当前位置:文档之家› 人教版高数选修2-3第2讲:排列组合(教师版)

人教版高数选修2-3第2讲:排列组合(教师版)

人教版高数选修2-3第2讲:排列组合(教师版)
人教版高数选修2-3第2讲:排列组合(教师版)

排列组合

__________________________________________________________________________________ __________________________________________________________________________________

1.理解排列组合的概念.

2.能利用计数原理推导排列公式、组合公式.

3.熟练掌握排列、组合的性质.

4.能解决简单的实际问题.

1.排列与组合的概念:

(1)排列:一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

注意:○1如无特别说明,取出的m个元素都是不重复的.

○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.

○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.

○4在定义中规定m≤n,如果m=n,称作全排列.

○5在定义中“一定顺序”就是说与位置有关.

○6如何判断一个具体问题是不是排列问题,就要看从n个不同元素中取出m个元素后,再安排这m个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.

(2)组合:一般地,从n个不同元素中取出m(m≤n)个不同元素并成一组,叫做从n个不同元素中取出m个不同元素的一个组合.

注意:○1如果两个组合中的元素完全相同,不管它们的顺序如何,都是相同的组合,组合的定义中包含两个基本内容:一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关.

○2当两个组合中的元素不完全相同(即使只有一个元素不同),就是不同的组合.

○3组合与排列问题的共同点,都要“从n个不同元素中,任取m(m≤n)个不同元素”;不同点:前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”.

○4根据定义区分排列问题、组合问题.

2.排列数与组合数:

(1)排列数的定义:一般地,我们把从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫

A表示.

做从n个不同元素中取出m个元素的排列数,用符号m

n

(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元

素中取出m 个元素的组合数,用符号m

n C 表示.

3.排列数公式与组合数公式: (1)排列数公式:

(1)(2)(1),m n A n n n n m =--???-+其中m ,n *∈N ,且m ≤n .

(2)全排列、阶乘、排列数公式的阶乘表示.

1全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. ○2阶乘:自然数1到n 的连乘积,叫做n 的阶乘,用n !表示,即!.n

n A n = ○3由此排列数公式(1)(2)(1)m

n

A n n n n m =---+L (1)(2)(1)()21()21n n n n m n m n m ?-?-??-+?-???=

-???L L L !

.()!

n n m =-

所以!.()!

m

n n A n m =

-

(3)组合数公式:!

.!()!

m

n n C m n m =

-

(4)组合数的两个性质: 性质1:.m

n m

n n

C C -=

性质2:1

1.m m

m n n n C C C -+=+

类型一.排列的定义

例1:判断下列问题是不是排列,为什么?

(1)从甲、乙、丙三名同学中选出两名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动.

(2)从甲、乙、丙三名同学中选出两名同学参加一项活动.

[解析] (1)是排列问题,因为选出的两名同学参加的活动与顺序有关. (2)不是排列问题,因为选出的两名同学参加的活动与顺序无关.

练习1:判断下列问题是不是排列,为什么?

(1)从2、3、4这三个数字中取出两个,一个为幂底数,一个为幂指数.

(2)集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x 轴上的

椭圆方程22221x y a b +=和多少个焦点在x 轴上的双曲线方程22

22 1.x y a b

-=

[解析] (1)是排列问题,一个为幂底数,一个为幂指数,两个数字一旦交换顺序,产生的结果

不同,即与顺序有关.

(2)第一问不是第二问是.若方程22

221x y a b +=表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大

小一定;在双曲线22221x y a b -=中,不管a >b 还是a

221x y a b

-=均表示焦点在x 轴上的双曲

线,且是不同的双曲线,故这是排列.

类型二.组合的定义

例2:判断下列问题是组合问题还是排列问题.

(1)设集合A ={a ,b ,c ,d ,e },则集合A 的子集中含有3个元素的有多少个? (2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价? [解析] (1)因为本问题与元素顺序无关,故是组合问题.

