当前位置:文档之家› 线面平行证明常用方法

线面平行证明常用方法

线面平行证明常用方法
线面平行证明常用方法

精品文档

线面平行证明的常用方法

方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平 行线使

它们与已知平面相交,关键:找平行线,使得所作平面 与已知平面的

交线。

(08浙江卷)如图,矩形ABC 丙梯形BEFC 所在平面互相垂直,BE//CF ,

.BCF= CEF=90 ,AD= .3,EF=2。求证:AE//平面 DCF.

分析:过点E 作EG//AD 交FC 于G, DG 就是平面AEGD 与平面DCF 的交线,那么只要证明 AE//DG 即可。 证明:过点E 作EG_CF 交CF 于G ,连结DG ,A 可得四

边形BCGE 为矩形,

又ABCD 为矩形, 所以AD 垄EG ,从而四边形ADGE 为平行四边形

故 AE // DG .

因为AE 二平面DCF ,DG 二平面DCF , 所以AE //平

面DCF . 方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点

使得所作平面与已知平面的交线。

(06北京卷)如图,在底面为平行四边形的四棱锥 P - ABCD 中,AB _ AC , PA _平面ABCD ,且PA -AB ,点E 是PD 的中点.求证:PB//平面AEC .

分析:由D 、P 、B 三点的平面与已知平面 AEC 的交线最易找,第三个点选其它的 点均不好找交线.

1 \ B ■ , '\ ___' -* 1 G E

D

证明:连接BD,与AC相交于O,连接EO.

??? ABCD是平行四边形,

???O是BD的中点

又E是PD的中点

?EO// PB.

又PB 平面AEC,EO 平面AEC,?PB//平面 AEC. D

C

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

线面平行的常用判断法

B C D A 1 B 1 C 1 D 1 图2 A F E G α a b A 图1 线面平行的常用判断法 空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下: 一、反证法 例1求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理) 已知:,,a b a αα??∥b ,如图1. 求证:a ∥α. 分析:要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明. 证明:假设直线a 与平面α不平行,又∵a α?,∴a A α=. 下面只要说明a A α=不可能即可. ∵a ∥b ,∴a ,b 可确定一平面,设为β. 又a A α=, ∴,A a A β∈∈. 又b ,A αα?∈, ∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α?,这与已知a α?相矛盾. ∴a A α=不可能.故a ∥α. 二、判定定理法 例2 正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 分析:要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件. 证明:如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且1 2 EF CD = 又∵G 为11C D 的中点, ∴ 1D G ∥CD 且11 2 D G CD =

线线平行、线面平行、面面平行的判定方法(本人原创)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 在空间“线线平行、线面平行、面面平行”的判定方法一、两条直线平行的判定方法 (1)在同一平面内没有公共点的两条直线平行(定义) (2)先证在同一平面内,再用平面几何中的平行线的判定理或者相关图形的性质进行证明。 如①在同一平面内,两条直线被第三条直线所截,如果同位角或 内错角相等,或同旁内角互补,则两直线平行。 ②三角形、梯形中位线定理。 ③平行四边形、矩形、菱形、正方形性质(对边平行)。 ④在同一个平面内,同垂直于一条直线的两条直线平行(注意: 此结论在空间不适合)。 (3)(线面平行的性质)如果一条直线和一个平面平行,则经过这条直线的一个平面与这个平面相交,那么这条直线和交线平行。 (4)如果两直线都平行于第三条直线,那么这两条直线互相平行(平行的传递性)。 (5)(面面平行的性质)如果两个平行平面分别和第三个平面相交,则它们的交线平行。 (6)(线面垂直的性质之一)如果两条直线垂直于同一个平面,那么这两条直线平行。 (7)用向量证明。 二、一条直线和一个平面平行的判定

