当前位置:文档之家› (5)高中立体几何中线面平行的常见方法

(5)高中立体几何中线面平行的常见方法

(5)高中立体几何中线面平行的常见方法
(5)高中立体几何中线面平行的常见方法

高中立体几何证明平行的专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。

(2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质

1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;

分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形

2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.

(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;

分析:取DB 的中点H ,连GH,HC 则易证FGHC

是平行四边形

(第1题图)

D

B A 1

A

F

3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:

(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA

4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;

分析::取PD 的中点F ,连EF,AF 则易证ABEF 是

平行四边形

(2) 利用三角形中位线的性质

5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:

AM ∥平面EFG 。

分析:连MD 交GF 于H ,易证EH 是△

AMD 的中位线

6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE

A

B

C

D

E

F G M

7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1;

分析:连B 1C 交BC 1于点E ,易证ED 是

△B 1AC 的中位线

8、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,

090,BAD FAB BC

∠=∠=//=

1

2

AD ,BE //=

1

2

AF ,,G H 分别为,FA FD 的中点 (Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么?

(.3)

利用平行四边形的性质

9.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O//平面A 1BC 1;

分析:连D 1B 1交A 1C 1于O 1点,易证四边形OBB 1O 1 是平行四边形

10、在四棱锥P-ABCD 中,AB ∥CD ,AB=

2

1

DC ,中点为PD E . 求证:AE ∥平面PBC ;

分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形

11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.

(I )证法一:

因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=?, 所以90,EGF ABC ∠=??∽.EFG ? 由于AB=2EF ,因此,BC=2FC , 连接AF ,由于FG//BC ,BC FG 2

1

=

在ABCD 中,M 是线段AD 的中点,则AM//BC ,且BC AM 2

1

=

因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。 又FA ?平面ABFE ,GM ?平面ABFE ,所以GM//平面AB 。

(4)利用对应线段成比例

12、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND

BN

求证:MN ∥平面SDC

分析:过M 作ME//AD ,过N 作NF//AD 利用相似比易证MNFE 是平行四边形

13、如图正方形ABCD 与ABEF 交于AB ,M ,N 分别为AC 和BF 上的点且AM=FN 求证:MN ∥平面BEC

分析:过M 作MG//AB ,过N 作NH/AB 利用相似比易证MNHG 是平行四边形

(6) 利用面面平行

14、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=

,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;

分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN//EFB

最新空间几何—平行垂直证明(高一)

空间几何平行垂直证明专题训练知识点讲解 (一)直线与直线平行的证明 1)利用某些平面图形的特性:如平行四边形的对边互相平行 2)利用三角形中位线性质 3)利用空间平行线的传递性:m//a,m//b = a//b 平行于同一条直线的两条直线互相平行。 4)利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 a II - ' a= a II b -b - 5)利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. -// I _ o(nY = a〉= a // b 6)利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行 a _ :' b _ = a // b 7)利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行 8)利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 两个平面互相平行,则其中一个平面内的任一直线平行于另 (二)平面与平面平行的证明 常见证明方法: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 、“垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如 直角三角形的两条直角边互相垂直 等。 2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质: 1) 利用直线与平面平行的判定定理: 2) a // b 丿 利用平面与平面平行的性质推论: 个平面 3) 1) 利用平面与平面平行的判定定理: 2) 3) // // b = P :?:〃: 利用某些空间几何体的特性:如 利用定义:两个平面没有公共点 利用定义:直线在平面外,

高中立体几何八大定理

线面位置关系的八大定理 、直线与平面平行的判定定理: 文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言:符号语言: a u a b u o alia a//b 作用:线线平行=线面平行 二、直线与平面平行的性质定理: 文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线就和交线平行。 图形语言: I//: 符号语言:I u E l //m a o P = m 作用:线面平行=线线平行 、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直 线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言: a u a b u a aPlb = Au a//P a// P b/厂 作用:线线平行=面面平行四、平面与平面平行的性质定理: 文字语言:如果两个平行平面同时和第三个平面相交图形语言: ?// P 符号语言:「二a = a//b Y =b“ 作用:面面平行=线线平行,那么所得的两条交线平行

