当前位置:文档之家› MMC-HVDC系统数学模型及其控制策略

MMC-HVDC系统数学模型及其控制策略

MMC-HVDC系统数学模型及其控制策略
MMC-HVDC系统数学模型及其控制策略

被控过程的数学模型

第5章思考题与习题 5-1 什么是被控过程的数学模型 解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 5-2 建立被控过程数学模型的目的是什么过程控制对数学模型有什么要求解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 5-3 建立被控过程数学模型的方法有哪些各有什么要求和局限性解答:P127 1)方法:机理法和测试法。 2)机理法: 测试法: 5-4 什么是流入量什么是流出量它们与控制系统的输入、输出信号有什么区别与联系 解答: 1)流入量:把被控过程看作一个独立的隔离体,从外部流入被控过程的物质或能量流量称为流入量。 流出量:从被控过程流出的物质或能量流量称为流出量。 2)区别与联系: 控制系统的输入量:控制变量和扰动变量。 控制系统的输出变量:系统的被控参数。

5-5 机理法建模一般适用于什么场合 解答:P128 对被控过程的工作机理非常熟悉,被控参数与控制变量的变化都与物质和能量的流动与转换有密切关系。 5-6 什么是自衡特性具有自衡特性被控过程的系统框图有什么特点 解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。 5-7 什么是单容过程和多容过程 解答: 1)单容:只有一个储蓄容量。 2)多容:有一个以上储蓄容量。 5-8 什么是过程的滞后特性滞后又哪几种产生的原因是什么 解答: 1)滞后特性:过程对于扰动的响应在时间上的滞后。 2)容量滞后:多容过程对于扰动的响应在时间上的这种延迟被称为容量滞 后。 纯滞后:在生产过程中还经常遇到由(物料、能量、信号)传输延迟引 起的纯滞后。 5-9 对图5-40所示的液位过程,输入量为1Q ,流出量为2Q 、3Q ,液位h 为被控参数,水箱截面为A ,并设2R 、3R 为线性液阻。 (1)列写液位过程的微分方程组; (2)画出液位过程的框图; (3)求出传递函数)()(1s Q s H ,并写出放大倍数K 和时间常数T 的表达式。 解答:

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

温度控制系统研究背景与现状

温度控制系统研究背景与现状 1 研究背景 (1) 2 国内外现状 (1) 定值开关温度控制法 (1) PID线性温度控制法 (2) 智能温度控制法 (3) 国内外实例 (4) 1 研究背景 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密地与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。自18世纪工业革命以来,工业过程离不开温度控制。温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。 2 国内外现状 温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种: 定值开关温度控制法 所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通

空调温度控制系统的建模与仿真设计

过程控制工程课程设计 课题名称空调温度控制系统的建模与仿真 学院 专业 班级 学生 学号 时间 6 月13日至 6月19日 指导教师(签字) 2011 年 6 月 19 日

目录 第一章设计题目及要求 (1) 1.1设计背景 (1) 1.2设计任务 (1) 1.3主要参数 (2) 1.3.1恒温室: (2) 1.3.2热水加热器ⅠSR、ⅡSR: (2) 1.3.3电动调节阀: (2) 1.3.4温度测量环节: (2) 1.3.5调节器: (2) 第二章空调温度控制系统的数学模型 (3) 2.1恒温室的微分方程 (3) 2.1.1微分方程的列写 (3) 2.1.2 增量微分方程式的列写 (5) 2.2 热水加热器对象的微分方程 (5) 2.3敏感元件及变送器的特性 (6) 2.3.1敏感元件的微分方程 (7) 2.3.2变送器的特性 (7) 2.3.3敏感元件及变送器特性 (8) 2.4 执行器的特性 (8) 第三章控制系统方案设计 (9) 3.1系统分析 (9) 3.2 单回路控制系统设计 (10) 3.2.1单回路控制系统原理 (10) 3.2.2单回路系统框图 (10) 3.3串级控制系统的设计 (11) 3.3.1串级控制系统原理 (11) 3.3.2串级控制系统框图 (12) 第四章单回路系统调节器参数整定 (13) 5.1.1、PI控制仿真 (16) 5.1.2 PID控制仿真 (17) 5.1.3、PI与PID控制方式比较 (17) 第六章设计小结 (18) 参考文献 (18)

