当前位置:文档之家› 基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式

基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式

基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式
基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式

第31卷 第8期 岩 土 工 程 学 报 Vol.31 No.8

2009年 8月 Chinese Journal of Geotechnical Engineering Aug. 2009

基于连续介质模型的颗粒材料孔隙度及孔隙水

压力计算公式

楚锡华

(武汉大学土木建筑工程学院,湖北 武汉 430072)

摘 要:孔隙度是能够部分反映颗粒材料微观结构的一个宏观量,其数值及其演化对颗粒材料的宏观力学行为有重要

影响。基于连续介质模型,在颗粒体积应变均匀的前提下推导了颗粒材料的孔隙度随颗粒集合局部平均体积应变的演

化公式,并应用该关系式结合孔隙水状态方程给出了饱和颗粒材料的孔隙水压力与孔隙度、固体颗粒体积模量、固体

颗粒变形之间的关系。所得公式可用于饱和含液颗粒材料流–固耦合计算或饱和多孔介质宏观–细观多尺度流–固耦

合渗流分析。

关键词:孔隙度;孔隙水压力;颗粒材料;多孔介质;连续模型

中图分类号:TU43 文献标识码:A 文章编号:1000–4548(2009)08–1255–03

作者简介:楚锡华(1977–),男,河南濮阳人,博士,讲师,从事计算固体力学、岩土颗粒材料力学行为研究。E-mail:

chuxh@https://www.doczj.com/doc/a617731908.html,。

Evolution of porosity and pore water pressure of granular materials

based on continuum model

CHU Xi-hua

(Civil & Architecture School of Wuhan University, Wuhan 430072, China)

Abstract:The porosity is a macro-variable which can represent partly micro-structures of granular materials. Based on the

continuum model of granular materials, an evolution formula for the porosity with local average volumetric strain of granular

assembly is deduced. Provided the change of grain volume is uniform, and the formula is allied with pore water state equation,

the relationship among the pore water pressures and the porosity, the volumetric module of grain and the volumetric strain of

grain for saturated granular materials is presented. The results obtained can be applied to the numerical simulation of fluid-solid

coupling for statured granular materials or to the multi-scale analysis of fluid-solid seepage for porous materials.

Key words:porosity; pore water pressure; granular material; porous medium; continuum model

0 引 言

在对含液颗粒材料流固耦合分析时,需计算孔隙度随颗粒集合及流体流动的动态演化。当流–固均采用连续介质模型时,通常忽略孔隙度的变化[1]或孔隙度(孔隙率)的演化依赖于经验公式[2],当固体颗粒采用离散颗粒模型,孔隙流体采用连续介质模型时,局部平均孔隙度通常可从颗粒层次直接演绎[3-4]。文献[5]指出实现流固耦合渗流计算的关键问题之一为建立流固耦合作用下的物性参数动态模型,并给出了孔隙度和渗透率的动态模型,文献[6]在此基础上,通过考虑固体颗粒的变形进一步发展了孔隙度模型。本文基于连续介质模型,考虑体积应变参考不同时刻的构型,推导了孔隙度与宏观平均体积应变的关系,进一步基于饱和多孔介质中孔隙水的状态方程,发展了孔隙水压力与孔隙度、固体颗粒的变形之间关系,所得结果可用于饱和含液颗粒材料流固耦合计算或饱和多孔介质宏观–细观多尺度流固耦合渗流分析。

1 颗粒材料的孔隙度与体积应变的演

化关系

t时刻取一个总体积为0V的多孔介质微元体,其固体骨架由若干固体颗粒组成,设骨架体积,即固体

颗粒总体积为0

s

V,孔隙度为0n;该微元体经过系列变化至t时刻,总体积为t V,若不考虑固体颗粒变形,───────

基金项目:国家自然科学基金项目(10802060)

收稿日期:2008–07–14

1256 岩 土 工 程 学 报 2009年

则骨架体积仍为0s V ,此时总体积的变化来源于固体颗粒排列方式的变化。在模拟含孔隙水的多孔介质时,若要考虑由于孔隙水压力作用产生的土壤颗粒压缩变形,或者温度效应时,一般应计及固体颗粒的体积变形。为简化处理,设微元体内的颗粒具有相同的体积变化倍数,记为v α,即固体颗粒体积由0s V 变化为t v 0s s V V α=,下面将给出孔隙度与体积应变的关系。 1.1 体积应变定义参照t 时刻构形

由体积应变的定义知

t 0t

v t

V V V ε?= , (1) 即

t 0t

v

1

1V V ε=

? 。 (2) 由孔隙度的定义知

s 0

1V V n =? , (3)

即 000s (1)V n V =? , (4) t 时刻孔隙度计为t n ,则

t t t t

s s t t 1V V V n V V

?==? 。 (5)

考虑固体颗粒体积的变化有

t v 0v 00s s (1)V V n V αα==? 。 (6)