图形语言: 符号语言: a 丄m a 丄n :a _ : m 「n 二 A m 二二,n 二: 作用:线线垂直=线面垂直 a / * 六、直线与平面垂直的性质定理: 文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言: a - :■ 匕 a//b b -:- 作用:线面垂直=线线平行 七、平面与平面垂直的判定定理: 文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。 图形语言: 一 a 丄a 〕 任 符号表示: _ ■ a u Pj 注:线面垂直 =?面面垂直 八、平面与平面垂直的性质定理: 文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另 个平面 图形语言: 符号语言: a 1 P l AB : AB _丨 作用:面面垂直=线面垂直 五、直线与平面垂直的判定定理: 文字语言:如果一条直线和一个平面内的两条相交直线垂直,

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

立体几何平行证明题

立体证明题(2) 1?如图,直二面角 D- AB- E中,四边形 ABCD是正方形,AE=EB F为CE上的点,且 BF丄 平面ACE (1)求证:AE丄平面BCE (2)求二面角 B-AC- E的余弦值. 2?等腰△ ABC中, AC=BC= r, AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C到P,得到四棱锥 P- ABFE且AP=BP*. (1) 求证:平面 EFP1平面 ABFE (2) 求二面角 B-AP- E的大小. 02

PADL 底面ABCD 且 ABCD 3?如图,在四棱锥 P- ABCD 中,底面是正方形,侧面 PA=PD=2 AD,若E 、F 分别为PC BD 的中点. (I) 求证:EF//平面PAD 4?如图:正△ ABC 与Rt △ BCD 所在平面互相垂直,且/ (1)求证:AB 丄CD

BCD=90°,Z CBD=30° 5?如图,在四棱锥 P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形 是平行四边形,/ ADC=120 , AB=2AD 6?如图,在直三棱柱 ABC- A i BQ 中,/ ACB=90°, AC=CB=CC2, E是 AB中点. (I)求证:AB丄平面A i CE (H)求直线 AG与平面A i CE所成角的正弦值. (1)求证:平面PADL平面PBD

7?如图,在四棱锥 P- ABCD中, PA丄平面 ABCD / DAB为直角,AB// CD, AD=CD=2AB=2 E, F分别为PC, CD的中点. (I)证明:AB丄平面BEF; (H)若PA=丄,求二面角 E- BD- C. 8?如图,在四棱锥 P-ABCD 中,PA丄平面 ABCD , PA=AB=AD=2,四边形 ABCD 满足 AB 丄 AD , BC // AD 且 BC=4,点 M 为 PC 中点. (1)求证:DM丄平面PBC ; BE (2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角 P- DE - B的 EC 2 余弦值为-?若存在,求出实数入的值;若不存在,请说明理由. 3

高中立体几何证明平行的专题

D B A 1 A F 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC。 (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分 析 : 连 EA , 易 证 C 1EAD 是 平 行 四 是 (第1题图)

P E D C B A MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFG 求证: AB 1 ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//= 1 2 AD BE //= 12 AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行 四边形的性质 【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O 2 1 中点为PD E 求证:AE ∥平面PBC ; 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。若M是线段AD的中点,求证:GM∥平面ABFE; (I )证法一: 因为 EF 90ACB ∠=? 90,EGF ABC ∠=??. EFG ?BC FG 2 1= ABCD BC AM 2 1=FA ?GM ? A B C D E F G M

