考虑,连接板上的螺栓在竖向上最好布置成一排。但这样一来,箍身高度势必较大。尤其是盖梁荷载很大时,

需要的螺栓较多,抱箍的高度将很大,将加大抱箍的投入,且过高的抱箍也会给施工带来不便。因此,只要采用厚度足够的连接板并为其设置必要的加劲板,一般均将连接板上的螺栓在竖向上布置成两排。这样做在技术上是可行的,实践也证明是成功的的 2.2连接螺栓数量的计算 抱箍与墩柱间的最大静摩擦力等于正压力与摩擦系数的乘积,即F=f×N 式中F-抱箍与墩柱间的最大静摩擦力; N-抱箍与墩柱间的正压力; f-抱箍与墩柱间的静摩擦系数。 而正压力N与螺栓的预紧力是对平衡力,根据抱箍的结构形式,假定每排螺栓个数为n,则螺栓总数为4 n,若每个螺栓预紧力为F1,则抱箍与墩柱间的总正压力为N=4×n×F1。 对于抱箍这样的结构,为减少螺栓个数,可采用材质为45号钢,直径30mm的大直径螺栓或M27高强度螺栓。但采用M27高强度螺栓有两个缺点:一是高强度螺栓经过一次加力松弛循环后一般不能再用,这与抱箍需多次重复使用的要求不相符;再次安装抱箍时需更换新螺栓,加大了投入;二是市场上没有M27高强度螺栓,必须到专门的厂家购买,不能满足随时更换的要求。因此,一般均采用材质45号钢的M30大直径螺栓。每个螺栓的允许拉力为[F]=As×[σ] 式中As —螺栓的横截面积,As=πr2 [σ]—钢材允许应力。对于45号钢,[σ]=2000kg/cm2。

相关主题
文本预览
相关文档 最新文档