当前位置:文档之家› 连续刚构桥墩设计

连续刚构桥墩设计

连续刚构桥墩设计
连续刚构桥墩设计

连续刚构桥设计几点体会

连续刚构桥设计几点体会 摘要:近几年来,我国的连续桥取得了长足发展,不论数量上还是单孔跨径上都进入了世界前列,连续刚构桥梁在桥梁建设中发挥着越来越重要的作用。本文以某管线桥工程为例,介绍连续刚构桥的设计过程及注意事项,望同行借鉴和参考。 关键词:连续刚构设计结构分析 在钢筋混凝土梁式桥中,简支梁、悬臂梁与连续梁是三种古老的梁式结构体系,早为人们所采用。20世纪20年代末,预应力技术的成功,极大地改善和加强了混凝土结构,而20世纪50年代后,由于在预应力混凝土桥梁的施工方法中引入了传统钢桥的悬臂拼装施工法,并针对预应力混凝土桥梁的一些特点,对之加以改进和发展,促使预应力混凝土梁式桥中的悬臂体系得到了迅猛发展,并形成了T型桥。连续桥是由T型桥演变而来的,T型桥不仅发挥了预应力混凝土结构的受力特点,更使得悬臂施工技术在预应力混凝土梁式桥中的应用得到了新的推广与创新。近几年来,我国的桥梁建设取得了长足发展,不论在数量上还是在单孔跨径上都进入了世界前列,连续刚构桥梁在桥梁建设中发挥着越来越重要的作用。本文结合桥梁计算,从建模、受力计算、各阶段工况荷载分析详细介绍连续刚构桥的设计过p桥位区属亚热带湿润季风气候,四季分明,地区小气候差异较大。根据多年气象资料统计,年均气温16.6℃,月均气温最高27.0℃(8月),最低5.7℃(1月)。 桥位区地势高差悬殊,地形复杂,建设工程范围内最高点高程407.95m,最低点高程314.66m(河床),相对高差93.29m。建设区域位于平直段河谷两侧,河流沿西北→东南向发育,管线桥跨越走向40°,近垂直于河岸布设,河左侧地形坡高18~24m,右侧地形坡高20~24m。河宽约150~170m,深约8.00~15.00m,两侧岸坡均为第四系覆盖土层岸坡,场地地貌为侵蚀~剥蚀低山和河谷地貌。 桥位区在勘察深度范围内的地层由上而下为第四系坡残积成因(Q4el+dl)的低液限粘土、第四系冲洪积成因(Q4al+pl)的中砂土、夹砂土低液限粘土、漂卵石土,下伏侏罗系上统遂宁组(J3s)紫红色粉砂质泥岩。 4、计算参数和荷载组合 4.1 计算参数 主桥挂蓝及施工荷载重量按800kN进行结构计算,吊架自重500kN计算; 主桥温度内力:整体温升25℃、整体温降20℃,顶、底温差按《公桥规》规定[2]第4.2.10条规定进行温度梯度效应的计算; 主桥支座不均匀沉降:按1cm考虑; 主桥合拢温度按15℃考虑; 风荷载:风速27.5m/s,风压0.45kN/m2,《公桥规》规定[2]第4.3.7条规定进行计算。 4.2 活载 公路-Ⅰ级:横向分配系数为1.15×1.05=1.20。 汽车制动力:按《公桥规》规定[2]取用。 4.3 荷载组合 (1)施工阶段考虑以下组合:

高墩大跨超长联连续刚构桥设计

第33卷,第4期2008年8月 公路工程 H ighway Engi n eering V o.l 33,N o .4Aug.,2008 [收稿日期]2008)05)10 [作者简介]曾照亮(1971)),男,湖北钟祥人,硕士,高级工程师,主要从事公路与桥梁研究设计工作。 高墩大跨超长联连续刚构桥设计 曾照亮,王 勇,张安国 (中交第二公路勘察设计研究院有限公司,湖北武汉 430056) [摘 要]以贵州镇(宁)胜(境关)高速公路虎跳河特大桥主桥设计为背景,重点介绍高墩大跨超长联连续刚构的设计特点,如设计时考虑主墩截面特殊设计、合拢时顶推方法解决主梁位移较大及其产生的边主墩较大内力等问题。 [关键词]镇胜高速;虎跳河;高墩;大跨;超长联;连续刚构[中图分类号]U 442.5 [文献标识码]B [文章编号]1002)1205(2008)04)0103)02 Design of Conti nuous R igid Fra m e Bri dge wit h H igh pier , Long Span and Overlong Unit ZENG Zhaoliang ,WANG Yong ,ZHANG Anguo (Cccc Second H i g hw ay Consu ltan ts C o .Ltd ,W uhan ,H ube i 430056,China) [K ey words]zhensheng h i g hw ay ;huti a o river ;high pier ;l o ng span;overl o ng continuous un i;t continuous rig i d fra m e bridge 目前连续刚构以其跨越能力大、经济性较好等优势广泛运用于公路、城市桥梁,特别是高速公路进入山区后更是成为了跨越沟谷最常见的大跨度桥梁,以下结合虎跳河特大桥主桥的设计讨论联长较长的刚构桥设计。 1 概述 虎跳河特大桥为适应河流及地形特点,主桥桥 跨布置为120m +4@225m +120m 六跨一联的预应力混凝土连续刚构桥(见图1),长1140m ,为目前国内最长联的连续刚构桥。主墩均为薄壁墩,高度较高的6、7号桥墩(高度分别为106、150m )下部分采用整体(双幅)箱形断面。镇宁、胜境关两岸各设一交界墩,镇宁岸引桥为5@50m 先简支后连续的预应力T 梁,胜境关岸为5@50+6@50m 先简支后连续的预应力T 梁。全桥总长1957.74m 。 图1 虎跳河特大桥主桥布置图(单位:c m ) 连续刚构除两端外无其他伸缩缝,有利于行车。但是对于较长的连续刚构,由于主梁混凝土收缩徐 变及体系温差产生的主梁位移较大,从而引起边主墩位移过大,因此要设计较长的连续刚构必须解决主梁位移较大及其产生的边主墩较大内力问题。 2 设计特点 2.1 适当减小边、中跨比 主桥半幅桥宽采用单箱单室,C 50混凝土,三向预应力,箱底宽 6.7m,翼板悬臂2.65m ,全宽

