当前位置:文档之家› 基于脉振高频信号注入法的高频信号注入无传感器控制

基于脉振高频信号注入法的高频信号注入无传感器控制

基于脉振高频信号注入法的高频信号注入无传感器控制
基于脉振高频信号注入法的高频信号注入无传感器控制

基于高频信号注入的EPS用SPMSM无传感器控制

第41卷 增刊2吉林大学学报(工学版)  Vol.41 Sup.22011年9月 Journal of Jilin University(Engineering and Technology  Edition) Sep t.2011收稿日期:2011-04- 15.基金项目:“973”国家重点基础研究发展计划项目(2011CB711200). 作者简介:冯英本(1987-),男,硕士研究生.研究方向:电机控制.E-mail:fengying ben@gmail.com通信作者:陈慧(1964-),男,教授,博士生导师.研究方向:汽车底盘电子控制技术.E-mail:hui-chen@tongj i.edu.cn基于高频信号注入的EPS用SPMSM 无传感器控制 冯英本,陈 慧 (同济大学汽车学院,上海201804 )摘 要:探讨了脉动高频信号注入法用于电动助力转向系统(EPS)的面贴式永磁同步电机(SPMSM) 转子位置观测的可行性;分析了注入的电流对于电机转矩波动造成的影响。仿真结果表明:这种方式既可以准确地观测电机转子的位置,且对电机的转矩波动影响较小。关键词:车辆工程;电动助力转向;脉动高频信号注入;面贴式永磁同步电机;凸极效应;转矩波动 中图分类号:U463.4 文献标志码:A 文章编号:1671-5497(2011)Sup. 2-0065-05Sensorless drive of surface-mounted PMSM for EPS  basedon high-frequency  signal injectionFENG Ying -ben,CHEN Hui(College of Automotive Engineering,Tongji University,Shang hai 201804,China)Abstract:The feasibility of detecting rotor position of surface-mounted permanent magnet synchronousmotor with this scheme was discussed.The influence of high-frequency signal on torque ripple wasanalyzed.The simulation investigation showed that this control scheme can detect the rotor positionaccurately  and have little influence on torque ripple.Key words:vehicle engineering;electric power steering(EPS);high-frequency signal injection;surface-mounted permanent magnet synchronous motor(SPMSM);saliency effects;torque ripple 电动助力转向系统( EPS)系统的核心部件助力电机大多采用高效率、大功率密度、控制性能和对环境鲁棒性良好的表面式永磁同步电机(Surface-mounted permanent magnet sy nchronousmotor,SPMSM)[1 ],相应的位置观测传感器大多选用旋转变压器或者霍尔编码器。但旋转变压器成本高, 霍尔编码器的温度适应性差,且两种方案均有7至12根信号及电源线与控制器相连,工作环境复杂,降低了系统的可靠性。从降低成本、提 高系统可靠性的角度考虑,无位置传感器的控制策略在EPS中的应用很有价值。高频信号注入法作为无位置传感器控制策略的一种,由于其不受电机参数变化影响,可以实现电机零速及低速段的控制,受到越来越多人的关注。 高频信号注入法是利用交流电机的空间凸极 效应,通过在电机内部注入连续的高频信号来追踪电机的凸极位置,实现对电机转子位置的追踪,根据注入信号方式的不同可以分为旋转高频信号

传感器与信号处理

《传感器与检测技术》试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 3、光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为三类。第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、光电倍增管;第二类是利用在光线作用下使材料内部电阻率改变的内光电 效应,这类元件有光敏电阻;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类元件有光电池、光电仪表。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 9. 电位器传器的(线性),假定电位器全长为Xmax, 其总电阻为Rmax ,它的滑臂间的阻值可以用Rx = (① Xmax/x Rmax,②x/Xmax Rmax ,③ Xmax/XRmax ④X/XmaxRmax )来计算。 10、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 11、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 12、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 13、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。 14、热电偶所产生的热电势是由两种导体的接触电势和单一导体的温差电势组成。 15、电阻应变片式传感器按制造材料可分为① _金属_ 材料和②____半导体__体材料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 _电阻应变效应 形成的,而②的电阻变化主要是由 温度效应造成的。 半导体 材料传感器的灵敏度较大。 16、在变压器式传感器中,原方和副方互感M 的大小与 绕组匝数 成正比,与 穿过线圈的磁通_成正比,与磁回路中 磁阻成反比。 17.磁电式传感器是利用导体和磁场发生相对运动而在导体两端 产生感应电势的。而霍尔式传感器为霍尔元件在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式传感器可用来测量电流,磁场,位移,压力。(6分) 18.测量系统的静态特性指标通常用输入量与输出量的对应关系来表征(5分) 简答题 1 简述热电偶的工作原理。(6分)