式(2)、(6)代入式(5)可得

t v 0t

v 1(1)(1)n n αε=??? , (7) 式中,v α的取值范围为v 0α<≤∞,当v 1α<时,表

示颗粒体积收缩,v 1α>时表示颗粒体积膨胀,当1v α=时表示颗粒体积不变。

若令t 0n n =(表示颗粒集合的孔隙度未发生变化),根据式(7)可得

0v 0t

v 1(1)(1)n n αε=???, (8)

t v v 1

ε=?, (9)

若取v 1α=,即颗粒体积不变时得到t

v 0ε=,显然与实际情况相符合。当取v 1α=时(颗粒体积变化忽略),式(7)可改写为

0t 0

t v 01(1)n n n n

ε?=+ 。 (10)

式(10)表明在不考虑固体颗粒体积变化的情况下,孔隙度与多孔介质的体积应变存在线性变化关系。特别是当00.5n =时,有

t 0t

v (1)n n ε=+ 。 (11) 1.2 体积应变定义参照t 0

时的构形

参照初始体积时有

t 0t

v 0

V V V

ε?= , (12) 即

t t

0v (1)V V ε=+, (13)

容易得到

t t v 0t

s t t

v

(1)

11V V n n V αε??==?+ 。 (14) 若令t 0n n =,即保持孔隙度不变,由式(14)可得

t

v v 1αε=? , (15)

也就是当v 1α=时,t

v 0ε=,这与实际情况相符合。

当t

v 1ε<<,应用级数展开定理可得到

t t 2t 3

v v

v t

v

11()(())1O εεεε=?+++ 。 (16) 若式(16)只取线性项,并代入式(14)中可得

t v 0t

v 1(1)(1)n n αε=???, (17) 可以看到式(17)与式(10)在形式上完全相同。当

v 1α=时,

0t 0

t v 01(1)n n n n

ε?=+ , (18)

特别当00.5n =时,有

t 0t

v (1)n n ε=+ 。 (19)

总之,由以上分析可以看到,在连续介质框架内的体积应变概念下,颗粒材料的孔隙度与体积应变成正比例变化。

2 饱和多孔介质孔隙水压力计算公式

由前面孔隙度的计算可知,饱和多孔介质中水的体积为

t t t t

v 00w t

(1)1n V n V n V n

α==?? , (20) 由孔隙水的状态方程知

w w w

w w w 111D DV Dp Dt V Dt K Dt ρρ=?=, (21)

式中,w ρ为孔隙水密度,w K 为孔隙水体积模量,w

p 为孔隙水压力。

式(20)代入式(21)得到

v t 00t t v t 00(1)()11(1)n n V D n n n n V Dt αα?????w w 1Dp K Dt = 。(22)

化简式(22)得到

t v t w v t t w 11

()1n n D Dp n n K αα??=? , (23) 式(23)左端中v t

t

()1n D n α?可展开为

v t t t v v

t t t

()()111n n n D D D n n n ααα=+??? , (24)

第8期 楚锡华. 基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式 1257

带入式(23)得到

t t v

w v t t w 111()1n n Dp D D K n n αα?=??? 。 (25)

对式(25)积分,即从状态(v 000,1,p n α=)积分

到状态(v t w ,,p n α),

w 0w w 1p p Dp K ∫v t v 00t

t v

v t t 11()1n n n n D D n n αααα?=???∫∫。(26)

对式(26)逐项积分有

w 0v v 0t t 00w w 0w

w

v v v v 0v t

t t

t t t 2

t t t 011

()1ln ln ln 111()(1)111

ln(1)ln(1)p p n n n n Dp p p K K D n Dn n n D n n n n

n n ααααααα

?=???

??=?=?????????=??????

?

=?????

∫∫∫∫,,。 (27) 将式(27)代入式(26)并整理得

v w 0w t 011

[ln(1)ln(1)ln ]p p K n n

α=+????。(28)

若不考虑固体颗粒体积的变化有

w 0w t 011

[ln(1)ln(1)]p p K n n

=+??? ; (29)

若考虑固体颗粒体积的变化,且认为固体颗粒体积变形是由孔隙水压力变化导致,设固体颗粒的体积变形模量为s K 则

w 0

s s p p K ε?=, (30)

式中,s ε为固体颗粒的体积应变,注意这与固体颗粒集合的体积应变不同,若参照t 时刻构形根据体积应变的定义有

t 00s s s s t t v s s 1

11V V V V V εα?==?=? 。 (31)

将式(31)代入式(30)得到

v s

s 0w K K p p α=+? , (32)

式(32)带入式(28)得

s w 0w t 0s 0w

11

[ln(1)ln(1)ln()]K p p K n n K p p =+????+?。

(33) 同理,如果参照初始构形定义固体颗粒体积应变 t 0t

v s s s s 0

0s s 11V V V V V εα?==?=? , (34) 式(34)代入式(30)得

v w 0

s

1p p K α?=+

, (35) 式(35)代入式(29)得

w 0w t

1[ln(

1)p p K n

=+??w 00s 1

ln(1)ln(1)]p p n K ???+。(36)