勘院连续连刚构设计指南

勘院连续连刚构设计指 南 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

中交第二公路勘察设计研究院有限公司 总工程师办公室便函 总质字【2008】006号 关于印发《预应力混凝土连续梁、连续 刚构桥设计指导意见》的通知 各有关单位: 为提高预应力混凝土连续梁、连续刚构桥设计质量和使用寿命,防止混凝土箱梁梁体开裂、跨中下挠、跨中底板崩裂、大体积混凝土温度裂缝等质量通病,特制定《预应力混凝土连续梁、连续刚构桥设计指导意见》,适用中交二院承接的跨径大于或等于70米的预应力混凝土连续梁、连续刚构桥设计。 《预应力混凝土连续梁、连续刚构桥设计指导意见》已于2008年3月7日经总工程师批准,现予以发布,请各单位尽快组织桥梁技术人员学习,从2008年3月20日起开始实施。 附件:《预应力混凝土连续梁、连续刚构桥设计指导意见》 总工办 2008年3月7日 主题词:连续刚构桥设计指导意见 抄报:公司领导 拟稿:签发: 预应力混凝土连续梁、连续刚构桥设计指导意见

0、目的和范围 为提高预应力混凝土连续梁、连续刚构桥设计质量和使用寿命,防止混凝土箱梁梁体开裂、跨中下挠、跨中底板崩裂、大体积混凝土温度裂缝等质量通病,特制定有关设计指导意见。 本指导意见适用中交二院承接的跨径大于或等于70米的预应力混凝土连续梁、连续刚构桥设计。 1、总体布置 结构体系 根据桥墩的高度,经计算确定是采用连续梁还是连续刚构,原则上尽量采用刚构体系,对于桥墩较矮、多跨或墩高相差较大的,可采用连续体系或连续——刚构组合体系。 跨径 预应力混凝土连续梁、连续刚构桥主跨一般不宜大于200米,主跨大于200米时应与其他桥型进行充分的比选论证;一般情况下边、中跨比不小于,在过渡墩较高、边跨现浇段难以采用落地支架现浇时,边中跨比最小可采用,以保证结构在最不利荷载作用下边墩支座有一定压力。 2、构造尺寸 梁高 为提高箱梁的承载能力,改善主梁的应力状况,箱梁应有足够的高度。箱梁根部高度宜控制在主跨跨度的1/16~1/18,,跨中梁高宜控制在主跨跨度的 1/30~1/55,考虑到新的《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG

连续刚构桥梁方案比选(原创、优秀)

1.1 方案比选 1.1.1 工程概况 (一) 主要技术指标: (1)孔跨布置:见”分组题目”。 (2)公路等级:一级。 (3)荷载标准:公路I 级,人群荷载3.5kN/m 2 (4)桥面宽度:桥面宽度20.5m ,即净2?7.5m(车行道)+1.5m(中央分隔带)+2 ?2.0m(人行道和栏杆) (5)桥面纵坡:0%(平坡);桥轴平面线型:直线 (6)该地区气温:1月份平均6℃,7月份平均30℃。 (7)桥面铺装:铺装层为10cm 防水混凝土,磨耗层为8cm 沥青混凝土。 (二)材料规格 (1) 梁体混凝土:C50混凝土; (2) 桥面铺装及栏杆混凝土:C40级混凝土; (3) 预应力钢筋及锚具: 主梁纵向预应力钢筋可选用 715.24,915.24,1215.j j j j φφφφ----高强度低松弛钢绞线 (115.24j φ-公称断面面积为2140.00mm ),1860MPa b y R =,1488MPa y R =,对应锚具分别为YM15-7,YM15-9,YM15-12,YM15-19;对应波纹管直径分别为(内径) 70,80,85,100mm φφφφ(外径比同径大7mm )。 主梁竖向预应力钢筋采用32φ冷拉IV 级钢筋,735MPa b y R =(冷拉应力),550MPa y R =;对应锚具为M343?(螺距);对应孔道直径43φ,锚垫板边长140mm a =,相邻锚板中心距离不小于15cm 。 (三)河床横断面 河 床 横 断 面

(四)工程地质条件 大桥位于江心洲西侧及附近水域,其中0+250~0+532地面高程为 3.8~4.20米,低潮时为陆地,高潮时被水淹没;0+542,0+614位于水中,地面高程为-0.18~-3.63米,钻孔揭露表明,桥位覆盖层厚43.00~50.10米,主要为中密细、中砂层,其中0+322~0+614下部分布有厚18.60~21.15米的密实卵石土层。下附基岩全、强分化层均很发育,厚22.75~34.10米,其中0+532,0+614具有不均匀分化现象,全、强风化花岗岩中在高程-64.00~-75.50米间分布有厚0.95~4.70米的微风化花岗岩残留体。微风化基岩面变化很大,在-62.12~-82.03米间,基岩主要为灰白色中粗粒花岗岩、花岗斑岩,微风化基岩岩质坚硬,呈块状~大块状砌体结构,为主墩桩基良好的持力层。基础设计时宜采用微风化基岩作为基础持力层,桩端进入微风化基岩一定深度。 微风化岩面一览表