高频信号注入法进行永磁同步电机转子位置检测的信号采集系统

20083702机电工程技术!""#年第$%卷第"!期高频信号注入法进行永磁同步电机转子位置 检测的信号采集系统 陈立权,齐 昕,王长松,王辉(1.上海交通大学机械与动力工程学院,上海200240;2.日照职业技术学院机电工程学院,山东日照276826)收稿日期:2007-09-21摘要:本设计实现了高频信号注入法进行转子位置检测的信号采集系统。用F2812在产生PWM波同时产生注入电机的高频脉动信号。采用Max274的带通滤波器和用OPA2132设计的低通滤波器进行滤波,然后通过ADS8364进行模数转换来采集信号,以中断的方式传送到F2812。实践表明,该系统满足实际数据采集的要求。 关键词:ADS8364;Max274;有源滤波;TMS320F2812;高频信号注入;信号采集 中图分类号:TP274文献标识码:A文章编号:1009-9492(2008)02-0055-03 1引言 永磁同步电机(Permenent-MagnetSynchronousMotor) 以其高效率、结构紧凑、易维护和调速性能好等一系列 优点得到越来越广泛的应用。但传统的永磁同步电机需 要位置传感器来实现电机的换相,如霍尔器件、光学编 码器和旋转变压器等,这些传感器会增加电机转子轴上 的转动惯量,加大电机空间尺寸和体积,有的分辨率低 或运行特性不好,有的对环境条件很敏感,潮湿和温度 变化都会使性能下降,使得整个传动系统的可靠性难以 得到保证。因此,无位置传感器控制成为一个重要研究 课题。目前应用比较广泛的无传感器转子位置检测方法 是反电势法(BackElectroMotiveForce,简称为BEMF)。 但是反电势法也存在固有的局限性,首先这种方法需要 利用基波电压和电流信号来计算转子的位置和速度,因 此对电机参数变化很敏感,鲁棒性差,其次在零速或者 低速检测时会因反电势过小或根本无法检测而失败,所 以只适用于高转速运行。为了在低速和零速下获得转子 位置的精确信息,一些学者提出了转子凸极追踪法,这 种方法要求电机具有一定程度的凸极性,而且需要注入 持续高频激励。转子凸极追踪法的基本原理是:在电机 定子绕组上注入高频电流或电压信号,然后检测定子绕 组中对应的电压或电流信号,再通过一系列的坐标变换 来提取转子的位置信息[1]。高频信号注入分为旋转高频信号注入和脉动高频信号注入,对于永磁同步电机来说, 脉动高频信号注入法原理清晰,结构简单,鲁棒性能好, 因此本文采用脉动高频信号 [2]。 2系统要求及设计高频信号注入频率一般为0.5k~5kHz远高于电机基波频率,所产生的附加转矩是一个高频扰动转矩,对转速不产生影响,在本系统中需要采样的定子绕组中的电流信号为小于100Hz和1kHz两种信号,并且需要过滤掉注入高频信号以及其他一些噪声。系统结构如图1所示。Ti公司的TMS320F2812与其他DSP相比,其突出的特点是有两个事件管理器和模数转换模块,事件管理器是数字电机控制应用使用的非常重要的外设,能够实现电机设备控制的多种必要的功能[3]。每个事件管理器模块包括:定时器、比较器、捕捉单元、PWM逻辑电路、正交编码脉冲电路以及中断逻辑电路等。ADC模块将外部的模 拟信号转换成数字量,且可以将一个控制信号进行滤波或图1系统结构图研究与开发