式(28)、(33)、(36)可视为饱和情况下,联系孔

隙水压力与孔隙度变化的状态方程。其中式(33)

、(36)为超越方程。实际上颗粒之间的相互作用力,也可引起固体颗粒体积的变化,另一方面温度、水质污染等因素也与颗粒体积应变相关,因此假定颗粒体积不变或者假定颗粒体积变化只与水压力相关是种简化处理。 3 结 语

本文基于连续介质概念从颗粒层次建立了颗粒材料孔隙度与宏观平均体积应变之间的联系,并进一步推导了饱和颗粒材料孔隙水压力状态方程,建立了孔隙水压力与孔隙度,固体颗粒体积模量以及孔隙水体积模量之间的关系。 参考文献:

[1] 唐洪祥, 李锡夔. 饱和多孔介质中动力渗流耦合分析的

Biot-Cosserat 连续体模型与应变局部化有限元模拟[J]. 工程力学, 2007, 24(9): 8–18. (TANG Hong-xiang, LI Xi-kui. The Boit-Cosserat continuum model for coupled hydro-dynamic analysis in saturated porous media and finite element simulation of strain localization[J]. Engineering Mechanics, 2007, 24(9): 8–18. (in Chinese))

[2] LI X K, Thomas H R, Fan Y Q. Finite element method and

constitutive modeling and computation for unsaturated soil[J]. Comput Methods Appl Mech Engrg, 1999(169): 135–159. [3] SHAMY U E, ZEGHAL M. Coupled continuum-discrete

model for saturated granular soils[J]. ASCE Journal of Engineering Mechanics. 2005(131): 413–426.

[4] LI Xi-kui, CHU Xi-hua, SHENG D C. A saturated discrete

particle model and characteristic based SPH method in granular materials[J]. Int J Numer Methods Eng, 2007, 47(72): 858–882.

[5] 冉启全, 李士伦. 流固耦合油藏数值模拟中物性参数动态

模型研究[J]. 石油勘探与开发, 1997, 24(3): 62–65. (RAN Qi-quan, LI Shi-lun. Study on dynamic models of reservoir parameters in the coupled simulation of multiphase flow and reservoir deformation[J]. Petroleum Exploration and Development, 1977, 24(3): 62–65. (in Chinese))

[6] 李培超, 孔祥言, 卢德堂. 饱和多孔介质流固耦合渗流的

数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419–426. (LI Pei-chao, KONG Xiang-yan, LU De-tang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419–426. (in Chinese))

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/(SL)]^(1/2) 式中管道比阻S=10.3*n^2/(d^5.33)=10.3*0.012^2/(0.205^5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/(6.911*1800)]^(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为F: F=P*(3.14d^2 /4)=1764000*(3.14*0.205^2 /4)=58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Δp,管的半径r,长度L,以及流体的粘滞系数η有以下关系: Q=π×r^4×Δp/(8ηL) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + ρV2/2 = 常数,V2表示速度的平方。 流量=速度×面积,用符号表示 Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

孔隙压力有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

压力与流速的计算公式

压力与流速的计算公式 没有“压力与流速的计算公式”。流体力学里倒是有一些类似的计算公式,那是附加了很多苛刻的条件的,而且适用的范围也很小。 1,压力与流速并不成比例关系,随着压力差、管径、断面形状、有无拐弯、管壁的粗糙度、是否等径/流体的粘度属性……,无法确定压力与流速的关系。 2,如果你要确保流速,建议你安装流量计和调节阀。也可以考虑定容输送。 要使流体流动,必须要有压力差(注意:不是压力!),但并不是压力差越大流速就一定越大。当你把调节阀关小后,你会发现阀前后的压力差更大,但流量却更小。 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取 列举五种判别明渠水流三种流态的方法 [ 标签:明渠,水流,方法 ] (1)明渠水流的分类 明渠恒定均匀流 明渠恒定非均匀流 明渠非恒定非均匀流 明渠非恒定均匀流在自然界是不可能出现的。 明渠非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。 (2)明渠梯形断面水力要素的计算公式: 水面宽度 B = b+2 mh (5—1) 过水断面面积 A =(b+ mh)h (5—2) 湿周(5—3) 水力半径(5—4)

式中:b为梯形断面底宽,m为梯形断面边坡系数,h为梯形断面水深。 (3)当渠道的断面形状和尺寸沿流程不变的长直渠道我们称为棱柱体渠道。 (4)掌握明渠底坡的定义,明渠有三种底坡:正坡(i>0)平坡(i=0)和逆坡(i<0。 明渠均匀流特性和计算公式 (1)明渠均匀流的特征: a)均匀流过水断面的形状、尺寸沿流程不变,特别是水深h沿程不变,这个水深也称为正常水深。 b)过水断面上的流速分布和断面平均流速沿流程不变。 c)总水头线坡度、水面坡度、渠底坡度三者相等,J = Js = I。 即水流的总水头线、水面线和渠底线三条线平行。 从力学意义上来说:均匀流在水流方向上的重力分量必须与渠道边界的摩擦阻力相等才能形成均匀流。因此只有在正坡渠道上才可能形成均匀流。 (2)明渠均匀流公式 明渠均匀流计算公式是由连续性方程和舍齐公式组成的,即 Q = A v (5—5)(5—5) 也可表示为:(5—7) 曼宁公式为(5—8) 式中K是流量模数,它表示当底坡为i = 1的时候,渠道中通过均匀流的流量。 水在管道内的流速与水所受的压力有关系吗? [ 标签:管道流速,流速,关系 ] 水在一根管道内的流速与他所受的压力有什么关系?加上管道对水的阻力之后呢? 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算,

