当前位置:文档之家› 立体几何-线面、面面平行的证明

立体几何-线面、面面平行的证明

立体几何-线面、面面平行的证明
立体几何-线面、面面平行的证明

线面平行与面面平行专题复习

【题型总结】 题型一小题:判断正误

1. a 、b 、c 是直线,

,,是平面,下列命题正确的是 ____________________

① a//b,b//c 贝 U all

c

③ // ,

// 贝 U // ⑤a// ,

// 则a//

②a// ,b// 贝Ua//b ④a// ,a// 贝U // ⑥ a// ,a//b 贝 U b// 归纳: _______________________________________________ 题型二 线面平行的判定

1、如图,在四棱锥 P — ABCD 中,底面 ABCD 是矩形,E 、F 分别是PB,PC 的中点,

求证:EF//面P AD

归纳: _______________________________________________________________________________

理科数学复习专题

立体几何

3、在正方体中,E, F 分别为 C1D1和BC 的中点,

求证:FE// 面 BB1DD1

归纳: _________________________________________________________

小结1 :证明线面平行的方法常常转化为面外线与面内线平行, 而证明两线平行的方法常有: 题型二、面面平行的判定

ABQ .D ,中,求证:平面 AB.D//平面GBC.

2、如图,已知正三棱柱ABC ABiG 中,点D 为AC i 的中点,求证:

(1)BG 〃平面ABD;(2)D i 为AC 的中点,求证:平面 BDA//平面BGD i .

1、在正方体ABCD

B i

C

题型四面面平行的应用:用面面平行证线面平行

1、如图,在直三棱柱ABC ABG中,已知AB AC ,

M,N,P分别为BC,CC i, BB i的中点,求证:A i N //平

面AMP .

【综合练习】

一、选择题

1、直线和平面平行是指该直线与平面内的( )

(A) 一条直线不相交(B)两条直线不相交(C)无数条直线不相交(D)任意一条直线都不相交

2、已知a|| ,b ,则必有( )

(A)a||b (B)a,b异面(C)a,b相交(D)a,b平行或异面

3、若直线a,b都与平面平行,则a和b的位置关系是( )

(A)平行(B)相交(C)异面(D)平行或相交或是异面直线

4、已知平面a、卩和直线m,给出条件:① m //a;②m丄a;③m? a;④a丄卩;⑤all为

使m //卩,应选择下面四个选项中的( )

A .①④

B .①⑤C.②⑤ D .③⑤ 5 .下列命题正确的是

A 一直线与平面平行,则它与平面内任一直线平行

B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行

C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行

D 一直线与平面平行,则平面内任意直线都与已知直线异面 6.以下命题(其中a , b 表示直线,a 表示平面)

①若 a //b , b i a ,则//a

②若 a//a , b Ila ,则 a//b ③若 a //b , b //a ,则 a //a

④若 a //a , b i a ,则 //b

其中正确命题的个数是

() A.0个 B.1个 C.2个 D.3个 、解答题

P-ABCD 中,底面 ABCD 是正方形,侧棱 PD=DC=1 ,点E 是PC 的中点,作 EF. PB PA // 平面 EBD ;

3、在正方体 ABCD — A1B1C1D1 中,0为面 ABCD 的中

心,P , Q 分别为DD1和CC1的中点,证明:

面 PAO// 面 BQD1

1 ?如图,D,E 分别是正三棱柱 ABC

AB,C i 的棱AA 、BiG 的中点,

求证:AE 〃平面BDC 1 ; 2、如图,在四棱锥

PD 底面 ABCD ,

交PB 于点F 求证:

4、如图,在三棱柱ABC - A i B i C i中,侧面ABB1A1 , ACC1A1均

为正方形,AB=AC=1 ,/ BAC=90 °,点是棱B i C i的中点.

