当前位置:文档之家› 赏析解三角形中的最值问题

赏析解三角形中的最值问题

赏析解三角形中的最值问题
赏析解三角形中的最值问题

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意2 2 ,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中为ABC V 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知的情况下,配合均值不等式可得到和的最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?<

三角函数解三角形题型归类

三角函数解三角形题型归类 一知识归纳: (一)任意角、弧度制及任意角的三角函数 1.角的概念 (1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = . (3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad , 1 rad =? ?? ?? ? 180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12 lr

=12 |α|·r 2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点 P (x ,y ),那么sin α= ,cos α= ,tan α = . (2)任意角α的终边与单位圆交于点P (x ,y )时,sin α =y ,cos α=x ,tan α=y x (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念 1.三角函数诱导公式? ?? ???k 2π+α(k ∈Z)的本质 奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角). 2.两角和与差的三角函数公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=tan α±tan β1?tan αtan β. 3.二倍角公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α,

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

高考数学大题规范解答-(四)解三角形的答题模板

正弦定理、余弦定理及其在现实生活中的应用是高考的热点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及测量、几何计算有关的实际问题.正、余弦定理的考查常与同角三角函数的关系、诱导公式、和差倍角公式甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题. “大题规范解答——得全分”系列之(四) 解三角形的答题模板 [典例] (2012江西高考·满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . 已知A =π4 ,b sin ????π4+C -c sin ????π4+B =a . (1)求证:B -C =π2 ; (2)若a =2,求△ABC 的面积. [教你快速规范审题] 1.审条件,挖解题信息 观察条件 ―→A =π4,b sin ????π4+C -c sin ????π4+B =a ――――――――――→等式中既有边又有角,应统一 sin B sin ????π4+C -sin C sin ??? ?π4+B =sin A 2.审结论,明解题方向

观察所求结论 ―→求证:B -C =π2――――――――――――――――→应求角B -C 的某一个三角函数值 sin (B -C )=1或cos (B -C )=0. 3.建联系,找解题突破口 4A ????→代入= ―――――――――――――→ sin (B -C )=1――――――――――――――→ 由0

解三角形中相关的取值范围问题

解决与三角形相关的取值范围问题 例1:在锐角ABC 中,2A B =,则c b 的取值范围是 例2:若ABC 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则sin cos B B +的取值范围是 例3:在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列。(1)求B 的大小。 (2)若5b =,求ABC 周长的取值范围。 例4:在ABC 中,2222 3a b c ab +=+,若ABC ,则ABC 的面积的最大值为

例5:(2008,江苏)满足 2,AB AC =的ABC 的面积的最大值是 例6:已知角,,A B C 是ABC 三个内角,,,a b c 是各角的对边,向量 (1cos(),cos )2A B m A B -=-+, 5(,cos )82A B n -=,且98 m n ?= (1)求tan tan A B ?的值。 (2)求 222 sin ab C a b c +-的最大值。 通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以及技巧和方法可以提高我们解题的能力。希望本文能对同学们复习备考有所帮助。 巩固练习 1.在ABC 中,2,1a c ==,则C ∠的取值范围为 2.若钝角三角形的三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是

解三角形练习题(含答案)

一、选择题 1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为() A、正三角形 B、直角三角形 C、等腰三角形或直角三角形 D、等腰直角三角形 2、已知中,,,则角等于 A . B . C . D . 3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是() A.(2,+∞) B.(0,2) C.(2,) D.() 4、,则△ABC的面积等于 A . B . C .或 D .或 5、在中,,则角C的大小为 A.300 B.450 C.600 D.1200 6、的三个内角、、所对边长分别为、、,设向量 ,,若,则角的大小为 () A . B . C . D . 7、若ΔABC的内角A、B、C所对的边a、b、c 满足,则ab的值为() A . B . C.1 D . 8、在中,若,且,则是( ) A.等边三角形 B.等腰三角形,但不是等边三角形 C.等腰直角三角形 D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则 = A . B . C . D . 10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ). A.等边三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 11、在△中,,,,则此三角形的最大边长为() A. B. C. D. 12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c 2b2)tanB=ac,则角B=() A . B . C .或 D .或 13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则 () A . B . C . D . 14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为() A、1 B、2 C、3 D、0 15、在钝角中,a,b,c分别是角A,B,C 的对边,若,则最大边c的取值范围是 ( ) ( A . B . C . D . 16、(2012年高考(上海理))在中,若,则的形状是() A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定. 17、在△ABC中,a=15,b=10, ∠A=,则() A . B . C . D .