孔隙水压力监测

孔隙水压力监测 一、监测内容 用于量测基坑工程坑外不同深度土的孔隙水压力。由于饱和土受荷载后首先产生的是孔隙水压力的变化,随后才是颗粒的固结变形,孔隙水压力的变化是土体运动的前兆。静态孔隙水压力监测相当于水位监测。潜水层的静态孔隙水压力测出的是孔隙水压力计上方的水头压力,可以通过换算计算出水位高度。在微承压水和承压水层,孔隙水压力计可以直接测出水的压力。结合土压力监测,可以进行土体有效应力分析,作为土体稳定计算的依据。不同深度孔隙水压力监测可以为围护墙后水、土压力分算提供设计依据。孔隙水压力监测为重力式围护体系一、二级监测等级、板式围护体系一级监测等级选测项目。 二、仪器、设备简介 1 孔隙水压力计目前孔隙水压力计有钢弦式、气压式等几种形式,基坑工程中常用的是钢弦式孔隙水压力计,属钢弦式传感器中的一种。孔隙水压力计由两部分组成,第一部分为滤头,由透水石、开孔钢管组成,主要起隔断土压的作用;第二部分为传感部分,其基本要素同钢筋计。 2 测试仪器、设备 数显频率仪。 三、孔隙水压力计安装 1 安装前的准备将孔隙水压力计前端的透水石和开孔钢管卸下,放入盛水容器中热泡,以快速排除透水石中的气泡,然后浸泡透水石至饱和,安装前透水石应始终浸泡在水中,严禁与空气接触。 2 钻孔埋设孔隙水压力计钻孔埋设有二种方法,一种方法为一孔埋设多个孔隙水压力计,孔隙水压力计间距大于 1.0m,以免水压力贯通。此种方法的优点是钻孔数量少,比较适合于提供监测场地不大的工程,缺点是孔隙水压力计之间封孔难度很大,封孔质量直接影响孔隙水压力计埋设质量,成为孔隙水压力计埋设好坏的关键工序,封孔材料一般采用膨润土泥球。埋设顺序为①钻孔到设计深度;②放入第一个孔隙水压力计,可采用压入法至要求深度;③回填膨润土泥球至第二个孔隙水压力计位置以上0.5m;④放入第二个孔隙水压力计,并压入至要求深度;⑤回填膨润土泥球…,以此反复,直到最后一个。第

水土压力计算示例

4.1 基坑围护墙内、外的土压力、水压力计算 4.1.1主动土压力的计算 按照水土分算原则计算土压力时,可采用总应力抗剪强度指标按下式计算主动土压力。 ()a a i i a K C K h q p 2-+=∑γ 式中,a p ——计算点处的主动土压力强度(kPa ),0≤a p 时,取0=a p ; i γ——计算点以上各土层的重度(kN/m 3) ,地下水位以上取天然重度,地下水位以下取水下重度; i h ——各土层的厚度(m ); a K ——计算点处土的主动土压力系数,() 245tan 2?-= a K ; C 、?——计算点处土的总应力抗剪强度指标。按三轴固结不排水试验或直剪固结快剪试验峰值强度指标取用。 计算式: ①填土 () 33.021045tan 21=-= a K ; 在水位以上 ()1111112a a a K C K h r q p -''+='; m h 01 ='; ())(6.633.0233.002011Kpa p a =?-?+='; m h 5.01 ='; ())(57.933.00233.05.0182012Kpa p a =?-??+='。 在水位以下 ()111111 112a a a K C K h r h r q p -+''+=; m h 01=; ())(57.933.00233.05.0182011Kpa p a =?-??+=; m h 11=; ())(21.1233.00233.0185.0182012Kpa p a =?-??+?+=。 ②褐黄色粉质粘土 () 49.02045tan 22=-= a K ; ()22222111 122a a a K C K h r h r h r q p -++''+=;

渗流孔隙水压力的计算

顺流减压,逆流增压—扫地僧 最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔隙水压力计算时,基本都可归结为8个字:顺流减压,逆流增压。渗流可以理解为水流,流速很慢的水流,沿渗流方向移动,相当于顺流而下,受到的水压力减小,即为顺流减压。逆渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。 任意点D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处计算是即为顺流向) 2D u H x i =-? , /i h L =? 2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)112()()/D u H L x i H L x h L H x i =+-?=+-??=-?(注:式中H1、H2分别为逆流向和顺流向D 点的静水压力水头) 力学原理解释:x i ?为计算段总水头损 失1h ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失1h 等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解不了也没关系,下面以顺流减压进行推导。 以黏土层底面为基准面,A 点总水头:2H H x =+ 计算段总水头损失:1h x i =? D 点总水头: 12H H h H x x i '=-=+-? D 点位置水头:x D 点压力水头:1D u H x H x i '=-=-? 实战中的运用: 此方法实际就是上述的顺流减压公式。

此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5 此题若按顺流减压则为: ()22sin 28 6sin 28666sin 286cos 28w i h i ==-??=-?=?