求证:AB i //平面A i DC ;

Hi

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

立体几何-线面、面面平行的证明

Q D C B A P C 1 B 1 A 1D 1 D C B A D A 1 C 1 C B 1 B 理科数学复习专题 立体几何 线面平行与面面平行专题复习 【题型总结】 题型一 小题:判断正误 1. a 、b 、c 是直线,,,αβγ是平面,下列命题正确的是_____________ α αβ βααβαβαγαγββααα////a ,//a //a //,//a ////a ,//a ////,////a //,//a //a //,//a b b b b c c b b 则⑥则⑤则④则③则②则① 归纳:_______________________________________ 题型二 线面平行的判定 ~ 1、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,E 、F 分别是PB,PC的中点,求证:EF 归纳: [ 3、在正方体中,E,F分别为C1D1和BC 的中点, 求证: FE 1111111//. ABCD A B C D AB D C BC -在正方体中,求证:平面平面11111111111,,:(1)//;(2)//. ABC A B C D AC BC AB D D AC B DA BC D -2、如图已知正三棱柱中,点为的中点求证平面为的中点,求证:平面平面111ABC A B C -AB AC =,,M N P 11,,BC CC BB 1//A N AMP

# 【综合练习】 一、选择题 1、直线和平面平行是指该直线与平面内的( ) (A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交(D)任意一条直线都不相交 2、已知a b ||,αα?,则必有( ) ()||(),A a b B a b 异面 (), C a b 相交 (), D a b 平行或异面 , 3、若直线a,b 都与平面?平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线 4.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( ) A .①④ B .①⑤ C .②⑤ D .③⑤ 5.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行 B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行 C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行 、 D 一直线与平面平行,则平面内任意直线都与已知直线异面 6. 以下命题(其中a ,b 表示直线,?表示平面) ①若a ∥b ,b ??,则a ∥? ②若a ∥?,b ∥?,则a ∥b ③若a ∥b ,b ∥?,则a ∥? ④若a ∥?,b ??,则a ∥b 其中正确命题的个数是 ( ) 个 个 个 个 二、解答题 … 1.如图,E D ,分别是正三棱柱111ABC A B C -的棱1AA 、11B C 的中点, 求证:1//A E 平面1BDC ;

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何---线面平行

直线、平面平行的判定 【要点梳理】 要点一、直线和平面平行的判定 文字语言:直线和平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线 与此平面平行.简记为:线线平行,则线面平行. 图形语言: 符号语言:a α?、b α?,//a b //a α?. 要点诠释: (1)用该定理判断直线a 与平面α平行时,必须具备三个条件: ①直线a 在平面α外,即a α?; ②直线b 在平面α内,即b α?; ③直线a ,b 平行,即a ∥b . 这三个条件缺一不可,缺少其中任何一个,结论就不一定成立. (2)定理的作用 将直线和平面平行的判定转化为直线与直线平行的判定,也就是说,要证明一条直线和一个平面 平行,只要在平面内找一条直线与已知直线平行即可. 要点二、两平面平行的判定 文字语言:如果一个平面内有两条相交直线与另一个平面平行,则这两个平面平行. 图形语言: 符号语言:若a α?、b α?,a b A =,且//a β、//b β,则//αβ. 要点诠释: (1)定理中平行于同一个平面的两条直线必须是相交的. (2)定理充分体现了等价转化的思想,即把面面平行转化为线面平行,可概述为:线面平行?面 面平行. 要点三、判定平面与平面平行的常用方法 1.利用定义:证明两个平面没有公共点,有时直接证明非常困难,往往采用反证法. 2.利用判定定理:要证明两个平面平行,只需在其中一个平面内找两条相交直线,分别证明它们 平行于另一个平面,于是这两个平面平行,或在一个平面内找到两条相交的直线分别与另一个平面内两条相交的直线平行. 3.平面平行的传递性:即若两个平面都平行于第三个平面,则这两个平面互相平行.

高中立体几何证明线面平行的常见方法

D E B 1 A 1 C 1 C A B M 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证: AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P ABCD 底面是直角梯形, E F B A C D P (第

,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC A B C D E F G M

P E D C B A 的中点. 求证:AB 12 1中点为PD E 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、 BD 上的点,且SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面,90BCA ∠=o ,PB=BC=CA , 为的中点,为的中点,点在上,且2AF FP =. (1)求证:BE ⊥平面; (2)求证://CM 平面;