连续刚构桥设计方法

连续刚构桥设计方法 一、连续刚构桥的特点 作为梁桥的一种,连续梁桥有着结构刚度大、变形小;动力性能好;无伸缩缝、行车平顺的优点。而连续刚构桥是由t型刚构桥演变而来的,其结构特点是梁体连续、梁墩固结。这样既保持了连续梁无伸缩缝、行车平顺的优点,又保持了t型刚构不设支座、不需转换体系的优点。且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足大跨度桥梁的受力要求。二、连续刚构桥的适用范围 连续刚构桥上部主梁的受力与连续梁桥基本相似;下部桥墩由于结构的整体性,温度和收缩徐变造成的内力十分显著。因此其桥墩应该有一定的柔度。使用高强度、轻质混凝土是大跨度梁桥的发展方向之一。 目前世界上已建成的连续刚构桥最大单跨为挪威斯托尔马桥(stolma),主跨301米,国内最大单跨为虎门大桥辅航道桥,主跨270

米。三、设计时需收集的基础资料 设计时应围绕桥位选择、桥墩位置、跨径、立面布置、结构体系、施工方法等因素,对桥梁建设的自然条件和功能要求有充分的了解。 1、自然条件包括 (1)地形地貌、控制物等;(2)工程地质条件;(3)水文条件;(4) 气象条件;(5)地震。 2、功能要求包括 (1)桥梁本身使用功能,如铁路桥梁、公路桥梁、城市桥梁、 轨道交通、人行桥等; (2)桥下功能要求,如通车、通航等。 四、桥型方案的选择 设计时应根据桥梁建设条件,结合技术可行性、施工难度、工程风险与进度、经济合理性、景观协调性等因素,进行桥型比选,确定桥梁的跨径布置。 五、上部结构构造尺寸

连续刚构桥设计时,可根据工程实践统计,初步拟定构造尺寸,再进行具体计算复核。 1、边、中跨跨径比一般在0.52~0.58之间。 当边、中跨比较小时,边跨现浇段较短,可减少边跨现浇段支架,对施工有利,但应保证各种工况下边墩处支座不出现负反力。 2、梁的截面形式 连续刚构桥多采用箱形截面,其具有良好的抗弯和抗扭性能。根据桥梁宽度,可采用单箱单室、单箱多室等截面形式。 3、梁高 桥梁跨度在60米以内时,可考虑采用等截面高度,构造简单,施工快捷。超过60米时,一般采用变截面梁。梁底曲线以往多采用2次抛物线,为改善l/4~l/8范围的底板混凝土应力,部分桥梁采用1.5~1.8次抛物线,取得了不错的效果。 箱梁根部梁高与主跨比可选用1/15~1/20,大部分在1/18。跨中梁高与主跨比可选用1/50~1/60。

浅析高墩大跨连续刚构桥施工技术

浅析高墩大跨连续刚构桥施工技术 发表时间:2018-08-23T13:41:08.753Z 来源:《建筑学研究前沿》2018年第10期作者:黄镇平 [导读] 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式。 广东省南粤交通投资建设有限公司广东广州 510000 摘要:预应力混凝土连续刚构桥具有经济美观、跨越能力强、施工简便快捷的优势,在大跨度桥梁中具有广泛的应用。本文以广东省龙怀高速大埠河大桥预应力混凝土高墩大跨连续刚构桥为工程实例,浅析了高墩大跨连续刚构桥主墩和主梁的施工技术。 关键词:桥梁工程;高墩大跨;连续刚构桥;施工技术 引言 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式,其具有经济美观、跨越能力强、施工简便快捷等优点[1],使之成为预应力混凝土大跨度梁式桥的主要桥型之一。 我国于上世纪80年代引进预应力混凝土连续刚构桥型,在高墩修建过程中,随着翻模施工、滑模施工等施工技术的发展,使得高墩尤其是超高墩的修建成为可能。随着我国“西部大开发”、“一带一路”以及“亚洲基础设施投资银行”等国家重大战略的相继实施,新一轮的交通基础设施建设热潮已经开始,高墩大跨连续刚构桥也迎来新的建设高峰。 1 工程概况 大埠河大桥位于汕头至昆明高速公路龙川至怀集段上,地处广东省连平县元善镇境内。大桥主桥为跨径82+150+82m的连续刚构桥,桥梁总体布置图如图1所示,主桥采用预应力混凝土箱梁形式,上下行分幅布置,箱梁顶板宽12.5m、底板宽6.2m。 图1大埠河大桥桥型布置图(单位:cm) 该桥设置三向预应力钢束,纵向预应力钢束:顶板束为15-25的高强预应力钢绞线、腹板束为腹板束为15-22、中跨合拢束为15-22高强预应力钢绞线、边跨束为15-17高强预应力钢绞线;横向预应力钢束:箱梁桥面板横向预应力采用15-2高强预应力钢绞线,纵向布置间距1.0m,单端交错整体张拉,管道成孔采用扁形塑料波纹管,固定端采用P 型锚具。竖向预应力钢束:采用15-3高强预应力钢绞线。横断面每道腹板内布2根,锚垫板下设置螺旋筋,管道成孔采用内径50mm的塑料波纹管。 主墩采用箱型墩,平面尺寸为5.0×6.2m(横桥向×顺桥向),壁厚1m,墩底8m、墩顶3m范围内为实心墩,1/2 墩高位置,设置1m高隔板。墩高67.35m至71.98m不等。 2 主梁施工技术 连续刚构桥主梁的施工主要有以下几种方法:悬臂施工法、支架现浇法、顶推法、缆索吊装法、旋转施工法、大型浮吊法及移动模架法等[2]。高墩大跨连续刚构桥由于其主墩较高,地形条件复杂,施工环境较差,采用对场地要求比较小的悬臂施工法进行施工。 悬臂浇筑法又称为无支架平衡伸臂法或挂篮法,它是以已经完成的墩顶节段(0#块)为起点,通过挂篮的前移对称的向两侧跨中逐段浇筑混凝土,并施加预应力的悬出循环作业法,我国已经建成的多数大跨混凝土桥梁大多采用此种方法。主要程序为移动挂篮位置、绑扎钢筋及预应力管道、浇筑混凝土、张拉预应力、移动挂篮,循环依次进行,直到达到最大悬臂块段,悬臂浇筑流程图如下图2所示。 图2悬臂浇筑施工工艺流程 3 主墩施工技术 3.1 主要施工技术概述 高墩大跨连续刚构桥主墩通常采用双薄壁墩、单薄壁空心墩及上部为双薄壁、下部为单薄壁空心墩的组合式桥墩形式[3-4],一般采用滑模、爬模、翻模三种方式进行施工[5]。 3.1.1 翻模施工 翻模施工墩身模板采用组合型大型钢模板,每个墩柱使用3套钢模板,每套模板高度为2.5m,一次翻模浇筑高度为4.5m。当浇注完混凝土达到拆模强度时后,拆除底下两层模板,上层一节模板不动,作为下一节墩柱模板的持力点,拆除的模板用钢丝绳或手拉葫芦直接吊在上层模板上,清除掉板面上的混凝土、涂刷脱模剂。当钢筋绑扎完毕后,用塔吊将模板安放到位,进入下道工序,以上是翻模施工的一