第一章设计题目及要求 1.1设计背景 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。 系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间。本设计中假设送风量保持不变。 1.2设计任务 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

发酵温度控制系统的数学模型及仿真

2 发酵罐温度控制系统的数学模型 发酵罐温度控制系统实验平台是以一个7L 发酵罐为主体,罐壁设置有冷却套,相应的设立测温点和调节阀,通过阀门调节冷却套内冷却液的流量来实现对发酵罐内温度的控制,发酵罐示意图如图1所示。 图1 发酵罐示意图 在白酒发酵的过程中,发酵罐内由于酵母的作用,在发酵过程中会产生生化反应热,热量的逐渐释放导致发酵温度逐渐上升。在整个发酵过程中,发酵温度必须根据具体的生产工艺进行严格控制,罐内温度通过控制冷却夹套内的冷却水的流量进行降温,整套系统没有外部加热措施。罐内发酵反应热有一部分使罐内温度升高,一部分热量散失到罐壁和冷媒中,在此不考虑发酵体与罐壁之间的热量传递,罐内的热平衡方程为: ? =-Tdt mC Q Q 21 (2-1) 式中 1Q :发酵过程产生的热量;2Q :发酵过程散失的热量;m :反应物质量 C :发酵罐内反应物的比热容;T 发酵罐温度。 公式1-1可以写成: ? =?Tdt MC Q (2-2) 式中 21Q Q Q -=? 对公式1-2求拉普拉斯变换得: s m C T Q S S )()(=? (2-3) 即可由罐内的热平衡方程式可以得到发酵罐内的传递函数为: m C s Q T G S S S 1 ) ()()(= ?= (2-4) 考虑到在实际的过程中的干扰因素,所以被控对象的数学模型中添加一个滞后环节。因此,用一阶惯性加纯滞后环节来表示,其传递函数为 mCs e Q T G s S S S τ-= ?= ) ()()( (2-5)

3 模糊预测控制器的设计及仿真结果 针对发酵罐中发酵对象大时滞、大时变、严格的非线性、多变量耦合等特点。采用了将模糊控制与预测控制结合的方法,利用模糊建模方法建立对象预测模型。将设定值与预测输入值之间的预测误差值及预测误差值的变化率作为模糊控制器的输入,模糊控制器再根据模糊规则来推理得到控制量,通过执行机构控制被控对象。其结构图如图2所示。 图2模糊控制系统结构图 3.1预测控制部分 预测控制算法与动态矩阵控制算法类似, 主要通过预测模型,利用系统的输入输出数据预测未来时刻系统输出,作为糊控制器的输入。 3.1.1预测模型 假设被控对象基于阶跃响应的预测模型向量为T N a a a a ],...,,[21=,N 为建模时域。则在k 时刻对系统施加一个控制增量Δu(k)时,即可算出在其作用下未来时刻N 个输出值的向量形式: )()()(k u a k y k y po m ??+= (3-1) 式中)(k y po 为k 时刻未加Δu(k)时的初始预测值,)(k y m 为k 时刻在Δu(k)作用下的模型预测值。 3.1.2在线校正 当k 时刻对系统施加控制u(k)时,利用预测模型即可得出未来时刻的输出预测值 )(k y m 。但是,由于实际存在的模型时变、非线性、环境干扰等因素的影响,预测值会偏离 实际值,故在k+l 时刻要利用系统的实际输出y (k+1)进行在线校正: )]|1()1([)()(k k y k y h k y k y m m p +-++= (3-2) 式中h 为N 维误差校正向量,这里取0.11=h ,9.0=i h ,i=2,3...,N 。)(k y p 为校正后的预测值,经过移位后即可作为k+1时刻的初始预测值,用向量形式可表示为: )()1(k y S k y p po ?=+ (3-3) 式中S 为位移阵。