(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.

练习1:判断下列问题是组合问题还是排列问题.

(1)3人去干5种不同的工作,每人干一种,有多少种分工方法?

(2)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?

[解析] (1)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.

(2)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题. 类型三.排列数与组合数

例3:计算下列各式. (1)5

7;A

(2)2

12;A

(3)7

7.A

[解析] [答案] (1)5

7A =7×6×5×4×3=2520; (2)2

13A =13×12=156;

(3)7

7A =7×6×5×4×3×2×1=5040.

练习1:乘积m (m +1)(m +2)…(m +20)可表示为( ) A.2

m A B.21

m A

C.20

20m A +

D.21

20m A +

[答案] D

[解析] 排列的顺序为由小到大,故n =m +20,而项数是21故可表示为21

20.m A + 例4:计算98

100C [答案] 9810098

210010010010099

4950.21

C C C -?===

=?

练习2:计算97

2

95

9898982C C C ++

[答案] 原式1231223298989898989898992()()C C C C C C C C =++=+++=33

99100161700.C C +==

类型四.排列问题

例5:3个女生和5个男生排成一排.

(1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法?

[解析] (1)(捆绑法)因为3个女生必须排在一起,所以可以先把她们看成一个整体,这样同5个男生合在一起共有6个元素,排成一排有6

6A 种不同排法.对于其中的每一种排法,3个女生之间又都有33A 种不同的排法,因此共有63

634320A A ?=种不同的排法.

(2)(插空法)要保证女生全分开,可先把5个男生排好,每两个相邻的男生之间留出一个空档,这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把3个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于5个男生排成一排有5

5A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让3个女生插入都有

3

6A 种不同排法,因此共有535614400A A ?=种不同的排法.

练习1:3个女生和5个男生排成一排.

(1)如果两端都不能排女生,可有多少种不同的排法? (2)如果两端不能都排女生,可有多少种不同的排法?

[解析] (1)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有2

5A 种不同排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有26

56A A ?=14400种不同的排法.

(2)3个女生和5个男生排成一排有88A 种排法,从中减去两端都是女生的排法26

36A A ?种,就能得到两端不都是女生的排法种数,因此共有8

2

6

83636000A A A -?=种不同的排法.

类型五.组合问题

例6:高中一年级8个班协商组成年级篮球队,共需10名队员,每个班至少要出1名,不同的组队方式有多少种?

[解析] 本题实质上可以看作把2件相同的礼品分到8个小组去,共有1

2

88

C C +36=种方案.

练习1:有、甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这,三项任务,不同的选法共有多少种?

[解析] 共分三步完成,第一步满足甲任务,有2

10C 种选法,第二步满足乙任务有1

8C 种选法,第三步满足丙任务,有1

7C 种选法,故共有2

1

1

10872520C C C =种不同选法.

类型六.排列与组合综合问题

例7:某校乒乓球队有男运动员10人和女运动员9人,选出男女运动员各3名参加三场混合双

打比赛(每名运动员只限参加一场比赛),共有多少种不同参赛方法?

[答案] 362880

[解析] 从10名男运动员中选3名有310C 种,从9名女运动员中选3名有3

9C 种;选出的6名运动员去配对,这里不妨设选出的男运动员为A ,B ,C ;先让A 选择女运动员,有3种不同选法;B 选择女运动员的方法有2种;C 只有1种选法了,共有选法3×2×1=6种;最后这3对男女混合选手的出场顺序为3

3A ,根据分步计数原理,共有3

3

3

10936362880C C A ??=种不同参赛方法.

练习1:在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )

A.36个

B.24个

C.18个

D.6个 [答案] A

[解析] 由各位数字之和为偶数,可知所求三位数由2个奇数和1个偶数组成,由乘法原理,各位数字之和为偶数的数共有2

1

3

32336C C A ??=个.