连续梁连续刚构桥

连续梁、连续刚构桥 一、等截面连续梁 1、等截面连续梁,构造简单施工方便,适用于中等跨径(20~60米),25米以下可选用钢筋混凝土连续梁桥,较大跨径采用预应力混凝土连续梁桥。小跨径布置一般用于高速公路的跨线立交桥、互通立交的匝道桥、环形立交桥及其他异形桥梁,较大跨径多用于接线引桥。可采用预制装配或就地浇筑施工。 2、连续梁桥常采用有支架施工法、逐孔现浇法、架设施工法、移动模架法和顶推施工法。 3、等截面连续梁桥的跨径、截面形式和主要尺寸 等截面连续梁桥的总体布置及主要尺寸见下表 等截面连续梁总体布置及主要尺寸 (1)等截面连续梁可选用等跨和不等跨布置。当标准跨径较大时,为考虑减少边跨正弯矩,可使边跨小于中跨,边跨与中跨的比在0.6~0.8左右。 (2)跨径小于15米,一般选用矩形截面;15~30米可采用T形或工字形截面;大于30米的可采用箱形截面。钢筋混凝土连续梁桥跨度不大时,可首先考虑采用板式(包括空心板)和T形截面。当需要采用箱形断面时,也可以采用低矮的多室箱,很少采用宽的单室箱。 (3)等截面连续梁的梁高,一般高跨比采用1/15~1/25。采用顶推法施工,从施工阶段受力要求考虑,梁高与顶推跨径之比选在1/12~1/17为宜。 (4)截面形式与桥宽关系。对于小跨径的城市高架桥或立交匝道桥,为求最小建筑高度,常用板式或肋板式截面,而在较大跨径时主要采用箱形截面。箱梁在横向布置,主要与桥宽有关。单箱室常用于桥宽在14米以内;单箱双室截面一般用于桥宽12~18米;超过18米的可以采用单箱多室或分离箱。 (5)板厚与梁高。板式截面分为实体截面和空心截面,实体截面多用于小跨径,且以支架现浇施工为主,板厚约为1/22~1/18L(L为跨径);空心截面的板厚为0.8~1.0米,顶、