基于高频信号注入法的永磁同步电机无传感器控制

摘要:介绍了一种基于电机空间凸极追踪转子位置无传感器自检测方法。该方法采用高频电压载波注入法,采用外差法转子位置跟踪观测器完成了转子位置信息提取,实现无机械位置传感器电机转子位置检测。并仿真证明了这种方法可行性。 自20世纪80年代以来,现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术快速发展,交流伺服控制技术发展以极大迈进,使先前困扰着交流伺服系统电机控制复杂、调速性能差等问题取了突破性发展,交流伺服系统性能日渐提高,价格趋于合理,使交流伺服系统取代直流伺服系统尤其是高精度、高性能要求伺服驱动领域成了现代电伺服驱动系统一个发展趋势。满足高性能系统技术要求.以永磁同步电机电力传动系统为例,实现高精度、高动态性能速度和位置控制,一般应采用磁场定向矢量控制或直接转矩控制.采取哪种控制方案,都需要测量转子速度和位置,一般是机械式传感器(编码器、解算器和测速发电机)来实现.,这类传感器有安装、电缆连接、故障等问题,并影响系统可靠性和限制系统使用范围,不符合集成应用系统要求。 解决机械传感器给调速系统带来各种缺陷,许多学者开展了无机械传感器交流调速系统研究.无机械传感器交流调速系统是指利用电机绕组中有关电信号,适当方法估计出转子位置和转速,实现转子位置自检测.曾有很多文章提出了各种转子位置和速度检测方法,其中大多数都是检测基波反电势来获转子位置信息.这种基于基波激励方法实施简单,但零速或低速时因反电势过小而根本无法检测,只适用于高转速运行.另外,这些方法要利用基波电压和电流信号计算转子位置和速度,它们对电机参数变化很敏感,鲁棒性差。 包括零速内任何速度下都能够获精确转子位置信息,一些文献提出了一种新转子位置自检测方法,即转子凸极追踪法.这种方法要求电机具有一定程度凸极性,需要有持续高频激励,可以实现电机全速度范围内转子位置检测.这种方法追踪是电机转子空间凸极效应,对电机参数变化不敏感,鲁棒性好.可以看出,这种转子位置无传感器自检测方法学术思想新颖,其研究具有重要理论意义和工程实用价值。 本文基于转子凸极追踪思想,介绍了采用高频电压载波注入法对内插式永磁IPM同步电机转子凸极位置实现跟踪原理,详细讨论了SPWM电压励磁条件下转子自检测方法实现技术,利用Mat-lab建立了凸极效应自检测过程仿真模型,给出了高、低速运行下转子位置自检测结果。 1 基于电机空间凸极追踪转子位置检测原理 面贴式外,一般永磁同步电机均会呈现出一定凸极性,为注入高频载波信号来跟踪转子凸极提供可能. 高频载波信号注入法可分为电流注入法和电压注入法,其中电压注入法实现较为简单.设注入三相平衡电压用一个以载波信号频率旋转载波电压矢量来表示 此主题相关图片如下: 式中:为静止d-q坐标系中注入高频载波电压,为载波电压矢量幅值。 SPWM电压源型逆变器供电拖动系统中,可以逆变器将高频载波信号直接加电机基波励磁上,如图1所示。此时,电机端电压为 此主题相关图片如下:

传感器与信号处理电路习题答案

第1章 传感器与检测技术基础 1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至 2.5V ,求该仪器的灵敏度。 解:该仪器的灵敏度为 25 .40.55.35.2-=--=S V/mm 2.某测温系统由以下四个环节组成,各自的灵敏度如下: 铂电阻温度传感器: 0.45Ω/℃ 电桥: 0.02V/Ω 放大器: 100(放大倍数) 笔式记录仪: 0.2cm/V 求:(1)测温系统的总灵敏度; (2)记录仪笔尖位移4cm 时,所对应的温度变化值。 解: (1)测温系统的总灵敏度为 18.02.010002.045.0=???=S cm/℃ (2)记录仪笔尖位移4cm 时,所对应的温度变化值为 22.2218 .04==t ℃ 6.有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 解:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器。 10.试分析电压输出型直流电桥的输入与输出关系。 答:如图所示,电桥各臂的电阻分别为R 1、 R 2、 R 3、R 4。U 为电桥的直流电源电压。当四臂电阻R 1=R 2=R 3=R 4=R 时,称为等臂电桥;当R 1=R 2=R ,R 3=R 4=R ’(R ≠R ’)时,称为输出对称电桥;当R 1=R 4=R ,R 2=R 3 =R ’(R ≠R ’)时,称为电源对称电桥。 D 直流电桥电路 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以可以认为电桥的负载电阻为无穷大,这时电桥

基于无滤波器方波信号注入的永磁同步电机初始位置检测方法

2017年7月电工技术学报Vol.32 No. 13 第32卷第13期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jul. 2017 DOI: 10.19595/https://www.doczj.com/doc/a43973513.html,ki.1000-6753.tces.L70030 基于无滤波器方波信号注入的 永磁同步电机初始位置检测方法 张国强王高林徐殿国 (哈尔滨工业大学电气工程及自动化学院哈尔滨 150001) 摘要针对无位置传感器内置式永磁同步电机(IPMSM)初始位置检测中,传统的基于凸极跟踪的短脉冲电压注入法难以确定脉冲宽度和幅值、实现困难、二次谐波分量法信噪比低的缺点,提出一种基于无滤波器方波信号注入的IPMSM初始位置检测方法。首先通过向观测的转子d轴注入高频方波电压信号,采用无滤波器载波信号分离方法解耦位置误差信息,通过位置跟踪器获取磁极位置初定值;然后基于磁饱和效应,通过施加方向相反的d轴电流偏置给定,比较d轴高频电流响应幅值大小实现磁极极性辨识;最后,通过2.2kW IPMSM矢量控制系统对提出的基于无滤波器方波信号注入的初始位置检测方法进行实验验证。结果表明,所提方法收敛速度较快,可在IPMSM转子静止或自由运行状态实现初始位置辨识和低速可靠运行,位置观测误差最大值为6.9°。 关键词:内置式永磁同步电机无位置传感器无滤波器方波注入初始位置检测 中图分类号:TM351 Filterless Square-Wave Injection Based Initial Position Detection for Permanent Magnet Synchronous Machines Zhang Guoqiang Wang Gaolin Xu Dianguo (School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China) Abstract With regard to the initial position detection for position sensorless interior permanent magnet synchronous machine (IPMSM) drives, existing saliency-tracking-based methods have difficulties to determine the amplitude and width of the pulses for the short pulses injection method, and also have low signal-noise ratio for the position-dependent secondary-harmonics-based method. Hence, this paper presents a filterless square-wave voltage injection based initial position detection scheme for position sensorless IPMSM drives. A high-frequency square-wave voltage vector is injected in the estimated d-axis, then the position error information is demodulated through filterless carrier signal separation, and the position tracking observer is adopted to obtain the initial position. Based on the magnetic saturation effect, the magnetic polarity can be identified by comparing the amplitudes of the induced d-axis high-frequency current with two given d-axis current offsets which are equal in value but opposite in direction. Experiments on a 2.2kW IPMSM sensorless vector controlled drive have been carried out to verify the proposed scheme. The experimental results show that the initial position detection for standstill and free-running rotor applications as well as the stable operation at 国家自然科学基金(51522701)和台达环境与教育基金会电力电子科教发展计划(DREK2015002)资助项目。 收稿日期 2016-07-14 改稿日期 2016-12-09