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1) 其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图 6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图6.2所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= (6.4) 当竖管中的水位低于地表面时(如图 6.2(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图6.2(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图6.3说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-= (6.5)

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1)

其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3 /10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和

流体力学第五章压力管路的水力计算

第五章压力管路的水力计算 主要内容 长管水力计算 短管水力计算 串并联管路和分支管路 孔口和管嘴出流 基本概念: 1、压力管路:在一定压差下,液流充满全管的流动管路。(管路中的压强可以大于大气压,也可以小于大气压) 注:输送气体的管路都是压力管路。 2、分类: 按管路的结构特点,分为 简单管路:等径无分支 复杂管路:串联、并联、分支 按能量比例大小,分为 长管:和沿程水头损失相比,流速水头和局部水头损失可以忽略的流动管路。 短管:流速水头和局部水头损失不能忽略的流动管路。 第一节管路的特性曲线 一、定义:水头损失与流量的关系曲线称为管路的特性曲线。 二、特性曲线

l l L g V d L g V d l l g V d l d l g V d l g V h h h f j w + = = + = ?? ? ? ? ? + = + = + = 当 当 当 其中, 2 2 2 2 2 2 2 2 2 2 λ λ λ λ λ ζ (1)把2 4 d Q A Q V π = = 代入上式得: 2 2 5 2 2 2 28 4 2 1 2 Q Q d g L d Q g d L g V d L h w α π λ π λ λ= = ? ? ? ? ? = = (2) 把上式绘成曲线得图。 第二节长管的水力计算 一、简单长管 1、定义:由许多管径相同的管子组成的长输管路,且沿程损失较大、局部损失较小,计算 时可忽略局部损失和流速水头。 2、计算公式:简单长管一般计算涉及公式 2 2 1 1 A V A V=(3) f h p z p z+ + + γ γ 2 2 1 1 = (4) g V D L h f2 2 λ = (5) 说明:有时为了计算方便,h f的计算采用如下形式: m m m f d L Q h - - = 5 2ν β (6) 其中,β、m值如下 流态βm 层流 4.15 1 (a) 水力光滑0.0246 0.25 (b)

土水压力的计算方法

12.4 土水压力的计算方法 12.4.1 作用于支挡结构上的土压力 (一)概述 作用在挡土支护结构上的侧压力包括土压力、水压力、冰荷载(寒冷地区)、地震力及地面荷载所产生的侧压力等。土压力是作用于挡土支护结构的主要荷载,特别是在大型深基坑工程中若能较准确地估算土压力,对于确保深基坑工程的顺利进行具有十分重要的意义。从广义来说,土压力是土作用在挡土支护结构上的或作用在被土体所包围的结构物表面上的压力及其合力。这些压力(及合力)是由土的自重、土所承受的恒载和活载所产生的,其大小由土的物理与力学性质、土和结构之间的物理作用、绝对位移、相对位移以及变形值与特性所决定。水压力、冰荷载、地震力及地面荷载等均是通过土这一载体作用于挡土支护结构上,因此,均属于广义土压力,也可称为特殊情况下的土压力。 【例题17】在下列各项中,属于广义土压力的是( )。 A、水压力; B、地震力; C、冰荷载; D、地面荷载; 答案:A、B、C、D (二)影响土压力的因素 作用在挡土支护结构上的土压力受以下因素制约: 1不同土类中的侧向土压力差异很大。采用同样的计算方法设计的挡土支护结构,对某些土

类可能安全度很大,而对另一些土类则可能面临倒塌的危险。因此在没有完全弄清挡土支护结构土压力的性能之前,对不同土类应区别对待。 2 土压力强度的计算及其计算指标的取值与基坑开挖方式和土类有关。当剪应力超过土的抗剪强度时,背侧土体就会失去稳定,发生滑动。由于基坑用机械开挖,一般进度均较快,开挖卸荷后,土压力很快形成,为与其相适应采用直剪快剪或三轴不排水剪是合理的。但剪切前是否要固结,则根据土的渗透性而定。渗透性弱的土,由于加荷快、来不及固结即可能剪损,此时宜采用不固结即进行剪切;反之,渗透性强的土,宜固结后剪切。 【例题18】对于侧壁为饱和粘土的基坑,宜采用( )三轴试验确定其抗剪强度指标。 A、固结排水剪; B、固结不排水剪; C、不固结不排水剪; D、不固结排水剪; 答案:C 3土压力是土与挡土支护结构之间相互作用的结果,它与结构的变位有着密切的关系,从而导致设计土压力值的不确定性。如经典的库仑土压力和朗肯土压力理论仅考虑主动与被动状态;在挡土支护结构变形很小时,要采用静止土压力(其值无统一求法);对于作用于多支点挡土支护结构的土压力则按弹塑性理论进行计算。 4 土压力强度的大小与挡土支护结构刚度有关。当基坑深度及地层土质等条件均相同的情况下,作用在重力式挡土支护结构和柔性挡土支护结构上的土压力显然不同,这是由于两者刚度相差太大所致。 5 对于多支点挡土支护结构,其土压力大小及分布又因支点(锚杆或支撑)的位置及反力大小而变化。