(1)如果一直线和一平面没有公共点,那么这条直线就和这个平面平行(定义) (2)平面外的一条直线,如果和这个平面内的一条直线平行,那么这条直线就和这个平面平行(线面平行的判定定理)。 (3)如果两个平面相互平行,那么在一个平面内的任何一条直线都平行于另一个平面. (线面平行的性质)。 (4)向量法。 三、两个平面平行的判定 (1)如果两个平面没有公共点,那么这两个平面互相平行(定义)(2)如果一个平面内的两条相交直线分别和另一个平面平行,那么这两个平面平行。 (3)如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 (4)如果两个平面分别平行于第三个平面,那么这两个平面平行。 (5)如果两个平面垂直于同一条直线,那么这两个平面平行。 在空间“线线垂直、线面垂直、面面垂直”的判定方法一、两条直线垂直的判定 (1)在同一个明面内证明两条直线垂直可按照平面几何的有关定理和方法判定。 ①证明两条直线形成的角等于90° ②正方形、矩形性质(四个角都是直角);③正方形、菱形对角 线互相垂直; ④勾股定理逆定理;⑤“直角三角形斜边上的中线等于斜边的 一半”的逆定理。 ⑥证明一个三角形两个内角和为90°,则另一个内角为90°。 ⑦证明一个三角形和一个直角三角形全等,利用全等三角形对 应角相等证明直角。 ⑧证明两个邻补角相等且和为180°,则每一个角为90° (此两个角有公共定点,有一条公共边,非公共边互为反向延

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

线面平行证明的常用方法

线面平行证明的常用方法张磊立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平 行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 求证:PB//平面AEC . 分 析: r 如图⑴ 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点? 方法二:构造平行四边形,找平行线 例2、如图⑵,平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证: AE// 平面DCF. 分析:过点E作EG//AD交FC于G,DG就是平面AEGD 与平面DCF的交线,那么只要证明 AE//DG即可。 方法三:作辅助面使两个平面是平行,即:作平行平面,使得过所证直线作与已知平面平行的平面 例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形,M为0A的中 点,N为BC的中点,证明:直线MN ||平面OCD 分析::取0B中点E,连接ME , NE,只需证平面MEN l平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。

例4、已知正方形 ABCD 和正方形ABEF 所在的平面相交于 AB ,点M , N 分别在 AC 和 BF 上,且 AM=FN. 求证:MN |平面 BCE. 如图⑷ 如图⑹ A D 如图⑸

例5.如图⑸,已知三棱锥P —ABC, A', B C '是△ PBC, △ PCA, △ PAB 的重心. (1)求证:A'B' //面ABC; (2)求£△ A ' B ' C ' : £△ ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD中,底面ABCD为正方形, 侧棱SD丄底面ABCD,E,F分别为AB, SC的中点.证明EF //平面SAD; 分析:因为侧棱SD丄底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系 D xyz . 设A(a,O,O,S(0,0, b),贝U B(a, a,0), C(0,a,0, E a, ,0 , F 0,,, 2 2 2 uu u b EF a,0,— 2 因为y轴垂直与平面SAD,故可设平面的法向量为n= (0, 1, 0) uur r b 则:EFgn a,0,,(0, 1, 0) =0 2 uuu r 因此EF n 所以EF //平面SAD .

浅析线面平行的解题技巧

浅析线面平行的解题技巧 空间中的线面平行关系,在空间几何体中是出现频率非常高的一种位置关系。线面平行问题是线面位置关系问题中的一种常见问题。我们应本着以下步骤来看待这类问题:首先,解决问题应当立足于线面平行的判定定理;其次,在应用判定定理时应当在其中渗透“线面平行”转化为“线线平行”的数学思想;最后,解决“线线平行”这一问题时又要特别注意利用的比例关系来达到目的。 1、方法——直线与平面平行的判定定理 (1)文字语言:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线与这个平面平行 (2)符号语言:a?α,b?α,a∥b=>a∥α 例1 如图1所示,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥AC,AB=2,CE=EF=1. 求证:AF∥平面BDE 证明:设AC与BD交于点G,因为EF∥AC,所以EF∥AG。因为四边形ABCD为正方形, AB=2,则AC=2,所以AG=1/2AC=1,EF=1,所以四边形AGEF为平行四边形,于是有AF∥?平面BDE,AF?平面BDE,所以AF∥平面BDE. EG.又EG 小结运用直线与平面平行的判定定理证明线面平行的目的很单纯,如该题就是围绕“AF∥EG”做文章。只要“AF∥EG”那么“AF∥平面BDE”就成立。 2、技巧1——把“线面平行”转化为“线线平行”进行证明 证明线面平行最直接的方法就是利用直线与平面平行的判定定理,即确定平面外的直线与平面内的一条直线平行,则平面外的直线就与该平面平行。这一证明过程的本质就是把“线面平行”转化为“线线平行”进行证明。