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统部状态变量描述的数学模型称为状态空间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。 ⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得出无因次的、能够描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y 为输出变量, x为输入变量,表示y(t) 的n 阶导数,表示x(t) 的 m阶导数。对于一般实际的物理系统,。 假定初始条件为零,对上式的等号两边进行拉氏变换,得 式中Y(s)是y(t) 的拉氏变换, X(s)是x(t) 的拉氏变换,于是可得传递函数:

温度控制系统设计文献综述

基于单片机的温度控制 系统设计文献综述 前言 随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且,很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具

有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的多片微机应用系统。 1.陈岩《基于ARM 的远程控制温控系统的设计》一个基于ARM的远程控制系统的设计.该系统以无线寻呼网络接收POCSAG编码的控制命令字,同时利用DIMF信号发送器将要反馈的数据通过公用电话网络以DTMF编码传送回去,从而实现了一个功能完整的远程控制系统,弥补了以往远程控制系统的不足同。 2.金凯鹏胡即明《基于模糊PID 算法远程温度控制系统的实现》针对实时温度控制对象,算法远程温度控制系统是一套远程控制系统,并结合了模糊PID控制算法,利用其电路组成和设计原理,实现了对远程温度系统的监视和控制功能.采集端主要实现温度采集、数码显示、温度设定、无线编码发射、加热开关控制等功能;监控部分主要实现无线解码接收、温度显示、报警等功能模块.本系统实现了实时控制与无线传输结合. 3.王晓员《基于单片机多点温度控制的硬件构建设计》针对目前许多塑料反应炉温度控制不准确的现状,进行了基于MCS-51系列单片机多点温度控制的硬件构建的设计.采用数字化温度传感器DS18820,TLC2543型号的12位开关电容运次逼近模数A/D转换器.成本低、可靠性高 4.王芳《利用单片机实现温度智能控制》温度控制系统是

温度控制系统的设计与仿真

: 远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 、 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: " 2013 年 2 月 28 日

) 摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB &

( 目录 1单片机在炉温控制系统中的运用 (6) 1、1系统的基本工作原理 (6) 2温控系统控制算法设计 (7) 温度控制算法的比较 (7) 数字PID算法 (11) 、 3 结论 (21) 致谢 (22) 参考文献 (23) [

基于模糊PID算法的电阻炉温度控制系统设计

基于模糊PID算法的电阻炉温度控制系统设计引言 电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。 将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。基于PID控制算法,以ADUC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。该控制器控制精度高,具有较高的灵活性和可靠性。 2 温度控制系统硬件设计 该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。由图1可见,以内含C52兼容单片机的ADUC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。