传感器技术及传感器信号处理

传感器技术及其信号处理方法 第一章传感器概述 1.1 传感器技术基础 传感器(sensor)是一种把物理量转换成电信号的器件。可以说,传感器代表了物理世界与电气设备(如计算机)世界接口的一部分。这种接口的另一部分由把电信号转换成物理量的执行器(actuator)表示。 为什么我们这么关心这个接口?近年来,电子行业拥有了巨大的信息处理能力。其中最明显的例子是个人计算机。此外,价格低廉的微处理器的使用对汽车、微波炉、玩具等嵌入式计算产品的设计产生了重大影响。最近几年,使用微处理器进行功能控制的产品越来越多。在汽车行业,为满足污染限制要求必须利用微处理器的这种信息处理能力。而在其他行业,这种能力又带来了降低产品成本、提高产品性能的优势。 所有这些微处理器都需要输人电压以接收指令和数据、因此,随着廉价微处理器的出现,传感器在各种产品中的应用也越来越多。此外,由于传感器输出的是电信号,因而传感器也就能够按电子没备的描述方式来插述。同电子产品数据手册一样,很多传感器数据手册也都遵照某种格式撰写。然而,目前存在很多种格式,而且传感器规格说明的国际标准还没有制订,这样,传感器系统设

计师就会遇到对同一传感器性能参数存在不同的解释,这常常令人混淆。这种混淆并非由于这些术语的含义无法理解,而是在于传感器界不同的人群习惯于使用不同的术语,认识到这一点至关重要。 1.1.1 传感器数据手册 为了解决上述术语使用的差异向题,有必要首先命绍数据手册的功用,数据手册主要是一份营销文件,用来突出某一传感器的优点,強调其潜在的应用,但是有可能忽视该传感器的不足。很多情况下,传感器是设计用来满足特定用户的特定性能要求的,而数锯手册就集中了该用户最感兴趣的性能参数。这种情况下,传感器制造商和客户就有可能越来越习惯于使用某种约定的传感器性能参数定义,而这种定义却未必通用,这样,这种传感器未来的新用户必须认清这种情形以便恰当地理解这些参数。人们常常遇到不同的定义。此外,大多数传感器数据手册都缺少对特定应用有用的信息。 1.1.2 传感器性能特征定义 下面是一些较重要的传感器性能特征。 1.传递函数 传递函数表示物理输入信号与电瑜出信号之间的函数关系。通常,这种关系以输入输出信号关系图来表示,具体的关系构成了对传感器性能特点的完整描述。对需逐

传感技术与信号处理

浙江工业大学之江学院010/011 学年 第二学期《传感技术与信号处理》期终试卷 (考试类型:闭卷) 班级姓名学号 一、填空( 每空1.5分共45分) 1.通常把频谱中作为信号的频宽,称为1/10法则;对于有跃变的信号,取作为频宽。 2.测试装置的灵敏度愈高,测量范围往往愈________,稳定性愈______。 3.若要信号在传输过程中不失真,测试系统的输出和输入的幅频特性必须满足(表达式)__________________,相频频特性必须满足(表达式)__________________。 4.为了消除应变片的温度误差,可采用的温度补偿措施包括:、、 和。 5. 电感式传感器按工作原理可分为_______________、________________和电涡流式三种。 6.为了提高极距变化式电容传感器的灵敏度,应_______初始间隙。但初始间隙过_______时,一方面使测量范围_______,另一方面容易使_______击穿。 7.压电式传感器测量电路的前置放大器有_________________和_________________两种,_________________作为前置放大器时压电式传感器输出信号与测量导线的距离无关。 8. 光电耦合器是由一个和一个共同封装在一个外壳内组成的复合型转换元件,又称为。 9.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B=_____________莫尔条纹的放大倍数K=_____________。 10.热电偶产生热电势必须具备的基本条件是 ____________、____________。 11.霍尔式传感器为______ _______在磁场中有电磁效应(霍尔效应)而输出电势的。霍尔式元件的电路符号图为:_________________。 14.热电动势由两部分电动势组成,一部分是两种导体的________电动势,另一部分是单一导体的______电动势。

传感器的发展历史

传感器的定义 信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后

的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。 德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。 传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。 有源(a)和无源(b)传感器的信号流程 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能 传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以