例2如图2所示,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥底面ABCD,M为OA的中点,N为BC的中点,证明:MN∥平面OCD 证明:如图3所示,延长AN和DC,且两条直线相交于点H,再连接OH.由已知得BN=NC,∠ABN=∠HCN=45°,∠ANB=∠CNH,于是△ABN?△HCN.所以 ?平AN=NH,即点N为线段AH的中点,∵点M为线段OA的中点,∴MN∥OH。又∵OH 面OCD,∴由直线与平面平行的判定定理,可知MN∥平面OCD。 小结把“线面平行”转化为“线线平行”进行证明是一种最常用且非常有效的技巧。但此技巧要求比较苛刻,即必须满足判定定理的条件。 技巧2——把“线面平行”转化为“面面平行”进行证明 例3 已知V为正方形ABCD所在平面外的一点,P在VC上,Q在VB上,R在VD上,且VP::PC=1:2,VQ:QB=2:1,VR:RD=2:1.求证:VA∥平面PQR 证明设底面正方形对角线的交点为O,VC的中点为N,则VA∥ON,平面BDN∥平面PQR (QR∥BD,PQ∥BN),所以ON∥平面PQR(两平面平行,一平面内任意直线平行于另一片面)。故VA∥平面PQR 小结通过证明线线平行得出面面平行,从而推出线面平行,此过程中并没有找出平面PQR内与直线VA平行的直线,这也是证明线面平行的常用技巧。 此外,通过以上的案例,我们应该更加多方面去思考问题,发散自己的思维,来更好地认识线面平行这一内在关系,这样不仅能够更好地掌握这部分知识,也能在今后的学习中,会从更多的思考角度来看待问题。

高中立体几何证明线面平行的常见方法

D A 1 A F 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、 BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE (第1题图) A B C D E F G M

6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; (3) 利用平行四边形的性质 7.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为 BB 1的中点,求证: D 1O//平面A 1BC 1; 8、在四棱锥P-ABCD 中,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA , E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1 )求证:BE ⊥ 平面PAC ; (2)求证://CM 平面BEF ;

高中数学教案 线面平行的判定定理和性质定理

教学目的: 1.掌握空间直线和平面的位置关系; 2.直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面 ”平行的转化 教学重点:线面平行的判定定理和性质定理的证明及运用 教学难点:线面平行的判定定理和性质定理的证明及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系 通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础 前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点 教学过程: 一、复习引入: 1 空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4 :平行于同一条直线的两条直线互相平行 推理模式://,////a b b c a c ?. 3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 5.空间两条异面直线的画法 a b 1A A 6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线 推理模式:,,,A B l B l ααα?∈???AB 与l 是异面直线

7.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上异面直线所成的角的范围:2 , 0(π 8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. 9.求异面直线所成的角的方法: (1)通过平移,在一条直线上找一点,过该点做另一直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 10.两条异面直线的公垂线、距离 和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线 在这两条异面直线间的线段(公垂线段)的长度, 叫做两条异面直线间的距离. 两条异面直线的公垂线有且只有一条 二、讲解新课: 1.直线和平面的位置关系 (1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点); (3)直线和平面平行(没有公共点)——用两分法进行两次分类. a α?,a A α=,//a α. a α a α 2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////l m l m l ααα???. 证明:假设直线l 不平行与平面α, ∵l α?,∴l P α=, 若P m ∈,则和//l m 矛盾, 若P m ?,则l 和m 成异面直线,也和//l m 矛盾,

判断或证明线面平行的或垂直常用方法

同学们早上先把下面知识点看完然后做后面的四个题。做完后再看看另一个知识点解析几何常见题型。都发布在作业里面。 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 判断或证明线面平行的常用方法包括: (1)利用线面平行的定义,一般用反证法; (2)利用线面平行的判定定理(a?α,b?α,a∥b?a∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述; (3)利用面面平行的性质定理(α∥β,a?α?a∥β); (4)利用面面平行的性质(α∥β,a?β,a∥α?a∥β). 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90度、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化; 1..如图,三棱柱中,侧面是菱形,其对角线的交点为,且, .