电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。达到控制电炉温度的目的。如果实际测得的温度值超过了该系统所要求的温度范围,单片机就向报警装置发出指令,系统进行报警。 2.1 系统主控模块 系统主控模块电路如图2所示,它主要由CPU及数据存储器,晶体振荡器、复位电路、图形液晶显示器(LCD)及控制电路、微型打印机接口控制电路、实时日历时钟,热电偶信号处理电路等构成。这里,该系统设计可测量3点温度。传感器选择K型(镍铬-镍硅)热电偶,可用于从室温到1 200°C的温度测量,测量范围宽,精度高。在温度测量范围内K型热电偶的输出热电势只有0~45.119 mV,为了和ADUC845的A /D转换器相匹配,采用ACl226和1B51作为信号调理电路,由AC1226、1B51构成热电偶冷端温度补偿及信号调理器电路。当热端距测温仪表较远时,需利用热电偶匹配导线将冷端延长。CD4051为多路模拟开关,由ABC控制接通,当5~3接通时,输入接地,UO输出UOmin,用于零点校准;当4~3接通时,单片机1.25 V稳定参考电压Uref,再经电阻R1、R2分压,得到毫伏级参考输入电压,UO输出UOmax,用于增益校准;当2~3、1~3、12~3分别分时接通时,依次输入3个热电偶正常测温所得变换电压,UO从而输出3个温度点所对应的电压UOA,UOB,UOC。在HI端与+UISO端之间串上一只220 MΩ上拉电阻,一旦热电偶开路,HI端即被偏置为+UISO,迫使1B51的输出电压超量程,由此判定热电偶已开路。多路模拟开关和测量数据采集过程在单片机协调下工作,每次数据采集都进行自动判断和校准阁。 2.2 控制输出驱动电路 对温度的控制是通过可控硅调功器电路实现,如图3所示。双向可控硅管和硅碳棒串接在交流220 V、50 Hz交流市电回路中,图3中只给出了A相。移相触发脉冲由ADUC845用软件在P1.3引脚上产生的,零同步脉冲同步后,经光耦合管和驱动器输出送到可控硅的控制极。过零同步脉冲由过零触发电路产生,利用同步变压器和电压比较器LM311组成正弦交流电的正半波过零检测电路,它在交流电每一个正半周的

空调温度控制系统的数学模型教程文件

空调温度控制系统的 数学模型

空调温度控制系统的数学模型 一、 恒温室的微分方程 为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。 1. 微分方程的列写 根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。即 ,????????=+?? ? ? ????????? 恒温室内蓄每小时进入室内每小时室内设备照热量的变化率的空气的热量明和人体的散热量 ??????-+?? ? ?? ?????每小时从事内排每小时室内向出的空气的热量室外的传热量 上述关系的数学表达式是: 111()()c a b n a d C Gc q Gc dt αθθθθθγ -=+-+ (2-1) 式中 1C —恒温室的容量系数(包括室内空气的蓄热和设备与维护结构表层的蓄热) (千卡/ C ? ); a θ—室内空气温度,回风温度(C ?); G —送风量(公斤/小时); 1c —空气的比热(千卡/公斤 ); c θ —送风温度(C ?); n q —室内散热量(千卡/小时);

b θ—室外空气温度(C ?); γ—恒温室围护结构的热阻(小时 C ?/千卡)。 将式(2—1)整理为: 111111111n b a c a q d Gc C dt Gc Gc Gc θθθγθγγγ ++=++++ 11111n a q Gc Gc Gc γθγ??+ ? ?=+ ?+ ??? (2-2) 或 11()a a c f d T K dt θθθθ+=+ (2-3) 式中 111T R C = —恒温室的时间常数(小时)。 111 1R Gc γ =+ —为恒温室的热阻(小时 /千卡) 1 111 Gc K Gc γ =+ —恒温室的放大系数(/C C ?); 1b n f q Gc θγ θ+ = —室内外干扰量换算成送风温度的变化(C ?)。 式(2—3)就是恒温室温度的数学模型。式中 和 是恒温的输入参数,或称输入量;而 是恒温室的输入参数或称被调量。输入参数是引起被调量变化的因素,其中起调节作用,而起干扰作用。输入量只输出量的信号联系成为通 道。干扰量至被调量的信号联系成为干扰通道 。调节量至被调量的信号联系成为调节通道。 如果式中是f θ个常量,即0f f θθ=,则有