连续刚构桥的设计与分析

连续刚构桥的设计与分析---精华帖子 2008年10月22日星期三 10:41 11 连续刚构桥的设计与分析 [版主推荐] 连续刚构桥梁最近几年在全国各地遍地开花,有成功的地方,也出现一些问题。欢迎大家就自己设计或者施工的此类桥梁交流一下经验—— 22 本人觉得目前连续刚构桥梁较前几年有如下变化,不知道对否,恳请大家批评指正: 1.边跨比较以前减小.我们在读书的时候,书上写的是边跨比在0.6-0.7之间比较合适,而且,受力合理的边跨比为0.64.不知道以前做过连续刚构的同仁有没 有这种想法.现在的刚构桥边跨比一般在0.55左右,这样有两个好处:一减短主桥跨径,节省造价/二\边跨施工方便.但是我觉得短边跨,对于上部的受力没有以前的理想,计算调索的时候,边跨的比较难调,不知道大家有没有遇到这种情况.边跨的上缘很难将拉应力消灭.在1/4边跨的地方,上缘拉应力比较大.边跨合龙钢束需要加强.不知道大家有没有类似情况,恳请赐教.在边跨比再小的时候,边跨容易出现上拔力,也就是负支反力,这时需要设置拉力支座,防止支座脱空. 2.现在预应力钢筋含量较以前有所增加,最近,我在统计预应力含筋量的时候,曾做,了一下比较,00年之前,含量只有35Kg/m2,近几年则涨到了50K/m2.这里面有设计规范变化的原因,也有设计者不同的理解差异,也有结构上的差异.但是趋势好象(我也不能肯定)是在增加.不知道这个指标有没有比较意义,也是恳请大家指教. 3.桥墩的柔性问题:刚构桥选择的桥墩必须是柔性墩,这样才能起到协调上部变形,优化上部结构受力的作用 33 连续刚构桥梁计算 在设计中遇到的问题 1、新桥规中规定了桥梁结构梯度温度效应,在连续刚构桥梁计算模型中应如何考虑比较稳妥?如果箱梁顶面只有沥青铺装,那末箱梁桥面板表面的最高温度T1按《公路桥涵设计通用规范》(JTG D60-2004)表4.3.10-3可查得;如果箱梁顶面为沥青+混凝土铺装,那末箱梁桥面板表面的最高温度T1是否还是按《公路桥涵设计通用规范》(JTG D60-2004)表4.3.10-3查得呢? 2、竖向日照反温差是否一定要考虑呢?根据实际经验,如果竖向日照正、反温差同时满足,调束过程比较艰苦。

山区高墩连续刚构桥梁设计分析

工 程 技 术 在我国公路、铁路交通建设中,山区V 型U型峡谷的跨越是关系到路线设计以及行车安全的关键。针对我国现代公路铁路建设发展的需求,山区大跨度、高墩连续刚构桥梁近年来得到了广泛的应用。利用高墩连续刚构桥梁的技术特点有效解决山区峡谷跨越面临的技术问题,为促进我国公路铁路建设发展奠定了基础。在现代公路铁路建设快速发展的今天,山区桥高墩连续刚构桥梁结构应用能够为山区交通基础建设提供技术支持,促进交通基础建设中科学的应对山区地形条件。 1 高墩连续刚构桥梁技术概述 高墩连续梁刚构桥梁技术是现代桥梁技术综合应用的典型技术。利用高墩技术提高桥梁基础的稳定,利用连续梁技术的变形和内力小特点提高工程结构的受力结构的科学性、提高连续梁的稳定性。在现代桥梁设计与建设中,高墩连续刚构桥梁技术有着广泛的应用。利用高墩连续刚构桥梁技术特点以及其使用寿命长、受力结构稳定等特点促进我国基础交通建设的发展。在现代山区公路、铁路的建设过程中,高墩连续梁刚构桥结构式跨越山涧、峡谷的主要结构,其在我国路桥建设中有着广泛的应用。笔者从自身的实际工作经验出发,结合一部分桥梁的实际案例对山区高墩连续刚构桥梁的设计进行了简要论述。 2 山区高墩连续刚构桥梁设计分析 2.1针对山区高墩连续刚构桥梁设计需求,强化地质勘探与地形勘测的分析 由于山区地形、地质情况复杂,因此在进行山区高墩连续刚构桥梁设计前需要对地质勘探以及地形勘测报告进行细致的分析与探讨。通过详细的分析与探讨使设计人员能够了解山区高墩连续刚构桥梁的实际情况,同时为后期针对地质情况、地形条件进行设计奠定基础。 2.2了解气候条件,针对气候条件进行桥梁设计 了解山区高墩连续刚构桥梁所在地的气候条件能够为设计人员风荷载计算、使用寿命与使用安全性相关计算工作奠定基础。另外,通过山区气候条件的分析还能够了解山区气候条件对高墩连续刚构桥梁的影响,为科学的设计桥梁寿命与荷载奠定基础。2.3以桥梁设计基本原则与规范为基础进 行山区高墩连续刚构桥梁的设计 在山区高墩连续刚构桥梁设计中,要 以桥梁设计的基本原则与规范作为基础, 以此实现桥梁设备使用需求、实现经济安 全和美观的目的。山区高墩连续刚构桥梁 的设计过程中首先要对设计要求以及桥梁 的需求进行论证。以论证结果以及设计要 求作为基础开展荷载等计算工作。在此基 础上依照桥梁设计的基本原则进行山区高 墩连续刚构桥梁的设计,并在此技术上实 现桥梁承载力、使用寿命等要求。针对现代 路桥建设的需求,设计过程中应以设计的 基本原则作为基础,综合考虑桥梁技术性、 经济性以及后期使用维护便捷性以及成本 等问题。针对山区桥梁建设的特点,现代桥 梁设计过程中必须从桥梁设计的基本原则 入手,根据设计规范的要求进行高墩连续 刚构桥梁的设计工作。以基本原则以及规 范的遵守确保山区高墩连续刚构桥梁设计 能够满足设计、施工要求,满足信贷路桥建 设的需求。 2.4山区高墩连续刚构桥梁设计的注意事 项 连续刚构桥梁虽然应用时间较长、已不 是新兴桥梁结构型式,但在温州地区乃至全 国范围内仍属复杂的桥梁结构形式之一,其 设计和施工仍存在许多不确定因素,特别是 桥墩高度在40m以上的高敦连续刚构桥梁, 在设计和施工过程中许多方面仍值得关注 和研究。这在很大程度上影响了山区高墩连 续刚构桥梁结构的应用以及相关质量工作 的开展。针对这样的情况,山区高墩连续刚 构桥梁的设计过程中应从高墩连续刚构桥 梁的结构特点入手,针对实际情况进行设计 与计算。针对山区气候特点,山区高墩连续 刚构桥梁的设计中需要对其结构使用性能、 工程建设情况等进行分析。设计人员应根据 高墩连续刚构桥梁易受环境侵蚀、车辆荷载 以及人为因素等作用造成的性能退化进行 承载力以及荷载计算。按照设计使用寿命进 行相关结构设计以此保障桥梁的使用安全。 2.5实例分析与探讨 外呈山大桥工程设计荷载为公路-Ⅱ 级。主桥上部结构为46+80+46m预应力砼 连续刚构箱梁结构。单箱单室结构。刚构墩 顶处梁高4.8m,跨中梁高2.3m。引桥上部 结构为单孔简支的25m装配式预应力砼组 合小箱梁。下部结构主桥主墩采用空心薄 壁墩,挖孔灌注桩基础,边墩采用桩柱式桥 墩,挖孔灌注桩基础。引桥桥台均为重力式 U台,扩大基础。从该桥基础结构的设计中 可以看出,本桥设计过程中充分考虑了大 桥设计与使用需求、考虑了环境以及地形 的影响。运用将现代桥梁设计技巧以及不 同的结构形式满足桥梁建设与使用的需 求。为了实现桥梁风荷载、使用寿命、结构 强度的需求,该桥桥墩内沿竖向每隔15米 间距设置一道横隔板。通风孔设在每个分 箱室的中间,泄水孔直径8cm,设在墩低最 低处。通过设计的注意事项以及设计方式 的运用有效的保障了桥墩主体结构的稳定 性、同时充分考虑山区降水量大、时间短等 特点。以针对实际情况的设计保障了桥体 的安全、保障了桥体结构的使用寿命。 3 预应力箱梁结构的设计探讨 预应力箱梁结构具有高强度、高刚度 的优势在山区桥梁设计中有着重要的应 用。在山区高墩连续刚构桥梁设计中,应针 对预应力箱梁结构的特点进行设计。针对 预应力箱梁设计与应用的特点,设计过程 中需要注重箱梁结构与高墩结构的适应 性,注重箱梁结构耐久性与安全性。根据山 区气候条件进行箱梁结构受风荷载以及超 载等因素的影响,同时注重使用过程中使 用年限对箱梁结构的影响。针对山区桥梁 建设的实际情况进行预应力箱梁结构设 计,以此保障桥梁使用安全。 4 结论 综上所述,现代公路交通以及铁路发 展过程中山区桥梁建设关系到我国交通运 输行业的发展、关系到经济的发展。在现代 交通基础建设中,应针对山区地形特点选 用合理的结构以满足建设设计需求。以桥 梁设计基本原则以及规范作为指导进行山 区高墩连续刚构桥梁设计,通过科学的设 计保障设计质量、满足桥梁建设与使用需 求,保障桥梁的使用安全。 参考文献 [1]周长军.预应力箱梁结构设计探析.路 桥设计信息,2010(5). [2]刘宏宇.山区桥梁设计注意事项.桥梁 设计资讯,2010(2). [3]王绍江.高墩连续刚构桥梁结构特点与 设计要点.公路设计与施工,2010(12). 山区高墩连续刚构桥梁设计分析 张继明 (温州市交通规划设计研究院浙江温州325000) 摘要:在我国经济快速发展的今天,公路与铁路的建设成为了影响经济发展的关键。山区公路桥梁建设以及铁路桥梁建设是现代公路交通与铁路建设的关键。针对山区地形特点科学运用桥梁设计方法能够有效减少路线距离、提高行车速度。本文就山区高墩连续刚构桥梁的设计进行了简要的论述与分析。 关键词:山区高墩连续刚构桥梁设计 中图分类号:U448文献标识码:A文章编号:1674-098X(2012)01(a)-0098-01 98科技创新导报Science and Technology Innovation Herald