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质 一、公理及其推论 文字语言符号语言图像语言作用公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 α α α ? ? ∈ ∈ ∈ ∈ l B A l B l A, , ,①用来验证直线 在平面内; ②用来说明平 面是无限延展的 公理2 如果两个平面 有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 (那么它们有且只有一条通过这个公共点的公共直线) l l P ∈ = ? ? ? ∈ P 且 β α β α ①用来证明两 个平面是相交关 系; ②用来证明多 点共线,多线共 点。 公理3 经过不在同一条直线上的三点,有且只有一个平面 确定一个平面 不共线 C B A C B A , , , , ? 用来证明多点共 面,多线共面 推论1 经过一条直线和这 条直线外的一点,有且只有一个平面 α α α α ? ∈ ? ? a A A , 使 ,有且只有一个平面 推论2 经过两条相交直 线,有且只有一个平面 α α α ? ? ? = ? b a P b a , 使 ,有且只有一个平面 推论3 经过两条平行直 线,有且只有一个平面 α α α ? ? ? b a b a , 使 ,有且只有一个平面 ∥ 公理4 (平行公理) 平行于同一条直线的两条直线平行 c a c b b a ∥ ∥ ∥ ? ? ? ?用来证明线线平 行

二、平行关系 文字语言符号语言图像语言作用(1)公理4 (平行 公理) 平行于同一条直线的两条直线平行 c a c b b a ∥∥ ∥ ? ? ? ? (2)线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 αα α∥∥ a b a b a ? ? ? ? ? ? ? ? (3)线面平行的性 质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 b a a b b ∥∥ ? ? ? ? ? ? ? = ? β β α β (4)面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. β α α α β β ∥∥ ∥ ? ? ? ? ? ?? ? ? ? ? ? = ? b a O b a b a (5)面面平行 的判定如果两个平面垂直于同一条直线,那么这两个平面平行。 β α β α ∥ ? ? ? ? ⊥ ' ⊥ ' O O O O (6)面面平行 的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 b a b a∥∥ ? ? ? ? ? ? = ? = ? γ β γ α β α (7)面面平行 的性质如果两个平面平行,那么其中一个平面内的直 βα β α ∥∥ a a ? ? ? ? ?

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

高中立体几何证明平行的专题训练

高中立体几何证明平行 的专题训练 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

P E D C B A 1. 如图,四棱锥P -A B C D 的底面是平行四边形,点 E 、 F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+ 3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (1)求证:求证:FG ∥面BCD ; 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC ⊥BE. 求证: C 1D ∥平面B 1FM. 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 11C 2 1 中点为PD E 求证:AE ∥平面PBC ; 9、在如图所示的几何体中,四边形ABCD 为平行四边形,∠?ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. M是线段AD的中点,求证:GM∥平面ABFE; 10、S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的 点,且 SM AM = ND BN , 求证:MN ∥平面SDC 11、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =.求证://CM 平面BEF ; E F B A C D P

高中立体几何常用结论、定理

立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.若A∈l,B∈l,A∈α,B∈α,则l?α. 2.公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线. P∈α,P∈α?α∩β=l,且P∈l. 3.公理3经过不在同一条直线上的三点,有且只有一个平面. 推论1经过一条直线和这条直线外的一点,有且只有一个平面. 推论2经过两条相交直线,有且只有一个平面. 推论3经过两条平行直线,有且只有一个平面. 4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a?α,A/∈α,B∈α,B/∈a,则直线AB和直线a是异面直线.) 5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行. 6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.若b∥c,a⊥b,则a⊥c. 8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. 若a?/α,b?α,a∥b,则a∥α. 9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 若a∥α,a?β,α?β=b,则a∥b. 10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直. 若m?α,n?α,m?n=O,l⊥m,l⊥n,则l⊥α. 11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.若a∥b,a⊥α,则b⊥α. 12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.若a⊥α,b⊥α,则a∥b. 13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 若a?α,b?α,a?b=A,a∥β,b∥β,则α∥β. 14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 若α∥β,α∩γ=a,β∩γ=b,则a∥b. 15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.若α∥β,a⊥α,则a⊥β. 16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 若l⊥α,l?β,则α⊥β. 17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 若α⊥β,α∩β=l,a?α,a⊥l,则a⊥β. 18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.