高考大题---解三角形中有关最值问题的题型汇总

解三角形中有关最值问题的题型汇总 1.(2010年浙江高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,设S 为ABC ?的面积,满足)(4 3222c b a S -+=。 (1)求角C 的大小; (2)求B A sin sin +的最大值。 2(2011年湖南高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,且满足C a A c sin sin = (1) 求角C 的大小; (2) 求)4cos(sin 3π +-B A 的最大值,并求取得最大值时角A ,B 的大小。 3.(2011年全国新课标2)在ABC ?中,?=60B ,AC=3,求AB+2BC 的最大值。 4.(2012太原模拟)ABC ?中,c b a ,,C B A 所对的边分别为,,角,设向量),(a b a c m --=→,),(c b a n +=→,若→m 平行于→n 。 (1)求角B 的大小; (2)求C A sin sin +的最大值。 5(2012年浙江宁波模拟)已知函数θθπ2cos )4( sin 32)(2-+=x f ,A 为ABC ?中的最小内角,且满足32)(=A f 。 (1)求角A 的大小; (2)若BC 边上的中线长为3,求ABC S ?的最大值。 6. (2013年全国新课标2)在ABC ?中,c b a ,,C B A 所对的边分别为 ,,角,已知B c C b a sin cos += (1)求B ; (2)若b=2, 求ABC S ?的最大值。

7(2014年陕西高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角。 (1)若c b a ,,成等差数列,证明sinA+sinC=2sin(A+C); (2)若c b a ,,成等比数列,求cosB 的最小值。 8.(2015年山东高考)设)4(cos cos sin )(2π+ -=x x x x f (1)求)(x f 的单调区间; (2)在锐角ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)2(A f =0,a=1,求ABC S ?的最大值。 9.(2016年北京高考)在ABC ?中,ac b c a 2222+=+ (1)求角B 的大小; (2)C A cos cos 2+求的最大值。 10(2016高考山东理数)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a+b=2c; (Ⅱ)求cosC 的最小值. 11.(2016河南中原名校一联,理10)在ABC ?中,角A ,B ,C 的对边分别为a ,b , c ,已知向量()cos ,cos m A B = ,(),2n a c b =- ,且//m n . (1)求角A 的大小; (2)若4=a ,求ABC S ?的最大值。 12.(2016绥化模拟)在ABC ?中,232cos 2 --x x C 是方程的一个根。 (1)求角C ; (2)当a+b=10时,求ABC ?周长的最小值。

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角” “角转边”,另外要注意a c,ac,a2 c 2三者的关系 . 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式” ,其中的核心是“变角” ,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式 . a b c 1、正弦定理:2R,其中R为ABC 外接圆的半径 sin A sinB sinC 正弦定理的主要作用是方程和分式中的边角互化 . 其原则为关于边,或是角的正弦值是否具备齐次的特征 . 如果齐次则可直接进行边化角或是角化边,否则不可行学/科-+ 网 2 2 2 2 2 2 例如:(1) sin A sin B sin AsinB sin C a b ab c (2)bcosC ccosB a sin B cosC sinC cosB sin A (恒等式) bc sin B sinC (3) a 2 sin 2 A a sin A 2、余弦定理:a2 b2 c2 2bc cos A 22 变式:a2b c 2bc 1 cosA 此公式在已知a, A的情况下,配合均值不等式可得到 b c和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可 . 由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: a b A B sinA sinB cosA cosB 其中由A B cosA cosB 利用的是余弦函数单调性,而A B sinA sinB 仅在一个三角形内有效. 5 、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值

三角形中的最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3π 时,cos 2cos 2B C A ++取得最大值 3 2 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函数 在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处理三角形中的三角函数的求值、化简、证明、判定三角形的形状及解三角形等问题中

三角形解题技巧及例题

三角形解题技巧及例题 The Standardization Office was revised on the afternoon of December 13, 2020