连续刚构桥桥墩单、双肢构造形式的对比选择

连续刚构桥桥墩单、双肢构造形式的对比选择 【摘要】连续刚构桥纵向和横向都具有较大的刚度,适合悬臂施工,并能满足横向抗风要求;主墩与主梁固结,不需布置造价高的支座;施工也无体系转换;其跨越能力大、整体性能强、受力合理、施工方便,本文以大跨径刚构桥的主墩刚度作为研究对象,对墩的单肢与双肢构造形式进行研究比较。 【关键词】连续刚构;双薄壁墩;单柱式墩;对比分析 1、引言 连续刚构墩柱与梁体的弯矩分配决定于两者的相对刚度,而梁体的收缩、徐变及温度应力与刚构墩柱的抗推刚度也直接相关。合适的刚度比既能满足全桥的纵向刚度,又能尽可能的改善梁体内力分布,充分发挥材料的受力性能,达到节约投资、增大跨径的目的。因此确定合适的墩梁刚度比是连续刚构设计中的一个重要内容。显然,尽量减少梁体自重是设计的首要目标。为此,首先要在满足施工、运营各阶段结构和预应力构造要求的前提下确定梁体截面的最小尺寸,而理想的墩柱除满足结构以及施工、运营阶段的最小纵、横向刚度要求外,应尽可能使其具有较大的抗弯刚度和较小的抗推刚度,墩柱的结构形式也正是从这方面考虑确定的。 2、主墩的形式 连续刚构桥主墩的形式主要有竖直双肢薄壁墩和竖直单肢薄壁墩,采用V 形墩等其他形式较少,且跨径也不大。竖直双肢薄壁墩是在墩位上有两个相互平行的墩壁与主梁固结的桥墩。它可增加桥墩刚度,同时其抗推能力小,在桥梁纵向允许的变位大,不仅可以减小梁墩顶负弯矩,使结构内力分配更趋合理,而且由于其为双墩柱,墩顶负弯矩的峰值也不像单肢墩出现在支点中心,它的峰值出现在两支墩的墩顶,峰值也较单肢墩小得多,两支墩之间负弯矩为下凹的曲线,可减小墩顶截面的尺寸,充分发挥材料的受力性能,增加桥梁美感。因此在预应力混凝土连续刚构桥中是理想的柔性墩,能支撑上部结构,保持桥墩稳定性,适应上部结构位移的需要。竖直单肢薄壁墩是在墩位上只有一个截面形式为空心或实心的“一”字形矩形截面或箱梁截面的桥墩。单肢薄壁墩与双肢薄壁墩相比,一般说来,单薄壁墩特别是箱形截面单薄壁墩的抗扭性能好,抗推能力强,但其柔性不如双薄壁墩,双薄壁墩的综合抗弯刚度大,整体稳定性好,墩身允许的水平位移较大,但随着墩身高度的不断增加单薄壁墩的柔性逐渐增强,允许的纵向变位增大。因此,对于墩身很高的大跨连续刚构来说,箱形单肢薄壁墩也是理想的墩身形式之一。在高墩大跨连续刚构桥中也经常采用竖直单薄壁墩。 3、单柱式墩与双柱式墩的对比分析 3.1单柱式墩与双柱式墩的抗推刚度对比