基于高频电压注入法的永磁同步电机转子初始位置检测1

基于高频电压注入法的永磁同步电机转子初始位置检测 Initial Rotor Position Inspection of PMSM Based on Rotating High Frequency Voltage Signal Injection 北京航空航天大学自动化科学与电气工程学院蔡名飞周元钧 摘要:为了解决新型无位置传感器永磁同步电机的起动问题,提出了一种在电机静止状态下检测转子位置的新方法。 该方法在算法上改进了传统的旋转高频电压注入法,使得可以更为快速、准确的检测出转子初始(均扫位置。并且针对传统旋转高频电压注人法无法检测出转子永磁体极性问题,在dq旋转坐标系下,通过分析永磁同步卜匕机d轴磁链和定子电流之间的关系,利用d轴电流的泰勒级数展开,提出J’根据定子铁芯非线性磁化特性获得判另}J N/S极极性信息的新方一案。最后,建立了系统仿真模型。仿真结果验证了这种方法的有效性和可行性。此方法同样适用于永磁同步电机在中、低速时的转子位置检测。 关键词:永磁同步电机转子初始位置旋转高频注人非线性磁化特性N/S极极性 1引言 永磁同步电机高精态、高动态性能的速度、位置控制,都需要准确的转子位置信息。如果位置检测误差较大,会导致电机不能正常起动、运行。传统方法是通过机械式传感器来测量转子的速度和位置。但机械式传感器减低了系统的可靠性,增加了系统的成本;同时传感器对环境有着严格的要求,电磁干扰、温度、湿度、振动对它的测量精度都有影响。特别针对某些航空伺服电机,长期工作在恶劣、复杂的环境中,所以研究无位置传感器不仅可 以减少航空电机成本,而且可以减少不必要的引线,将大大提高整个系统的可靠性〔‘]。 最简单的无位置传感器控制方法是文献「2]提出的基于对检测到的电机反电动势进行积分,这种方法虽然简单,但是在零速或低速阶段因为反电动太小,难以检测而失败。后来人们又提出了高频注人法,其主要思想是用电机固有的空间凸极或凸极效应可以实现对转子位置的检测,这种方法与转速没有直接关系,有效克服了反电动势法的 缺陷。文献〔3]提出通过处理电流高频响应,采取求导取极值计算电机的初始位置,但这种方法存在震荡现象,高频电流也会因滤波器移相导致检测误差,并且也没有给出电 机N/S极极性检测方法。文献【4]提出在电机中注人幅值相同、方向不同的系列脉冲,检测并比较相应电流的大小来估计转子的位置。这种方法可行但是对注入脉冲的电压幅 值和时间控制要求比较高,操作复杂,检测时间过长。文献[[5][6]通过注人高频信号引起PMSM的d,q轴磁链饱和程度差异实现初始位置检测,这种方法高频电流信号提取复 杂,容易带来计算误差,难以做到转子位置的实时检测跟踪。文献〔7l所使用的电机经过特殊设计,不具普遍性,仅适用于理论研究。 为了解决以上方法的存在的问题,本文提出了一种基于旋转高频电压注人法的永磁同步电机转子初始位置检测的新方法。在电机静止状态下,通过向电机定子三相绕组中注入高频电压信号,利用电机凸极效应,通过处理高频电流响应,得出转子的位置信号。为此,本文进行了仿真研究,实现了转子d轴位置和N/S极极性的快速、准确检测。 2高频激励下的永磁同步电机的数学模型