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

立体几何 直线与平面平行的判定与性质

立体几何直线与平面平行的判定与性质 一、知识梳理 1.直线与平面平行的判定与性质 注意: 1.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.但一定要说明一条直线在平面外,一条直线在平面内. 2.在判定和证明直线与平面的位置关系时,除熟练运用判定定理和性质定理外,切不可丢弃定义,因为定义既可作判定定理使用,亦可作性质定理使用. 3.辅助线(面)是解(证)线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线 二、例题分析 1.已知不重合的直线a,b和平面α, ①若a∥α,b?α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b?α,则a∥α; ④若a∥b,a∥α,则b∥α或b?α. 上面命题中正确的是________(填序号). 2.若直线l不平行于平面α,且l?α,则() A.α内的所有直线与l异面B.α内不存在与l平行的直线 C.α内存在唯一的直线与l平行D.α内的直线与l都相交 3.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且 AP=DQ.求证:PQ∥平面BCE. 提示:判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行 的判定定理(a?α,b?α,a∥b?a∥α);(3)利用面面平行的性质定理(α∥β,a?α?a∥β);(4) 利用面面平行的性质(α∥β,a?β,a∥α?a∥β). 4. 已知:直线a∥平面α,直线a∥平面β,α∩β=b. 求证:a∥b.

三、课堂练习 1.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行 B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行 C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行 D 一直线与平面平行,则平面内任意直线都与已知直线异面 2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A α?l B α//l C αα//l l 或? D 相交和αl 3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B 。平行 C 。相交或平行 D 。相交且垂直 4.下列各命题: (1) 经过两条平行直线中一条直线的平面必平行于另一条直线; (2) 若一条直线平行于两相交平面,则这条直线和交线平行; (3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。 其中假命题的个数为 ( ) A 0 B 1 C 2 D 3 5.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( ) A 平行 B 相交 C 平行或相交 D 或平行、或相交、或在内 6.a,b 为两异面直线,下列结论正确的是 ( ) A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行 B 过不在a,b 上的任一点,可作一直线与a,b 都相交 C 过不在a,b 上任一点,可作一直线与a,b 都平行 D 过a 可以并且只可以作一个平面与b 平行 7.判断下列命题是否正确: (1)过平面外一点可作无数条直线与这个平面平行 ( ) (2)若直线α?l ,则l 不可能与α内无数条直线相交 ( ) (3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( ) (4)经过两条平行线中一条直线的平面平行于另一条直线 ( ) (5)若平面α内有一条直线和直线l 异面,则α?l ( ) 8.过直线外一点和这条直线平行的平面有 个。 9.直线a//b ,a//平面α,则b 与平面α的位置关系是 。 10.A 、B 两点到平面α的距离分别是3、5,M 是的AB 中点,则M 到平面α的距离是 。 11. 三棱柱ABC —A 1B 1C 1中,若D 为BB 1上一点, M 为AB 的中点,N 为BC 的中点. 求证:MN ∥平面A 1C 1D ;

立体几何平行问题专题(学生版)

高三复习——立体几何平行问题专题(学生版) ——李洪波一、基础过关 1. 定理性质梳理 2.平行关系的总结 面面平行 线面平行线线平行

二、概念理解——判断下列命题真假 (1)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;( ) (2)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;( ) (3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点;( ) (4)平行于同一平面的两条直线互相平行;( ) (5)αα//,//a b b a ??; ( ) (6)b a b a ////,//?αα; ( ) (7)αα////,//a b b a ?; ( ) (8)b a b a //,//??αα; ( ) (9)已知平面 α,β 和直线 m ,若,//,m m αβ?,则 α

练习:如图13,正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 .求证:PQ∥平面BCE. 点P、Q,且AP DQ

解法二:(简要过程) A B C D F E P Q 解法三:(简要过程) A B C D F E P Q 四、举一反三 1.(17文科1)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 2.(17文科2)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC = 1 2 AD ,

∠BAD =∠ABC =90°.证明:直线BC∥平面PAD ; 3.(16文科3)如图,四棱锥中,平面,AD BC ,AB , 4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.证明MN 平面PAB .

立体几何-线面平行

1.运用中点作平行线 例1.已知四棱锥P?ABCD的底面是矩形,M,N分别是AD,P B的中点,求证MN//平面PCD。 2.运行比例作平行线 例2.四边形ABCD与ABEF是两个全等正方形,且AM=F N,其中M∈AC,N∈BF,求证:MN//平面BCD. 3.运用传递性作平行线 例3.求证:一条直线与两个相交平面都平行,则这条直线和它们的交线平行。

4.运行特殊位置作平行线 例4.正三棱柱ABC?A1B1C1的底面边长为2,点E,F分别是C1C,B1B上的点,点M是线段AC上的动点,EC=2F B=2,问当点M在何位置时MB//平行AEF。 练习: 1.棱长都相等的四面体称为正四面体,在正四面体A?BCD中,点M,N分别是CD和AD的中点,给出下列命题: ①直线MN//平面ABC ②直线CD⊥平面BMN ③三棱锥B?AMN的体积是三棱锥B?ACM的体积的一半。 则其中正确命题的序号为。