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

预应力砼连续刚构公路桥总体设计及主要尺寸

桥梁设计参考资料之二 预应力砼连续刚构公路桥 总体设计及主要尺寸 中交公路规划设计院编

目录 1连续刚构桥的适用范围-------------------------------------------------1 2 连续刚构与连续梁的混合体系-----------------------------------------1 3 墩高对连续刚构桥的影响-----------------------------------------------1 4 孔跨布置--------------------------------------------------------------------2 4.1三跨连续刚构---------------------------------------------------------2 4.2 两跨T构--------------------------------------------------------------3 4.3多跨连续刚构---------------------------------------------------------4 4.4小边跨连续刚构------------------------------------------------------4 5 主梁构造与尺寸-----------------------------------------------------------6 5.1箱梁高度---------------------------------------------------------------6 5.2 箱梁顶、底板和腹板厚度-----------------------------------------9 5.3箱梁横隔板-----------------------------------------------------------10 6 主墩构造与尺寸----------------------------------------------------------10 6.1设计原则---------------------------------------------------------------10 6.2墩身结构型式及尺寸------------------------------------------------11 6.3墩身设计参数的优化------------------------------------------------12 6.4部分连续刚构桥主墩S值和b值---------------------------------12 6.5桥墩防撞设计---------------------------------------------------------13 6.6桥墩抗渗设计---------------------------------------------------------13 7其他方面-------------------------------------------------------------------14 7.1箱梁的管养、检修通道---------------------------------------------14 7.2 箱内泄水孔-----------------------------------------------------------14 7.3 箱内通气孔-----------------------------------------------------------14 7.4 梁段结合面上剪力齿-----------------------------------------------14 7.5 预留更换支座的空间-----------------------------------------------15

120米连续刚构桥设计说明

说明 (一)概况 本分册设计起讫里程为K19+049.970~K21+496.724,设计内容为沙湾特大桥两端引桥简支梁和主桥连续刚构下部。引桥包括跨径为30、29.588、30.036米的简支箱梁和50米简支T梁的上下部;主桥为(75+2X120+75)m 连续刚构的下部结构的施工图设计文件。(75+2X120+75)m连续刚构的梁部结构的施工图见第二册。 1.1地理概况 本标段主要工程为沙湾特大桥,桥址位于广州南部番禺区沙湾水道,为珠江三角洲,地形平坦,地势开阔,区内多为经济作物区及鱼塘。测区内城镇、厂矿、人烟密集,公路、村镇间公路众多,交通方便。本段在K19+420规划次干道下穿,红线40米,斜交10度,桥下净空不低于4.5米。 1.2气象 该区属亚热带海洋性气候。主要气象资料简要摘录如下: 1.2.1气温:多年平均气温21.2℃,极端最高气温37.5℃,极端最低气温-0.4℃。最高月气温28.6℃,最低月气温13.9℃。 1.2.2相对湿度:各月平均相对湿度在71~85%之间,多年平均相对湿度为80%,相对湿度最小在冬季,历年最小值为5% 。 1.2.3降雨:据气象站历年资料统计:历年最大年降雨量为2652.8mm,历年最小年降雨量为1030.1mm,最大一日降雨量为255.6mm。 1.2.4雷:一年最多雷雨天数为98天,最少为50天,平均每年为74.9天。 1.2.5雾:一般出现在冬~春季,秋季偶有出现。5~11月一般无雾。雾多发于凌晨,中午后消散,番禺站统计,一年最多雾日为21天,最少为3天,平均为8.2 天。 1.2.6风:本地区冬夏的风向季节变化比较显著,春季至初秋多偏南风,秋季至冬末多偏北风或偏东风。3~4月份为冬~夏风向转换期,9月份为夏~冬风向转换期。大于6级风的天数为35天,年平均风速1.9m/s,极大风速37.0m/s;主要出现在台风期。每年5~10月,多热带气旋,中心最大风力处达12级,甚至以上。形成台风,侵袭广州。 1.2.7年平均气压1012.3hPa;年平均相对湿度77%。 1.3地质条件 1.3.1地层岩性 地表为第四系冲洪积层所覆盖,下伏基岩为白垩系下统白鹤洞组(K1b)泥岩夹泥质粉砂岩,主要有下列岩土类: <1>人工填筑土(Q4me):杂色,成分较复杂,为人工回填土,厚一般0~6m。为Ⅱ级普通土。