(1)求证:平面; (2)若,且,求三棱锥的体积. 2.如图,四棱锥中,平面底面,△是等边三角形,底面为梯形,且,∥,. (Ⅰ)证明:; (Ⅱ)求到平面的距离. 3.如图,在几何体中,底面四边形是边长为4的菱形,, ,,平面,且,. (1)证明:平面平面;

(2)求三棱锥的体积. 4. 已知数列的通项公式为,为其前项和,则数列的前8项和为__________.答案1.(1)∵四边形是菱形,∴,∵, ∴平面,又?平面,∴.∵,是的中点, ∴,∵,∴平面. (2)菱形的边长为,又是等边三角形,则. 由(1)知,,又是的中点,, 又是等边三角形,则.在中, , 2.(Ⅰ)由余弦定理得, ∴,∴,∴. 又平面底面,平面底面,?底面, ∴平面, 又?平面,∴. (Ⅱ)设到平面的距离为 取中点,连结,∵△是等边三角形,∴. 又平面底面,平面底面,?平面, ∴底面,且,

线面 线线面面平行垂直方法总结

线线平行 1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.) 2.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 3.【定义】同一平面内,两直线无公共点,称两直线平行 3.【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性) 4.【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行. 5.平行线分线段成比例定理的逆定理 线面平行 1.面外一条线与面内一条线平行,或两面有交线强调面外与面内(如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。) 2.面外一直线上不同两点到面的距离相等,强调面外 3.如果连条直线同时垂直于一个平面,那么这两条直线平行 4.证明线面无交点 5.反证法(线与面相交,再推翻) 6.空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0) 7.【定义】直线与平面无公共点,称直线与平面平行 8.X7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面. 面面平行 1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 2.若两个平面所夹的平行线段相等,则这两个平面平行. 3.【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行. 4.【定义】两平面无公共点,称两平面平行. 5.【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性) 6.【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 线线垂直 1如果一条直线垂直于一个平面,则这个平面上的任意一条直线都与这条直线垂直。 . 2.三垂线定理:如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

立体几何中线面平行的经典方法 经典题(附详细解答)

D B A 1 A F 高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四 边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA (第1题图)

4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 8、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形, 090,BAD FAB BC ∠=∠=//= 1 2 AD ,BE //= 1 2 AF ,,G H 分别为,FA FD 的中点 (Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么? A B C D E F G M

立体几何中线面平行地经典方法经典的题目(附详细解答).doc

实用标准文案 高中立体几何证明平行的专题( 基本方法 ) 立体几何中证明线面平行或面面平行都可转化为线 线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4)利用对应线段成比例。 (5) 利用面面平行,等等。 (1)通过“平移”再利用平行四边形的性质 1.如图,四棱锥 P- ABCD的底面是平行四边形,点 E、F 分别为棱 AB、 PD 的中点.求 证: AF∥平面 PCE; 分析:取 PC的中点 G,连 EG.,FG,则易证 AEGF是平行四边形P F E A D B C (第 1 题图) 2、如图,已知直角梯形ABCD中, AB∥ CD,AB⊥ BC,AB= 1,BC= 2, CD= 1+ 3 , 过 A 作 AE⊥ CD,垂足为E, G、 F 分别为 AD、CE 的中点,现将△A DE沿 AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC⊥面 CDE;(Ⅱ)求证:FG∥面BCD; 分析:取DB的中点 H,连 GH,HC则易证 FGHC是平行四边形 D D E F C G F C G E A B A B 3、已知直三棱柱ABC- A B C 中, D, E, F 分别为 AA, CC , AB 的中点, 1 1 1 1 1 M为 BE的中点 , AC ⊥ BE. 求证: (Ⅰ) C1D⊥BC;(Ⅱ) C1D∥平面 B1FM. C1 分析:连 EA,易证 C1EAD是平行四边形,于是MF//EA B1 E A 1 M D

实用标准文案 4、如图所示 , 四棱锥 P 底面是直角梯形, ABCD BA AD ,CD AD , CD=2AB,E为PC的中 点, 证 明: EB //平面PAD ; 分析 : :取 PD的中点 F,连 EF,AF 则易证 ABEF是平行四边形 (2)利用三角形中位线的性质 5、如图,已知E、F、G、M分别是四面体的棱AD 、 CD 、 BD 、 BC 的中点,求证:AM ∥平面 EFG 。 A 分析:连 MD交 GF于 H,易证 EH是△ AMD的中位 线 E B G D M F C 6、如图, ABCD是正方形, O是正方形的中心, E 是 PC的 中点。求证: PA ∥平面 BDE 7.如图,三棱柱ABC— A1B1C1中, D 为 AC的中点 . 求证: AB1// 面 BDC1; 分析:连B1C 交 BC1于点 E,易证 ED是 △ B1AC的中位线 8、如图,平面ABEF 平面ABCD ,四边形ABEF 与ABCD都是直角梯形, BADFAB 900 , BC // 1 AD ,BE// 1 AF , G, H 分别为 FA, FD 的中点2 2 (Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ) C , D , F , E 四点是否共面?为什么?