2.几何体E?ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (Ⅰ)求证:BE=DE; (Ⅱ)若BCD=120?,M为线段AE的中点,求证:DM//平面BEC. 3.直三棱锥ABC?A′B′C′,BAC=90?,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点。 (Ⅰ)证明:MN//平面A′ACC′; (Ⅱ)求三棱锥A′?MNC的体积。 4.如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC且AE=AB= 2,CD=1,F为BF的中点。 (1)若点G在AB上,试确定G点的位置,使F G//平面ADE,并加以证明; (2)求DB与平面ABE所成角的正弦值。

立体几何平行垂直问题专题复习

【基础知识点】 」、平行问题 1.直线与平面平行的判定与性质 2.面面平行的判定与性质 、垂直问题 、直线与平面垂直 1 .直线和平面垂直的定义: 直线I 与平面a 内的 ___________________ 都垂直,就说直线 I 与平面a 互相垂直. 2.直线与平面垂直的判定定理及推论 立 体 几 何 平 行 垂 直 问 题 平行问题的转化关系: 41*

面,那么另一条直线也 垂直这个平面 文字语言图形语言付号语言 性质定理垂直于冋一个平面的两条直线平行 ①直线垂直于平面,则垂直于平面内任意直线 ②垂直于同一个平面的两条直线平彳 _____ ③垂直于同一条直线的两平面平彳 ______ 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言图形语言付号语言 判定定理 一个平面过另一个平面的垂线,则这两个平 面垂直 2 文字语言图形语言付号语言 性质定理两个平面垂直,则一个平面内垂直于交线的 直线垂直于另一个平 面 【典例探究】类型一、平行与垂直 例1、如图,已知三棱锥 A BPC中,AP PC, AC BC, M为AB中点,D为

PB中点,且△ PMB为正三角形。(I)求证: DM // 平面APC ; (U)求证:平面ABC 平面APC ; (川)若BC 4,AB 20,求三棱锥 D 例2. 如图,已知三棱柱ABC ABC,中,

AC BC 2, AA 4 , AB 2.2 , M , N 分别是棱CC,, AB 中点? (I)求证:CN 平面ABB,A ; (U)求证:CN// 平面AMB,; (川)求三棱锥B, AMN的体积. 【变式11 .如图,三棱柱ABC A1B1C1中,侧棱AA i平面ABC,ABC为等腰直角三角形,BAC 90,且AB AA1 , D,E,F分别是 点。 (1)求证:DE//平面ABC ; (2)求证:B1F 平面AEF ; (3)设AB a,求三棱锥D AEF的体积。 二、线面平行与垂直的性质 例3、如图4,在四棱锥P ABCD中,平面PAD平面ABCD, AB 〃DC,△ PAD是等边三角形,已知BD 2AD 4, AB 2DC 2.5 . (1)求证:BD 平面PAD ;(2)求三棱锥A PCD的体 积. 例4、如图,四棱锥P—ABCD中, PD 平面ABCD底面ABCD为正方形,BC=PD=2 E为PC的中点,CG ^CB. (I )求证:PC BC ; (II )求三棱锥 3 C- DEG W 体积; (III ) AD边上是否存在一点M,使得PA//平面MEG若存在,求AM的长;否则,说明理由。 【变式2】直棱柱ABCDABCD底面ABCD是直角梯形,/ BAD^Z AD G90°,AB= 2AD= 2CD= 2. (I)求证:AC 平面BBCQ; ( II) A1B上是否存一点P,使得DP与平面BCB B1 B1A, CC1, BC

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高中立体几何证明线面平行的常见方法

D A 1 A F 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、 BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE (第1题图) A B C D E F G M

6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; (3) 利用平行四边形的性质 7.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为 BB 1的中点,求证: D 1O//平面A 1BC 1; 8、在四棱锥P-ABCD 中,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA , E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1 )求证:BE ⊥ 平面PAC ; (2)求证://CM 平面BEF ;