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应

力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

灌浆基础知识和计算公式

灌浆基础知识和计算公式 一、灌浆的含义: 简单的说,灌浆就是将具有胶凝性的浆液或化学溶液,按照规定的配比或浓度,借用机械(或灌浆自重)对之施加压力,通过钻孔或其他设施,压送到需要灌浆的部位中的一种施工技术。 二、灌浆的实质: 充填这些节理裂隙、孔隙、空隙、孔洞和裂缝之处,形成结石,从而起到固结、粘合、防渗,提高承载强度和抗变形能力以及传递应力等作用。 三、灌浆分类: 按照大坝坝基岩类构成,可分为岩石灌浆和砂砾石层灌浆。 按照灌浆的作用,可分为固结灌浆、帷幕灌浆、回填灌浆和接触灌浆。 按照灌注材料,可分为水泥灌浆、水泥砂浆灌浆、水泥粘土灌浆以及化学灌浆等。 按照灌浆压力,可分为高压灌浆(3MPa以上)、中压灌浆(0.5~3MPa)、低压灌浆(0.5MPa以下),后两类也可称为常规压力灌浆。 按照灌浆机理,可分为渗入性灌浆和张裂式灌浆。 四、灌浆材料: 水泥(磨细水泥、超细水泥)、砂、粉煤灰、粘土和膨润土、水外加剂(速凝剂、减水剂、稳定剂) 五、水泥浆液: 配置水泥浆时,多依照质量比例配制,也有按照体积比例配制的。我国各灌浆工程都采用质量比,帷幕灌浆使用范围一般多为水:水泥=5:1~0.5:1,固结灌浆多为2:1~0.5:1。 1、水泥浆的配制:

将水泥和水依照规定的比例直接拌和,这种情况最为简单。先将计量好的水放入搅拌筒内,再将水泥按所规定的质量秤好后,放入筒中直接搅拌即可。例如欲配制各种浓度的水泥浆100L,其所用的水泥和水量可见下【表1】。 配制水泥浆100L 【表1】 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变浓。如原水泥浆100L,加水泥质量可见下【表2】。 在原100L水泥浆中加水泥使水泥浆变浓【表2】注:加水泥单位为 kg 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变稀。如原水泥浆100L,加水体积可见下【表3】。 在原100L水泥浆中加水使水泥浆变稀【表3】注:加水单位为L

压力与流量计算公式

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 压力与流量计算公式: 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中:FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时 式中:Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时