立体几何证明平行的方法及专题训练

D B A 1 立体几何证明平行的方法及专题训练 罗虎胜https://www.doczj.com/doc/664726669.html, 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行的性质,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB (第1题图)

M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是 平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证: AM ∥平面EFG 。 分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG 6、如图,直三棱柱///ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。 A B C D E F G M

立体几何常考定理总结(八大定理)

l m β α α b a 立体几何的八大定理 一、线面平行的判定定理:线线平行?线面平行 文字语言:如果平面外.的一条直线与平面内. 的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα?? ? ???? ?//a α 关键点...:.在.平面内...找一条与....平面外...的.直线平行的线...... 二、线面平行的性质定理:线面平行?线线平行 文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交.. ,那么这条直线就和交线.. 平行. 符号语言://l l m α βαβ? ? ????=? ?//l m 关键点:需要......借助一个....经过已知直线......的.平面..,接着找交线。....... 三、面面平行的判定定理:线面平行? 面面平行 文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面.. ,那么这两个平面平行. 符号语言://a b a b A a b αα αβββ ?????? = ?????? ∥∥ 关键点:....在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。............................... 四、面面平行的性质定理: 面面平行?线线平行、面面平行?线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言: ////a a b b αβαγβγ? ? ?=????=? 关键点...:找..第三个平面.....与已知平面都相.......交,则交线平行....... 文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面. 符号语言://,//a a αβαβ?? 关键:只要是其中一个平面内的直线就行..................

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高中立体几何证明线面平行的常见方法

D E B 1 A 1 C 1 C A B M 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证: AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P ABCD 底面是直角梯形, E F B A C D P (第

,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC A B C D E F G M

P E D C B A 的中点. 求证:AB 12 1中点为PD E 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、 BD 上的点,且SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面,90BCA ∠=o ,PB=BC=CA , 为的中点,为的中点,点在上,且2AF FP =. (1)求证:BE ⊥平面; (2)求证://CM 平面;

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

重点高中立体几何证明平行的专题

重点高中立体几何证明平行的专题

————————————————————————————————作者:————————————————————————————————日期: 2

3 F G G A B C D E C A B D E F D E B 1 A 1 C 1C A B F M 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1 +3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。 (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA E F B A C D P (第1

4 【例4】如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 【例5】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 【例6】如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 【例7】如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 A B C D E F G M

立体几何平行证明题常见模型及方法

__________________________________________________ 立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 平行转化:线线平行 线面平行 面面平行; 类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法) (1) 方法一:中位线法 以锥体为载体 例1:如图,在底面为平行四边形的四棱锥P ABCD -中, 点E 是PD 的中点. 求证:PB ∥平面AEC ; 变式1:若点M 是PC 的中点,求证:PA||平面BDM ; 变式2:若点M 是PA 的中点,求证:PC||平面BDM 。 变式3如图,在四棱锥S ABCD -中,底面ABCD 是菱形, , 点M 是SD 的中点,求证://SB 平面ACM _ B _ C S P A B C D E

__________________________________________________ (2)以柱体为载体 例2 在直三棱柱111ABC A B C -,D 为BC 的中点,求证:1A C ||平面1AB D 变式1 在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式2在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式 3 如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=5,AC=BC=2,∠C=90°,点D 是A 1C 1的中点. 求证:BC 1//平面AB 1D ; 方法2:构造平行四边形法 例1如图,在四棱锥S ABCD -中,底面ABCD 为正方形,E 、F 分别为AB SC ,的中点.证明○1EF ∥平面SAD ○2BF ∥平面SDE 变式1:若E 、F 分别为AD SB ,的中点.证明EF ∥平面SCD 变式2 若E 、F 分别为SD B ,A 的中点.证明EF ∥平面SCB 例2 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, F E S A B C D E C E 1 A 1 B 1 C 1 D 1 D

高中立体几何证明平行的专题训练1

高中立体几何证明平行的专题训练 立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质 (3)利用对应线段成比例。(4)利用面面平行,等等。 第一类 通过“平移”再利用平行四边形的性质 1. 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点. 求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1, BC =2,CD =1+ 3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, (第1题图)

D E B 1 A 1 C 1 C A B F M M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证 明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 第二类 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥ 平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 A B C D E F G M

相关主题
文本预览
相关文档 最新文档