1.89×90×91×…×100可表示为( ) A.10

100A B.11

100A

C.12

100A

D.13

100A

[答案] C 2.已知1

23

934,n n A A --=则n 等于( )

A.5

B.6

C.7

D.8 [答案] C

3.将6名学生排成两排,每排3人,则不同的排法种数有( ) A.36 B.120 C.720 D.1440 [答案] D

4.6名同学排成一排,其中甲、乙两人排在一起的不同排法有( ) A.720种 B.360种 C.240种 D.120种 [答案] C

5.若2

66,x

C C =则x 的值是( ) A.2

B.4

C.4或2

D.0

[答案] C 6.1

171010

r r C C +-+可能的值的个数为( )

A.1个

B.2个

C.3个

D.无数个 [答案] B

7.某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环赛,共需进行比赛的场数是( ) A.2

2

2

574C C C ++

B.222

574C C C

C.222

574A A A ++

D.2

16C

[答案] A

8.有3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法有( )

A.90种

B.180种

C.270种

D.540种 [答案] D

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

1.某乒乓球队共有男女队员18人,现从中选出男、女队员各1人组成一对双打组合,由于在男队员中有2人主攻单打项目,不参与双打组合,这样一共有64种组合方式,则乒乓球队中男队员的人数为( ) A.10人 B.8人 C.6人 D.12人 [答案] A

2.将4个不同的小球随意放入3个不同的盒子,使每个盒子都不空的放法种数是( )S A.13

34A A B.23

43C A

C.32

42C A

D.132

442C C C

[答案] B

3.有3名男生和5名女生照相,如果男生不排在是左边且不相邻,则不同的排法种数为( ) A.3

5

38A A B.53

54A A

C.53

55A A

D.53

56A A

[答案] C

4.8位同学,每位相互赠照片一张,则总共要赠________张照片. [答案] 56

5.5名学生和5名老师站一排,其中学生不相邻的站法有________种. [答案] 86400

6.由0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于百位数字的数共有________个.

[答案] 300

7.有10个三好学生的名额,分配给高三年级6个班,每班至少一个名额,共有________种不同的分配方案.

[答案] 126

8.从10名学生中选出5人参加一个会议,其中甲、乙两人有且仅有1人参加,则选法种数为________.

[答案] 140

能力提升

1.(2015四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )

A.144个

B.120个

C.96个

D.72个

[答案] B

2.(2014四川卷)方程2

2

ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )

A.60条

B.62条

C.71条

D.80条

[答案] B

3.(2014辽宁卷)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .24

[答案] D

4.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )

A.56个

B.57个

C.58个

D.60个

[答案] C

5.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)

【答案】 96

6.(2014北京卷)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.

[答案] 36

7.(2015上海卷)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_________(结果用数值表示).

[答案] 120

8.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax 2+bx +c =0?其中有实根的方程有多少个?

[答案] 先考虑组成一元二次方程的问题:首先确定a ,只能从1,3,5,7中选一个,有1

4A 种,然后从余下的4个数中任选两个作b 、c ,有2

4A 种.所以由分步计数原理,共组成一元二次方程:

124448A A ?=个.方程更有实根,必须满足240.b ac -≥

分类讨论如下:当c =0时,a ,b 可在1,3,5,7中任取两个排列,有2

4A 个;当c ≠0时,分析

判别式知b 只能取5,7.当b 取5时,a ,c 只能取1,3这两个数,有2

2A 个;当b 取7时a ,c 可取1,3或1,5这两组数,有2

22A 个,此时共有2

2

222A A +个.由分类计数原理知,有实根的一元二次方程共有:2

2

2

4222A A A ++=18个.