(5)高中立体几何中线面平行的常见方法

高中立体几何证明平行的专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 (第1题图)

D B A 1 A F 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是 平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证: AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△ AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE A B C D E F G M

线面线线面面平行垂直方法总结

线面线线面面平行垂直方 法总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线线平行 1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.) 2.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 3.【定义】同一平面内,两直线无公共点,称两直线平行 3.【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性) 4.【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行. 5.平行线分线段成比例定理的逆定理 线面平行 1.面外一条线与面内一条线平行,或两面有交线强调面外与面内(如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。) 2.面外一直线上不同两点到面的距离相等,强调面外 3.如果连条直线同时垂直于一个平面,那么这两条直线平行 4.证明线面无交点 5.反证法(线与面相交,再推翻) 6.空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0) 7.【定义】直线与平面无公共点,称直线与平面平行 8.X7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面. 面面平行 1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 2.若两个平面所夹的平行线段相等,则这两个平面平行. 3.【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行. 4.【定义】两平面无公共点,称两平面平行. 5.【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性) 6.【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 线线垂直 1如果一条直线垂直于一个平面,则这个平面上的任意一条直线都与这条直线垂直。 2

立体几何中线面平行的经典方法经典题附详细解答

高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、 PD的中点.求证:AF∥平面PCE; 分析:取PC的中点G,连EG.,FG,则易证AEGF是平 行四边形 2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1, BC=2,CD=1+3, 过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD; 分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形 3、已知直三棱柱ABC-A 1B 1 C 1 中, 1 , AB M为BE的中点, AC⊥BE. 求证: (第1题

D E B 1 A 1 C 1C A B F M (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面 B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是 MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 8、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形, 090,BAD FAB BC ∠=∠=//= 1 2 AD ,BE //= 1 2 AF ,,G H 分别为,FA FD 的中点 A B C D E F G M

线面平行的判定定理和性质定理

线面平行的判定定理和性质定理 教学目的: 1.掌握空间直线和平面的位置关系; 2.直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定掌握理实现“线线”“线面”平行的转化 教学重点:线面平行的判定定理和性质定理的证明及运用 教学难点:线面平行的判定定理和性质定理的证明及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系 通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础 前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点 教学过程: 一、复习引入: 1空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4 :平行于同一条直线的两条直线互相平行 推理模式://,////a b b c a c ?. 3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 5.空间两条异面直线的画法 b a a b a b D 1 C 1B 1A 1 D C B A 6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线 推理模式:,,,A B l B l ααα?∈???AB 与l 是异面直线

立体几何中线面平行的经典方法+经典题(附详细解答)

D B A 1 A 高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边 形 * 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 - 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. … 分析:连EA ,易证 C 1EA D 是平行四 是 (第1题图)

P E D C B A MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFG 求证:AB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//= 1 2 AD BE //= 12 AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形 的性质 9.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O 2 1 中点为PD E 求证:AE ∥平面PBC ; & 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小. # (I )证法一: 因为 EF 90ACB ∠=?90,EGF ABC ∠=??.EFG ?BC FG 21=ABCD BC AM 21=FA ?GM ?SM AM ND BN ABC P -PB ⊥ABC 90BCA ∠=E PC M AB F PA 2AF FP =(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ; 分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN1 ! A F E B C D M 。 A B C D E F G M

总结证明线面平行的常用方法

B C D A 1 B 1 C 1 D 1 图2 A F E G α a b A 图1 总结证明线面平行的常用方法 空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下: 方法一、反证法 【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理) 已知:,,a b a αα??∥b ,如图1. 求证:a ∥α. 【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明. 【证明】假设直线a 与平面α不平行,又∵a α?,∴a A α=. 下面只要说明a A α=不可能即可. ∵a ∥b ,∴a ,b 可确定一平面,设为β. 又a A α=, ∴,A a A β∈∈. 又b ,A αα?∈, ∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α?,这与已知a α?相矛盾. ∴a A α=不可能.故a ∥α. 方法二、判定定理法 【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件. 【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且1 2 EF CD = 又∵G 为11C D 的中点, ∴ 1D G ∥CD 且11 2 D G CD = ∴ EF ∥1D G ,且1EF D G =

相关主题
文本预览
相关文档 最新文档