三角形解题口诀及例题 角平分线四连线,边垂折叠全等现. 垂线要把三线连,平行等腰来构建. 垂直平分若出现,线上一点两相连. 六十三十四十五,等边直角作三角. 要证线段倍与半,延长缩短与直角. 两线之和等一线,截长补短试试看. 线段和差比大小,三角形中来相见. 三角形中有中线,延长中线等中线. 中点若与中点见,两点相连中位线 1.在△ABC中,AD是△ABC的角平分线,所示,E、F分别是AB、AC上的 =DF. 点,且∠EDF+∠BAC=180°,求证:DE 边垂作全等Array证明:作DM⊥AB于点M,作DN⊥AC于点N,如右图所示, 则∠EMD=∠FND=90°, ∵AD平分∠BAC, ∴DM=DN, ∵∠EDF+∠BAC=180°, ∴∠AED+∠AFD=180°, 又∵∠DFN+∠AFD=180°, ∴∠DEM=∠DFN, 在△EMD和△FND中, , ∴△EMD≌△FND(AAS), ∴DE=DF.

2.在△ABC中,AD为△ABC的角平分线.如图,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD. 折叠作全等 解:在AB上截取AE=AC,连接DE, ∵AD为△ABC的角平分线, ∴∠CAD=∠EAD, 在在△AED和△ACD中 ∴△AED≌△ACD(SAS), ∴∠C=∠AED,CD=ED, ∵∠C=2∠B, ∴∠AED=2∠B, ∵∠AED=∠B+∠EDB, ∴∠B=∠EDB, ∴ED=EB, ∴EB=CD, ∵AB=AE+EB, ∴AB=AC+CD. 3.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;

2020年高考数学答题模板(最终版)

高考数学解答题常考公式及答题模板 (文理通用) 嬴本德 题型一:解三角形 1、正弦定理: R C c B b A a 2sin sin sin === (R 是ABC ?外接圆的半径) 变式①:?????===C R c B R b A R a sin 2sin 2sin 2 变式②:?? ?? ? ???? == = R c C R b B R a A 2sin 2sin 2sin 变式③: C B A c b a sin :sin :sin ::= 2、余弦定理:???????-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 22222 22222 变式:???? ? ??????-+= -+=-+= ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2 22222222 3、面积公式:A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 4、射影定理:?? ? ??+=+=+=A b B a c A c C a b B c C b a cos cos cos cos cos cos (少用,可以不记哦^o^) 5、三角形的内角和等于 180,即π=++C B A 6、诱导公式:奇变偶不变,符号看象限 利用以上关系和诱导公式可得公式:??? ??=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和 ??? ??-=+-=+-=+A C B B C A C B A cos )cos(cos )cos(cos )cos( 7、平方关系和商的关系:①1cos sin 22=+θθ ②θ θ θcos sin tan = 8、二倍角公式:①θθθcos sin 22sin = ②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ?降幂公式:22cos 1cos 2θθ+=,2 2cos 1sin 2θ θ-= ③θ θθ2tan 1tan 22tan -= 8、和、差角公式: ①?? ?-=-+=+β αβαβαβ αβαβαsin cos cos sin )sin(sin cos cos sin )sin( ②???+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos() ) ③??? ??? ? +-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2 b a a b +≤ ),(+ ∈R b a ②2 2??? ??+≤b a ab ) ,(+ ∈R b a ③222b a ab +≤ ),(R b a ∈ 注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ?面积的最大值时。 ?答题步骤: ①抄条件:先写出题目所给的条件;(但不要抄题目) ②写公式:写出要用的公式,如正弦定理或余弦定理; ③有过程:写出运算过程; ④得结论:写出结论;(不会就猜一个结果) ⑤猜公式:第二问一定不能放弃,先写出题目所给的条件,然后再写一些你认为可能考到的公式,如均值不等式或面积公式等。 奇:2π 的奇数倍 偶:2π 的偶数倍

解三角形经典练习题集锦(附答案)