高墩大跨连续刚构桥施工技术研究报告之二

超高薄壁空心墩外翻内爬模施工技术 1前言 根据对典型高墩大跨连续刚构桥施工稳定性的研究指出,结构的稳定性计算表明,试验模型实测的失稳临界荷载总是大大低于理论的计算值,这是由于结构不可避免地存在一些几何偏差和缺陷,而几何缺陷对临界荷载的影响很大。本项目具有138m 高墩、主跨为160m为一典型的高墩大跨连续刚构,理论分析表明,“T”构在最大悬臂状态下(73m长)时,9#(138m墩高)和8#(130m墩高)墩的稳定特征值较小,稳定安全储备不大,如果高墩的墩身由于施工的原因而出现了偏斜、弯曲等几何缺陷,将会使结构的稳定性大大下降,甚至产生整体失稳的严重后果。在施工中只有严格控制墩身的垂直度,才能使结构的稳定得到根本的保证。 葫芦河特大桥位于陕西黄土沟壑地区,由于工程的特殊地理位置,日照温差较大,而且主墩均为薄壁空心墩,受日照温差影响后,墩身不可避免将出现位移。根据计算,日照温差致使混凝土箱形空心墩身发生弯曲变形,使墩顶发生较大位移,138m的高墩位移甚至可达到3cm±。温度变化对超高墩混凝土结构的受力与变形影响很大,并随温度的改变而改变。在不同时刻对结构状态进行量测,其结果是不一样的,如果在施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据(与控制理想状态比较),从而也难以保证控制的有效性。因此,在施工控制中必须考虑日照温差对结构的位移影响。 2工程概况 葫芦特大桥是黄陵至延安段高速公路上的一座特大型连续刚构梁桥,位于中国西部黄土高坡陕西黄陵县境内,桥梁全长1468m,主桥为90m+3×160m+90m共660m五跨曲线连续刚构桥,上、下行分离。主梁为三向预应力连续箱梁结构。主桥桥墩采用双薄壁空心墩,单幅由两个4.0m×6.5m薄壁空心墩组成,其中9#墩最高,达138m 高。7#和10#墩壁厚0.5m,8#、9#墩壁厚横桥向0.7m,顺桥向1.2m。主桥桥墩7#、8#、9#、10#高度分别为80m、138m、130m、58m。7#墩单幅从基顶起40m高,8#墩单幅从基顶起44m、86m高,9#墩单幅从基顶起46m、92m高设高度为1m的横撑,将两个薄壁空心墩联接成一体。葫芦河特大桥主桥立面图见图2-1所示,箱梁墩顶和跨中断面图

连续刚构桥工程设计方案

连续刚构桥工程设计方案第一章概述 1.1 地质条件 图1-1 桥址纵断面图 1.2 主要技术指标 桥面净宽:2×12m+0.5m (分离式) 设计荷载:公路-I级 行车速度:80km/h 桥面横坡:2% 通航要求:无 温度:最高年平均温度34℃,最低年平均温度-10℃。 1.3 设计规范及标准 1、《公路桥涵设计通用规范》(JTG D60-2004)。 2、《公路桥涵地基与基础设计规范》(JTG D63-2007)。 3、《公路桥涵施工技术规范》(JTJ 041-2000)。 4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。 5、《公路桥涵圬工设计规范》(JTG D61-2005)

第二章方案比选 2.1 概述 桥式方案比选是初步设计阶段的工作重点,一般要进行多个方案比较。各方案均要求提供桥式布置图,图上必须标明桥跨位置,高程布置,上、下部结构形式及工程数量。对推荐方案,还要提供上、下部结构的结构布置图,以及一些主要的及特殊部位的细节处理图。 设计方案的评价和比较,要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个符合当前条件的最佳推荐方案。有时,占优势的方案还应吸取其他方案的优点进一步加以改善。 2.2 比选原则 设计从安全性、技术适用性、施工难度、设计施工周期、经济性、实用性和观赏性等几方面对各比选方案进行评比,其中安全性为主要因素。 2.3 比选方案 根据设计任务要求,依据现行公路桥梁设计规范,综合考虑桥位地质地形条件,拟定了三个比选方案: 方案一:预应力混凝土连续刚构桥 方案二:上承式钢管混凝土拱桥 方案三:独塔斜拉桥 2.3.1预应力混凝土连续刚构桥 1.结构受力特点 ⑴在高墩大跨径桥梁中,与其它结构体系比较,预应力混凝土连续刚构桥常成为最佳的桥型方案。 ⑵预应力砼充分发挥了高强材料的特性,具有强度高、刚度大、变形小以及抗裂性能好的优点。 ⑶结构伸缩缝数量少,高速行车平顺舒适,维修工作量小,维护简单。 ⑷可最大限度的应用平衡悬臂施工法,施工技术成熟,易保证工程质量。 ⑸采用水平抗推刚度较小的双薄壁墩,可以减小水平位移在墩中产生的弯矩,且薄壁墩底承受的弯矩、梁体内的轴力随着墩高的增大而急剧减小。 ⑹连续钢构除了保持连续梁的优点外,墩梁固结节省了大型支座的昂贵费用,减少了墩和基础的工程量,并改善了结构在水平荷载(例如地震荷载)作用下的受力性能,适用于中等以上跨径的高墩桥梁。

相关主题
文本预览
相关文档 最新文档