基于水压率讨论土中孔隙水压力及有关问题

〔收稿日期〕 2006-12-07 基于水压率讨论土中孔隙水压力及有关问题 方玉树 (后勤工程学院,重庆) 摘 要 提出了水压率的概念,在此基础上修正了孔隙水压力、浮力、浮重度、渗透力、固结系数和贮水率 计算方法,分析了有效应力、有效自重应力和有效土压力变化规律,对渗流破坏、基坑底突和振动液化特征作出了解释。 关键词 水压率 孔隙水压力 浮力 土压力 渗透力 有效应力 岩土工程广泛涉及孔隙水压力或与孔隙水压力 有关的问题。目前,人们对一些与孔隙水压力相关的议题存在着争论或不完全清楚,如: 细粒土中水对结构物的浮力在按阿基米德定律计算后要不要折减?文献[1]规定:浮力“在原则上应按设计水位计算,对粘土当有经验或实测时可根据经验确定。”该文献的条文说明对此规定做了如下解释:“地下水对基础的浮力可用阿基米德原理计算。这一原理对渗透系数很低的粘土来说也应是适用的,但有实测资料表明,粘土中基础所受到的浮力往往小于水柱高度。由于折减缺乏必要的理论依据,很难确切定量,故规定只有在具有地方经验或实测数据时方可进行一定的折减。”文献[2]只要求对砂类土、碎石类土按计算水位的100%计算浮力,而对粉土和粘性土是否按计算水位的100%计算浮力未作要求。由此可见,当前的困惑在于折减符合实际,但不符合阿基米德定律或者说与现有孔隙水压力计算方法不协调,不折减符合阿基米德定律或者说与现有孔隙水压力计算方法协调,但不符合实际。 计算土的有效自重应力时水位以下土的重度是否一律取浮重度?通常的做法是一律取浮重度,也有意见认为,一般应取浮重度,但计算不透水层(例如只含结合水的坚硬粘土层)中某点的自重应力时,由于不透水层中不存在水的浮力,水位以下土的 重度应取饱和重度[3] 。根据目前普遍采用的土的浮重度和饱和重度的关系式,按浮重度计算和按饱和重度计算的结果有近一倍的差别。 土压力计算时是水土分算还是水土合算?第一种意见是水土分算(或水土分算,有经验时可水土 合算)[4] (据文献[1]之条文说明,上海、广州有关标 准也持这种意见)。第二种意见是水土合算[5,6] (据文献[1]之条文说明,深圳、湖北有关标准也持这种 意见),文献[5]之条文说明对此规定作了如下解 释:按有效应力原理应进行水土分算,这种方法概念比较明确,但粘性土孔隙水压力往往难以确定,故采用水土合算,这种方法低估了水压力的作用,对此应有足够认识。第三种意见是根据经验确定是水土分 算还是水土合算[7] ,这种意见对缺乏经验时如何计算没有说明。根据目前孔隙水压力和竖向有效自重应力(或浮重度)计算方法,水土分算的墙背土压力强度明显大于水土合算的墙背土压力强度。 动水头范围内是否一律考虑渗透力?文献[8]认为应一律考虑渗透力;文献[7]与[9]认为有渗流时应考虑渗透力;文献[10]认为对透水性较强的土体应考虑渗透力,对相对不透水的土体可不考虑渗 透力;文献[11]与[12]以1×10-7 m /s 的渗透系数为界,渗透系数超过此值时计算渗透力,不超过此值时不计算渗透力。 为什么细砂和粉砂最易发生流土和振动液化?为什么包括潜蚀和流土的渗流破坏会在水力坡度远远小于1的情况下发生,又会在水力坡度远远大于1的情况下也不发生? 因此有必要对孔隙水压力问题加以认真的考察。本文提出了水压率的概念,以此为基础对与孔隙水压力有关的问题作出了新的解答。 1 水压率与孔隙水压力 1.1 孔隙水压力的表达 为使土的力学问题能用连续体力学解决,必须把土看成连续体。因此,在研究地下水的运动时,某点的渗透速度是单位面积土截面的流量(而不是实际流速);在研究土体内力时,某点的应力是单位面积土截面上的压力。同样,与应力同量纲的孔隙水压力也应是单位面积土截面上的水压力。孔隙水压 1 2

水压试验的相关计算

一、 管线注水的计算 试压段的注水量可用管道的几何体积算出,根据计算每公里的几何体积约为1102.5m 3 二、 升压用水的计算 在升压过程中,需要进行两次含气量测试。其方法是:泄放一定的压力,实际放出的水量V 1与理论放出的水量V P 比较,理想情况下:V 1/V P =1,但实际中由于水中含有一定的空气V 1/V P 大于1,印度标准中要求含气量不能高于6%,即V 1/V P 不能高于1.06 理论升压用水量可以用如下公式进行计算: 其中: Vp :理论注水量(m 3) r .i :管道内径(mm ) s :管道壁厚(mm ) A :水的热压缩值(可根据相关资料查得(bar -1)×106) V t :管道总体积(m 3) ΔP :压力变化值(bar) K :无量纲系数直焊缝管材取1.02 对于该公式,可利用Excel 进行计算。(参考附件《利比亚工程使用的计算方法》) 三、 温度变化对压力的影响 在稳压过程中,温度有可能会对压力变化产生影响。印度工程要求温度对压力的影响变化不能超过0.3bar ,温度变化引起的压力变化可由下面公式计算得出: 其中:ΔP :压力变化值(bar) ΔT :温度变化值(℃) r.t :管道内径(mm ) t :管道壁厚(mm ) A :水的等温压缩值(可根据相关资料查得(bar -1)×106) B :水膨胀系数和钢材线形膨胀系数的差值(可根据相关资料查得(℃-1) ×106) 四、 P/V 图的制作 (参考利比亚和广东LNG 工程中制作使用的P/V 图) 1、什么是P/V 线? 1)此线反映了向100%注满水管道注水,压力随注水量增加而出现增加的情况。 2)受压管道的应力和应变情况类似于两端受拉的钢棒。 K P 10A 884.0V 6????????? ? ??+?=-t i V s r p T A t r 884.0B P i ?+?=?