解三角形 一、选择题 1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A s i n s i n 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,222_________。 3.在△ABC 中,若====a C B b 则,135,30,200_________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26- =AB 0 30C =,则AC BC +的最大值是 ________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证:)cos cos ( a A b B c a b b a - =- 3 .在锐角△ABC 中,求证: C B A C B A c o s c o s c o s s i n s i n s i n ++>++。 4.在△ABC 中,设,3 ,2π = -=+C A b c a 求B sin 的值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( ) A .1:2:3 B .3:2:1 C .12 D .2: 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .0 90 B .0 60 C .0 135 D .0 150 6.在△ABC 中,若14 13 cos ,8,7= ==C b a ,则最大角的余弦是( ) A .51- B .61- C .7 1 - D .81- 7.在△ABC 中,若tan 2 A B a b a b --=+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角 形或直角三角形 二、填空题

三角函数与解三角形中地高考热点问题

热点探究课(二) 三角函数与解三角 形中的高考热点问题 [命题解读] 从近五年浙江卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图象与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用. 热点1 三角函数的图象与性质(答题模板) 要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换. (本小题满分14分)已知函数f (x )=23sin ? ????x 2+π4·cos ? ?? ?? x 2+π4- sin(x +π). (1)求f (x )的最小正周期; (2)若将f (x )的图象向右平移 π 6 个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值. 【导学号:51062131】 [思路点拨] (1)先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期. (2)先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值. [规范解答] (1)f (x )=23sin ? ????x 2+π4·cos ? ????x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ? ????x +π3,5分 于是T = 2π 1 =2π.6分 (2)由已知得g (x )=f ? ????x -π6=2sin ? ?? ??x +π6.8分

三角形解题技巧与例题

三角形解题口诀及例题 角平分线四连线,边垂折叠全等现. 垂线要把三线连,平行等腰来构建. 垂直平分若出现,线上一点两相连. 六十三十四十五,等边直角作三角. 要证线段倍与半,延长缩短与直角. 两线之和等一线,截长补短试试看. 线段和差比大小,三角形中来相见. 三角形中有中线,延长中线等中线. 中点若与中点见,两点相连中位线 1.在△ABC中,AD是△ABC的角平分线,所示,E、F分别是AB、AC上的点,且∠EDF+∠BAC=180°,求证:DE=DF. 证明:作DM⊥AB 于点M,作DN⊥AC于点N,如右图所示, 则∠EMD=∠FND=90°, ∵AD平分∠BAC, ∴DM=DN, ∵∠EDF+∠BAC=180°, ∴∠AED+∠AFD=180°, 又∵∠DFN+∠AFD=180°, ∴∠DEM=∠DFN, 在△EMD和△FND中, , ∴△EMD≌△FND(AAS), ∴DE=DF. 2.在△ABC中,AD为△ABC的角平分线.如图,∠C≠90°,如果∠C=2∠B,求证:AB 边垂作全等

=AC+CD. 解:在AB上截取AE=AC,连接DE, ∵AD为△ABC的角平分线, ∴∠CAD=∠EAD, 在在△AED和△ACD中 ∴△AED≌△ACD(SAS), ∴∠C=∠AED,CD=ED, ∵∠C=2∠B, ∴∠AED=2∠B, ∵∠AED=∠B+∠EDB, ∴∠B=∠EDB, ∴ED=EB, ∴EB=CD, ∵AB=AE+EB, ∴AB=AC+CD. 3.如图,点O是△ABC边AC上的一个动点,过O点作直线MN ∥BC .设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF; 证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F, 折叠作全等

解三角形的答题模板

解三角形的答题模板 正弦定理、余弦定理及其在现实生活中的应用是高考的热点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及测量、几何计算有关的实际问题.正、余弦定理的考查常与同角三角函数的关系、诱导公式、和差倍角公式甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题. [典例] (满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4 ,b sin ? ????π4+C -c sin ? ?? ??π4 +B =a . (1)求证:B -C =π2 ; (2)若a =2,求△ABC 的面积. 规范审题模板 1.审条件,挖解题信息 观察条件―→A =π4,b sin ? ????π4+C -c sin ? ?? ??π4+B =a ――――――――――→等式中既有边又有角,应统一 sin B sin ? ????π4+C -sin C sin ? ?? ??π4+B =sin A 2.审结论,明解题方向 观察所求结论―→求证:B -C =π2 ――――――――――――――――→应求角B -C 的某一个三角函数值 sin B -C =1或cos B -C =0. 3.建联系,找解题突破口 4A ????→代入=