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

立体几何文科经典题证明线面平行精选题

立体几何经典题精选题重点复习题型篇 (一)平行的问题 一“线线平行”与“线面平行”的转化问题 (一)中位线法:当直线上没有中点,平面内有一个中点的时候,(如例1求证:PB//平面AEC P、B为顶点,平面AEC内E为中点)采用中位线法。 具体做法:如例1,平面AEC的三个顶点,除中点E夕卜,取AC的中点0,连接EQ再确定由直线PB和中点E、O D确定的PBD(连接PBD的第三边BD),在PBD中,E0为PB的中位线。 a 规范写法:a//b,a ,b , b// 例1如图,在底面为平行四边形的四棱锥P 求 证:PB//平面AEC ; 例2三棱柱ABC ABiG中,D为AB边中点。求证:AG //平面CDB!; 【习题巩固一】 1. (2011天津文)如图,在四棱锥P ABCD中,底面ABCD为平行四边形,0为AC中点M为PD 中点.(I)证明:PB//平面ACM ; A B1 B

21. (2013年高考课标U卷(文))如图,直三棱柱ABC-ABG中,D是AB的中点.(1)证明 BC// 平面A i CD; 3. (2011 四川文)如图,在直三棱柱ABC —A1B1C1 中,/ BAC=90° AB=AC=AA i=1,延长A i C i 至点P,使C1P = A1C1,连接AP交棱CC1于D. (I)求证:PB1 // 平面BDA1; (二)平行四边形法:当直线上有一个中点(如例1证明:FO//平面CDE ;O为中点)采用平行四边形法。 具体做法:FO先与E连接(原因是ECD的三个顶点E、C D中只有E与已知平行条件EF//BC 有关),再与ECD的另两个顶点CD的中点M相连,构成平行四边形FOE(原因是EF//OM, EF=OM,从而FO//EM。 规范写法(如图): EF//GH,EF GH , EFGH 是平行四边形EH//FG,EH , FG , EH // 例1【天津高考】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE 1 是等边三角形,棱EF //丄BC . (1)证明:FO//平面CDE ;

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

立体几何文科经典题证明线面平行精选题.doc

线面平行 一“线线平行”与“线面平行”的转化问题 (一)中位线法:当直线上没有中点,平面内有一个中点的时候, ( 如例 1 求证:PB //平面AEC P、 B 为顶点,平面AEC内 E 为中点)采用中位线法。 具体做法:如例 1,平面AEC的三个顶点,除中点 E 外,取 AC的中点 O,连接 EO,再确定由直线 PB和中点 E、O、 D 确定的 PBD(连接 PBD的a第三边 BD),在 PBD中, EO为PB的中位线。 规范写法: a // b, a, b, b // b 例 1 如图,在底面为平行四边形的四棱锥P ABCD 中,点E是 PD 的中点 . 求证: PB // 平面 AEC ; 例 2 三棱柱ABC A1 B1C1中,D 为 AB 边中点。求证:AC1∥平面CDB1; C 1 B 1 A1 C B D A 【习题巩固一】 1. (2011 天津文)如图,在四棱锥P ABCD 中,底面ABCD为平行四边形,O为AC中点 P M D C O M 为 PD 中点.(Ⅰ)证明: PB ACM A 明: B11)证

1 2011 四川文)如图,在直三棱柱ABC-A1B1C1 BC 中,∠ BAC=90°, AB=AC=AA1=1,延长 A1C1至点 P,使 C1P=A1C1,连接 AP交棱 CC1于 D.(Ⅰ)求证: PB1 ∥平面 BDA1; (二)平行四边形法:当直线上有一个中点(如例1证明: FO CDE EF //GH,EF GH , EFGH 是平行四边形EH // FG ,EH ,FG, EH // ABCDEF O ABCD 1 CDE P ABCD CDE EF // BC FO 2 AB / /DC M PADM // 面 PBC Ⅰ) 证明:∥平 EF 面PAD;( II )若 H 是 AD 的中点,证明:∥平面; EA PHC 【习题巩固二】 1. 【2010·北京文数】如图,正方形ABCD和四边形 ACEF所在的平面互相垂直 .

立体几何中线面平行的方法题附详细解答

F G G A B C D E C A B D E F D E B 1A 1C 1C A B F M 高中立体几何证明平行 的专题(基本方法) 立体几何中证明线面平行或面面平行都可 转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。 (4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别 为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四 边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1, BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将 △ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥ ⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 E F B A C D P (第1题图) A B C D E F G M

相关主题
文本预览
相关文档 最新文档