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

高考数学专题七:排列组合二项式定理教师版教师原创 全国通用

高考数学专题七:排列、组合、二项式定理 一、高考考试说明 计数原理 (1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. (2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题. (3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. (4)会用二项式定理解决与二项展开式有关的简单问题. 二、核心知识点归纳: 一、分类加法计数原理与分步乘法计数原理 1.分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同方法. 2.分步乘法计数原理 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法. 注意: 1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的. 2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的. 二、排列与组合 1.排列与排列数 (1)排列: 从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出

m个元素的一个排列. (2)排列数: 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m 个元素的排列数,记作A错误!. 2.组合与组合数 (1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m 个元素的一个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C错误!. 3.排列数、组合数的公式及性质 注意: 1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关. 2.计算A错误!时易错算为n(n—1)(n—2)…(n—m). 3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数. 4.排列问题与组合问题的识别方法:

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

高中数学竞赛_排列组合与概率【讲义】

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用 m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地 0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为 n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---222110.其

组合数学中的概率论方法 (1)

组合数学中的概率论方法 概率方法的背景和出发点— 当今科学的发展表明:概率方法是组合数学中最强大和应用广泛的数学工具。导致它迅速发展的一个主要原因在于理论计算机科学与统计物理学中重要研究对象的随机性。 概率方法的基本出发点可以描述如下: 为了证明具有某一个组合结构性质的存在性,人们需要构造一个概率空间并且用它证明:在这个空间中随机选取的一个具有此组合性质的元素的概率值为正。 历史上最早运用这个方法的是伟大的数学家P.Erdos !在过去的五十多年里面他对于这门学问的贡献是如此之大,以至于人们称之为“P.Erdos 方法”。他在这个邻域里面的众多深邃的研究结果不但多如天上的繁星,更因为许多著名的公开问题和猜想而成为这门学科蓬勃发展的发动机。 这个讲义不可能完全介绍这门学科的全貌,它主要是介绍概率方法在组合数学邻域中的运用,尤其强调通过典型例子的形式来介绍这一方法。 知识背景: 概率是描述事件发生可能性大小的数量指标,它是逐步形成可发展完善起来的。最初人们讨论的是古典概型(随机)试验中事件发生的概率。所谓古典概型试验是指样本空间中的点的样本点的个数是有限的且每一个样本点(组成事件)发生的可能性是相同的,简称为有限性与等可加性。例如:掷一枚均匀骰子的试验与从一个装有n 个相同(编了号)的求中随机模一个球的试验都是古典概型试验。对于古典概型试验,人们给出概率的如下定义: 定义1.设试验E 是古典概型的,其样本空间Ω由n 个样本点组成,其中一事件A 由r 个样本点组成,则定义事件A 的概率为 n r ,记为 n r A A P =Ω= 中样本点数目中样本点数目)( 古典概率有下面几个基本性质: (1) 对于任意一个事件A ,有;1)(0≤≤A P (2) .1)(=ΩP (3) 设m A A A ,...,,21为互斥的m 个事件,则有 ∑===m i i m i i A P A P 1 1 )()( 注意:在实际应用当中,古典概型受到限制!因为他只用于有限概率空间。而对于无限的情形,则要用到一点定义:

人教版的高中的数学《排列组合的》教案设计

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计

例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 184 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 (A ) 511 (B )681 (C )3061 (D )408 1 例11、某一批花生种子,如果每1粒发牙的概率为4 5,那么播下4粒种子恰有2粒发芽的概率是( ) A.16 625 B. 96625 C. 192625 D. 256625