―――――――――――――→ sin B -C =1――――――――――――――→ 由0

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a ,b ,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?,求b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1cos 2B =,而0B π<<,所以3 B π = (2)因为1 sin 2 ABC S ac B ?= = 所以4ac = 由余弦定理得2 2 2 2 2 2scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++= 即有sin sin cos 0A B A B = 因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3 B π =. (2)由余弦定理,有2 2 2 2cos b a c ac B =+-. 因为11,cos 2a c B +==,有2 2113()24 b a =-+. 又01a <<,于是有 2114b ≤<,即有1 12 b ≤<. 3、已知(2cos ,1),(cos ,)m x x n x y =+=- ,满足0m n ?= . (I )将y 表示为x 的函数()f x ,并求()f x 的最小正周期; (II )已知,,a b c 分别为ABC ?的三个内角,,A B C 对应的边长,若3)2 A ( =f ,且2a =,求b c +的取值范围.

福建省泉州第五中学高三数学:微专题《隐含圆的解三角形最值问题》教学设计

微专题《隐含圆的解三角形最值问题》教学设计 泉州五中数学组教学内容:《隐含圆的解三角形最值问题》 课型:复习课 设计理念:以学生发展为本,体现学生主体地位;以学科素养为根,培养数学运算能力。 一、教学内容分析 本节课是在系统复习《解三角形》之后进行的微专题教学,主要针对解三角形中的最值问题,是对《解三角形》的进一步深化、提升。爱因斯坦曾说:提出一个问题往往比解决一个问题更为重要。本节课将以两类隐藏圆的三角形为背景设置最值问题,从试题编拟的视角进行演绎并呈现于课堂,从中总结、归纳解三角形中求最值的常见思路、方法.通过本节课的学习可以从命题的角度居高临下地认识解三角形最值问题,从而让学生学会在制高点处思考、解题.同时,本节课也将渗透逻辑推理、数学建模、直观想象、数学运算等数学素养.因此,学好本节课将有利于学生形成规律性的知识网络和提高数学思维能力. 二、学习者特征分析 学生已经系统复习并掌握了三角函数的性质、三角恒等变换及解三角形等知识,为微专题《解三角形的最值问题》的复习奠定了基础。同时,学生的思维普遍活跃,对进一步探索解三角形中的最值问题有了比较浓厚的兴趣,有了较强的求知欲望.但学生的学习仅仅停留于解题,往往只能就题论题,且从未曾以命题者的角度研究过试题,未能迅速洞察问题的本质。 三、教学目标设计 本着教学内容的特点和高三学生的认知能力与数学思维特征,设定的教学目标为:能较熟练地应用正余弦定理解三角形;能较熟练应用三角函数的性质、基本不等式、导数等求解最值问题。在经历解题视角的变换中,突破成规,感受数学的系统特征、辩证特征、开放特征;在经历编制试题的过程中,培养勇于创新,多方位审视问题的创造技巧,从而树立科学的治学态度。并通过例题与变式题的解题训练,使数学解题意志、习惯和个性素养得以发展。 四、教学重难点设计 基于教材内容的地位、课程标准的要求、根据学生的认知水平和学习经验,确定本节课的学习重难点:

2019高考数学黄金解题模板专题19 解三角形

【高考地位】 正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】 类型一 判断三角形的形状 使用情景:已知边与三角函数之间的等式关系 解题模板:第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式; 第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状; 第三步 得出结论. 例1在ABC ?中,已知cos cos a B b A =,那么ABC ?一定是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 【答案】A 考点:正弦定理. 【点评】解决这类问题的方法通常有两种思路:一是将等式两边的边运用正弦定理全部转化为正弦角的形式,使得式子只有三角形式;二是运用余弦定理将右边的cos B 化为边的形式,使得等式只有边与边之间的等式关系. 【变式演练1】在ABC ?中,角C B A ,,所对的边分别为c b a ,,,若 A b c cos <,则ABC ?为. A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A

【解析】 试题分析:根据 定理: A B C b c co s s i n s i n <=,那么A B C co s s i n s i n =,根据π=++C B A ,所以()B A C +=s i n s i n ,所以()A B B A cos sin sin <+,整理为:0cos sin A ,所以0cos

相关主题
文本预览
相关文档 最新文档