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

自动控制1用matlab建立系统数学模型

黄淮学院电子科学与工程系 自动控制原理课程验证性实验报告 实验名称 用MATLAB 建立系统数学模型 实验时间 2012 年10月11日 学生姓名 实验地点 同组人员 专业班级 1、实验目的 1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 3)掌握使用MATLAB 命令化简模型基本连接的方法。 4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 2、实验主要仪器设备和材料: MATLAB 软件 3、实验内容和原理:(1)控制系统模型的建立 控制系统常用的数学模型有四种:传递函数模型(tf 对象)、零极点增益模型(zpk 对象)、结构框图模型和状态空间模型(ss 对象)。经典控制理论中数学模型一般使用前三种模型,状态空间模型属于现代控制理论范畴。 1)传递函数模型(也称为多项式模型)。连续系统的传递函数模型为 101101() ()() m m m n n n b s b s b num s G s n m a s a s a den s --++ += =≥++ +, 在MATLAB 中用分子、分母多项式系数按s 的降幂次序构成两个向量: 0101[] []m n num b b b den a a a ==,,,,,,,。 用函数tf( )来建立控制系统的传递函数模型,用函数printsys( )来输出控制系统的函数,其命令调用格式为 ()int ()sys tf num den pr sys num den =,,, Tips :对于已知的多项式模型传递函数,其分子、分母多项式系数两个向量可分别用 .{1}sys num 与.{1}sys den 命令求出。这在MATLAB 程序设计中非常有用。 2)零极点增益模型。零极点模型是传递函数模型的另一种表现形式,其原理是分别对原传递函数的分子、分母进行因式分解,以获得系统的零点和极点的表示形式。 1212()()() ()()()() m n K s z s z s z G s s p s p s p ---= ---,式中,K 为系统增益;12m z z z , ,为系统零点;12m p p p ,,为系统极点。在MATLAB 中,用向量z p k ,,构成矢量组[]z p k ,,表示系统。

温度控制系统设计

课程设计任务书 学生姓名:专业班级:自动化 指导教师:周申培工作单位:自动化学院 题目: 温度控制系统设计 初始条件: 被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。可控硅控制器输入为0~5伏时对应电炉温度0-300℃,温度传感器测量值对应也为0~5伏,对象的特性为积分加惯性系统,惯性时间常数为T1=40秒。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.设计温度控制系统的计算机硬件系统,画出框图; 2.编写积分分离PID算法程序,从键盘接受Kp、Ti、Td、T及β的值; 3.计算机仿真被控对象,编写仿真程序; 4.通过数据分析Td改变时对系统超调量的影响。 5. 撰写设计说明书。课程设计说明书应包括:设计任务及要求;方案比较及认证;系统滤波原理、硬件原理,电路图,采用器件的功能说明;软件思想,流程,源程序;调试记录及结果分析;参考资料;附录:芯片资料,程序清单;总结。 时间安排: 6月29日—7月1日查阅和准备相关技术资料,完成整体方案设计 7月2日—7月3日完成硬件设计 7月6日—7月7日编写调试程序 7月8日—7月9日撰写课程设计说明书 7月10日提交课程设计说明书、图纸、电子文档 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统设计 1 设计方案 温度控制系统的硬件设计框图如图1所示.用热电偶来检测炉的温度,将炉温转变成毫伏级的电压信号,经温度变送器放大并转换成电流信号。由电阻网络讲电流信号变成电压信号,送入A/D 转换器,通过采样和模数转换,所检测到的电压信号和炉温给定值的电压信号都转换成数质量送入单片机进行比较,其差值即为实际炉温和给定炉温的偏差,以单片机为核心的数字PID 控制器对偏差按照给定的方法运算,运算结果送DAC0832转换成模拟电压,经功率放大器放大后送入晶闸管调压器,触发晶闸管并改变其导通角的大小,从而控制电阻炉的加温电压,起到炉温调节的作用。 图1 温度控制系统方框图 2 系统数学模型的建立 温度控制系统是一个由数字和模拟两部分组成,经过D/A 和A/D 转换器相互转换而成的混合系统。与电阻炉的惯性时间常数相比,晶闸管调压器、温度传感器、功率放大器等环节简化为比例环节。由初始条件可知电阻炉可用一个积分环节和一个惯性环节来近似,这样可得被控对象的传递函数为: ) 1(1)(1s T s K s G c +*= K 为各环节的比例系数的乘积,1T 为电阻炉的时间常数,经查资料可得:K ≈1.16