在概率的计算中的排列组合

预备知识 在概率的计算中经常要用到一些排列组合知识,也常常用到牛顿二项式定理。 这里罗列一些同学们在中学里已学过的有关公式,并适当作一点推广。 一. 两个原理 1. 乘法原理: 完成一项工作有m 个步骤,第一步有1n 种方法,第二步有2n 种方法,…, 第m 步有m n 种方法,且完成该项工作必须依次通过这m 个步骤, 则完成该项工作一共有 1n 2n …m n 种方法,这一原理称为乘法原理。 2. 加法原理: 完成一项工作有m 种方式,第一种方式有1n 种方法,第二种 方式有2n 种方法,…,第m 种方式有m n 种方法,且完成该项工作只需 选择这m 种方式中的一种,则完成这项工作一共有 1n +2n +…+m n 种方法,这一原理称为加法原理。 二. 排列: 从n 个元素里每次取出r 个元素,按一定顺序排成一列,称为 从n 个元素里每次取r 个元素的排列,这里n 和Z 。均为正整数(以 下同)。 当这n 个元素全不相同时,上述的排列称为无重复排列,我 们关心的是可以做成多少个排列,即排列数。 对于无重复排列,要求当 时 r n 称为选排列,而当 r =n 时称为全排列。我们记排列数分别为 即将全排列看成选排列的特例。 利用乘法原理不难得到 由阶乘的定义

由阶乘的定义 将上面的n个不同的元素改为n类不同的元素,每一类元素 都有无数多个。今从这n类元素中取出r个元素,这r个元素可 以有从同一类元素中的两个或两个以上,将取出的这r个元素dl 成一列,称为从n类元素中取出r个元素的可重复排列,排列数记 作,由乘法原理得 显然,此处r可以大于n 例3 将三封信投入4个信箱,问在下列两种情形下各有几 种投法? 1)每个信箱至多只许投入一封信; 2)每个信箱允许投入的信的数量不受限制。 解1)显然是无重复排列问题,投法的种数为 2)是可重复排列问题,投法的种数为 三、组合 从“个元素中每次取出r个元素,构成的一组,称为从n个元 素里每次取出r个元素的组合。 设这n个元素全不相同,即得所谓无重复组合,我们来求组合数,记作 将一个组合中的r个元素作全排列,全排列数为 , 所有组合中的元素作全排列,共有 个排列,这相当于从n个元素里每次取r个元素的选排列,排列总数为 故有

人教版高中数学排列组合教案设计

实用文档 排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

实用文档 2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法. 一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二类办法中有m种不同的方法,……,21在第n 类办法中有m种不同的方法.那么完成这件事共有N=m十m2n1十…十m种不同的方法.n(2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法? 板书:图

☆排列组合解题技巧归纳总结89231资料讲解

排列组合解题技巧归纳总结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学内容 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 1 m种不同的方法,在第2类办法中有2 m种不同的方法,…,在第n类办法中有m种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 1 m种不同的方法,做第2步有2m种不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3 C 然后排首位共有1 4 C 最后排其它位置共有3 4 A 由分步计数原理得113 434288 C C A=

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

六年级奥数试题-排列组合(教师版)

第十九讲排列组合 一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n个不同的元素中取出m(m n ≤)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n个不同的元素中取出m(m n ≤)个元素的所有排列的个数,叫做从n个不同的元素 P. 的排列中取出m个元素的排列数,我们把它记做m n 根据排列的定义,做一个m元素的排列由m个步骤完成: 步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法; 步骤2:从剩下的(1 n-)种方法; n-)个元素中任取一个元素排在第二位,有(1

…… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有 11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????L L ()() . 在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算. 三、组合问题 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合. 从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合. 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取 出m 个不同元素的组合数.记作m n C . 一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法. 根据乘法原理,得到m m m n n m P C P =?.

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同 元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元 素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---2221 10.其中第r+1

高中数学排列组合概率练习题

高中数学排列组合概率练习题 1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是 (A ) 37 (B ) 47 (C ) 114 (D ) 1314 答案:D 解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是3 9C .所以3 9 613114 C - = . 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有 (A )6种 (B )9种 (C )11种 (D )13种 答案:B 解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法. 3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 (A )30个 (B )20个 (C )35个 (D )15个 答案:A 解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302 32 5=?C C 个,于是最多有30个交点. 推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有2 2 m n C C ?个 变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点. 答案:4 12C 4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 (A ) 15 (B ) 25 (C ) 35 (D ) 45 111213212223313233a a a a a a a a a ?? ? ? ???

相关主题
文本预览
相关文档 最新文档