水流量与压强差的准确计算公式

水流量与压强差的准确计算公式 最佳答案 对于有压管流,水流量与压强差的准确计算公式和计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=d^ 或用s=d^计算(n为管内壁糙率,d为管内径,m),或查有关表格; 2、确定管道两端的作用水头差ΔH=ΔP/(ρg),),H 以m为单位;ΔP为管道两端的压强差(不是某一断面的压强),ΔP以Pa为单位,ρ——水的密度, ρ=1000kg/m^3;g=kg 3、计算流量Q:Q = (ΔH/sL)^(1/2) 4、流速V=4Q/^2) 式中:Q——流量,以m^3/s为单位;H——管道起端与末端的水头差,以m 为单位;L——管道起端至末端的长度,以m为单位。^表示乘方运算,d^2 表示管径的平方;d^表示管径的方。是圆周率取至小数点后第4位。 或者先求管道断面平均流速,再求流量: 管道流速:V=C√(RJ)= C√(RΔP/L) 确定 流量: Q=^2/4)V 式中:V——管道断面平均流速;C——谢才系数,C=R^(1/6)/n,n管道糙率;R——水力半径;对于圆管R=d/4,d为管内径;J——水力坡降,即单位长度的水头损失,当管道水平布置时,也就是单位长度的压力损失,J=ΔP/L;ΔP——长为L的管道上的压力损失;L——管道长度。 总公式:Q=√(ΔP/9800)x (d^)x3600 m^3/h 多晶炉:d=40,压差=4x10^5,L=200m 流量^3/h 单晶炉: d=94,压差=^5,L=200m 流量^3/h 如果流量为15 m^3/h 侧要求L=100,d= mm 侧要求L=200,d=60.7 mm 如果流量为m^3/h 侧要求L=200,d=68 mm

基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式

第31卷 第8期 岩 土 工 程 学 报 Vol.31 No.8 2009年 8月 Chinese Journal of Geotechnical Engineering Aug. 2009 基于连续介质模型的颗粒材料孔隙度及孔隙水 压力计算公式 楚锡华 (武汉大学土木建筑工程学院,湖北 武汉 430072) 摘 要:孔隙度是能够部分反映颗粒材料微观结构的一个宏观量,其数值及其演化对颗粒材料的宏观力学行为有重要 影响。基于连续介质模型,在颗粒体积应变均匀的前提下推导了颗粒材料的孔隙度随颗粒集合局部平均体积应变的演 化公式,并应用该关系式结合孔隙水状态方程给出了饱和颗粒材料的孔隙水压力与孔隙度、固体颗粒体积模量、固体 颗粒变形之间的关系。所得公式可用于饱和含液颗粒材料流–固耦合计算或饱和多孔介质宏观–细观多尺度流–固耦 合渗流分析。 关键词:孔隙度;孔隙水压力;颗粒材料;多孔介质;连续模型 中图分类号:TU43 文献标识码:A 文章编号:1000–4548(2009)08–1255–03 作者简介:楚锡华(1977–),男,河南濮阳人,博士,讲师,从事计算固体力学、岩土颗粒材料力学行为研究。E-mail: chuxh@https://www.doczj.com/doc/a617731908.html,。 Evolution of porosity and pore water pressure of granular materials based on continuum model CHU Xi-hua (Civil & Architecture School of Wuhan University, Wuhan 430072, China) Abstract:The porosity is a macro-variable which can represent partly micro-structures of granular materials. Based on the continuum model of granular materials, an evolution formula for the porosity with local average volumetric strain of granular assembly is deduced. Provided the change of grain volume is uniform, and the formula is allied with pore water state equation, the relationship among the pore water pressures and the porosity, the volumetric module of grain and the volumetric strain of grain for saturated granular materials is presented. The results obtained can be applied to the numerical simulation of fluid-solid coupling for statured granular materials or to the multi-scale analysis of fluid-solid seepage for porous materials. Key words:porosity; pore water pressure; granular material; porous medium; continuum model 0 引 言 在对含液颗粒材料流固耦合分析时,需计算孔隙度随颗粒集合及流体流动的动态演化。当流–固均采用连续介质模型时,通常忽略孔隙度的变化[1]或孔隙度(孔隙率)的演化依赖于经验公式[2],当固体颗粒采用离散颗粒模型,孔隙流体采用连续介质模型时,局部平均孔隙度通常可从颗粒层次直接演绎[3-4]。文献[5]指出实现流固耦合渗流计算的关键问题之一为建立流固耦合作用下的物性参数动态模型,并给出了孔隙度和渗透率的动态模型,文献[6]在此基础上,通过考虑固体颗粒的变形进一步发展了孔隙度模型。本文基于连续介质模型,考虑体积应变参考不同时刻的构型,推导了孔隙度与宏观平均体积应变的关系,进一步基于饱和多孔介质中孔隙水的状态方程,发展了孔隙水压力与孔隙度、固体颗粒的变形之间关系,所得结果可用于饱和含液颗粒材料流固耦合计算或饱和多孔介质宏观–细观多尺度流固耦合渗流分析。 1 颗粒材料的孔隙度与体积应变的演 化关系 t时刻取一个总体积为0V的多孔介质微元体,其固体骨架由若干固体颗粒组成,设骨架体积,即固体 颗粒总体积为0 s V,孔隙度为0n;该微元体经过系列变化至t时刻,总体积为t V,若不考虑固体颗粒变形,─────── 基金项目:国家自然科学基金项目(10802060) 收稿日期:2008–07–14

相关主题
文本预览
相关文档 最新文档