反馈控制系统的数学模型与设计工具

反馈控制系统的数学模型及设计工具 反馈系统的数学模型在系统分析和设计中起着很重要的作用,基于系统的数学模型,就可以用比较系统的方法对之进行分析,同时,一些系统的方法也是基于数学模型的,这就使得控制系统的模型问题显得十分重要。 1数学模型的表示方法 线性时不变(LTI)系统模型包括传递函数模型( tf ),零极点增益模型( zpk ),状态空间模型( ss )和频率响应数据模型 ( frd ) 传递函数模型 线性系统的传递函数模型可以表示成复数变量s 的有理函数式: n n n n n m m m m a s a s a s a s b s b s b s b s G +++++++++=---+-122111121)( 调用格式: G =tf (num, den) 其中][num 121+=m m b b b b ,]1[den 121n n a a a a -= 分别是传递函数分子和分母多项式的系数向量,按照s 的降幂排列.返回值G 是一个tf 对象,该对象包含了传递函数的分子和分母信息。 例1 一个传递函数模型 5 43232)(2342++++++=s s s s s s s G 可以由下面命令输入到MATLAB 工作空间去. >> num=[1 2 3];den=[1 2 3 4 5];G=tf(num,den) Transfer function: s^2 + 2 s + 3 ---------------------------------- s^4 + 2 s^3 + 3 s^2 + 4 s + 5 对于传递函数的分母或分子有多项式相乘的情况, MATLAB 提供了求两个向量的卷积函数—conv( )函数求多项式相乘来解决分母或分子多项式的输入。conv( )函数允许任意地多层嵌套,从而表示复杂的计算.应该注意括号要匹配,否则会得出错误的信息与结果。 例2 一个较复杂传递函数模型 ) 432)(6()1()3)(2(2)(2342+++++++=s s s s s s s s G 该传递函数模型可以通过下面的语句输入到MATLAB 工作空间去。 >> num=2*conv([1 2],[1 3]); den=conv(conv(conv([1 1],[1 1]),[1 6]),[1 2 3 4]);

温度控制系统智能控制器的设计与仿真

毕业设计(论文) 题目:温度控制系统智能控制器的设计 与仿真

目录 摘要 (3) 关键词 (3) Abstract (4) Key Words (5) 1 绪论 (6) 1.1课题研究意义 (6) 1.2课题目的及温度控制的数学模型 (7) 1.2.1课题目的 (7) 1.2.2温度控制的数学模型 (7) 1.3研究方式 (7) 1.3.1PID控制 (7) 1.3.2模糊控制 (8) 2 PID控制 (9) 2.1PID控制概述 (9) 2.2PID控制算法..................... 错误!未定义书签。 2.3PID控制器参数整定 ............... 错误!未定义书签。 2.3.1Z IEGLER-N ICHOLS整定公式 (11) 2.3.2C OHEN-C OON整定公式 (11) 3 模糊控制............................. 错误!未定义书签。 3.1模糊控制概述..................... 错误!未定义书签。 3.2模糊逻辑基础..................... 错误!未定义书签。 3.2.1模糊控制的数学基础...................... 错误!未定义书签。

3.2.2模糊逻辑系统的结构 (15) 3.3模糊控制器的设计 (16) 3.3.1模糊控制器设计要求...................... 错误!未定义书签。 3.3.2模糊控制器设计流程 (16) 4 温度控制系统的仿真研究 (18) 4.1仿真工具 (18) 4.2PID控制器仿真 (18) 4.3模糊控制系统仿真 (19) 5 总结 (23) 参考文献 (24) 致谢 (25)

温度控制系统研究背景与现状

温度控制系统研究背景与现状 1 研究背景 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密地与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。自18世纪工业革命以来,工业过程离不开温度控制。温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。 2 国内外现状 温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种: 定值开关温度控制法 所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通

相关主题
文本预览
相关文档 最新文档