检测传感技术期末复习题参考答案

中国石油大学(北京)远程教育学院 《检测传感技术》期末复习题参考答案 一、填空题(本题共计40分,每一填空计2分) 1. 一个完整的测试系统由激励装置、传感器、信号调理、信号处理、显示记录等五个基本环节组成。 2. 在测试系统中,激励装置的功能是激发隐含的被测信息;传感器的功能是将被测信息转换成其他信息;信号调理环节的功能是将传感器获得的信息转换成更适合于进一步传输和处理的形式;信号处理环节的功能是对来自信号调理环节的信息进行各种处理和分析;显示记录环节的功能是显示或存储测试的结果。 3. 不失真测试即测试系统的输出要真实地反映其输入的变化。为实现不失真测试,系统频率响应需要满足的条件是:幅频特性为常数;相频特性呈线性。对系统瞬态响应的要求是:瞬态误差小;调整时间短。 4. 测试信号的时域特征参数主要有均值、方差和均方值。 5. 信号的均值反映随机信号变化的中心趋势;信号的方差反映随机信号在均值附近的分布状况;信号的均方值反映随机信号的强度。 6. 任何周期信号均可分解为一系列频率比为有理数的简谐信号, 其频谱特性包括离散性、谐波性、收敛性。 7. 频率单一的正弦或余弦信号称为谐波信号。一般周期信号由一系列频率比为有理数的谐波信号叠加而成。 8. 周期信号的频谱特性:离散性即各次谐波分量在频率轴上取离散值;谐波性即各次谐波分量的频率为基频的整倍数;收敛性即各次谐波分量随频率的增加而衰减。 9. 瞬态信号是在有限时间段存在,属于能量有限信号。

10. 瞬态信号的频谱为连续谱,其幅值频谱的量纲为单位频宽上的幅值,即幅值频谱密度函数。 11. 一阶测试系统的基本参数是时间常数。根据对测试系统的基本要求及一阶测试系统的频率响应和单位阶跃响应,一阶测试系统的基本参数的选取原则是时间常数小。 12. 二阶测试系统的基本参数是固有频率和阻尼比。 13. 金属丝应变片依据应变效应工作;半导体应变片依据压阻效应工作。 14. 压力传感器由弹性敏感元件和机电转换元件两部分组成。 15. 测量传感器的动态特性的实验方法包括频率响应法和时间响应法。 16. 基于弹性元件受力产生变形实现检测的力传感器为二阶测试系统。为保证不失真测试,要求传感器的固有频率远大于被测力参数的工作频率。 17. 线性系统的频率保持性即若对线性系统的输入为某一频率的简谐信号,则其稳态响应必是同一频率的简谐信号。 18. 系统频率响应函数测试中,稳态正弦激励方式的依据是线性系统的频率保持性,其特点是测试周期长,其原因在于在每个测试频率处,只有当系统达到稳定状态才能进行测试。 二、解释题(本题共计12分,每小题4分) 1. 物性型传感器 答:依靠敏感元件材料本身物理性质在被测量作用下的变化来实现信号转换的传感器,如应变式、压电式、压阻式传感器。 2. 结构型传感器

ABS轮速传感器及其信号处理

ABS轮速传感器及其信号处理 车轮防抱死制动系统简称ABS 是基于汽车轮胎与路面之间的附着特性而开发的高技术制动系统。ABS由信号传感器、逻辑控制器和执行调节器组成。其控制目标是:当汽车在应急制动时,使车轮能够获得最佳制动效率,同时又能实现车轮不被抱死、侧滑,使汽车在整个制动过程中保持良好的行驶稳 定性和方向可操作性。 在ABS系统中,几乎都离不开对车轮转动角速度的测定,因为只要有了车轮转动角速度,其它参数(如车轮转动角和加速度)均可通过计算机计算获得。ABS的工作原理就是在汽车制动过程中不断检测车轮速度的变化,按一定的控制方法,通过电磁阀调节轮缸制动压力,以获得最高的纵向附着系数和较高的侧向附着系数,使车轮始终处于较好的制动状态。因此精确检测车轮速度是ABS系统正常工作的先决条件。 1 ABS轮速传感器及特性分析 通常,用来检测车轮转速信号的传感器有磁电式、电涡流式和霍尔元件式。由于磁电式轮速传感器工作可靠,几乎不受温度、灰尘等环境因素影响,所以在ABS系统中得到 广泛应用。 1.1 磁电式轮速传感器的工作原理 磁电式传感器的基本原理是电磁感应原理。根据电磁感应定律,当N匝线圈在均恒 磁场内运动时,设穿过线圈的磁通为φ,则线圈内的感应电势ε与磁通变化率有如 下关系: 若线圈在恒定磁场中作直线运动并切割磁力线时,则线圈两端的感应电势ε为: 式中,N为线圈匝数;B为磁感应强度;L为每匝线圈的平均长度:为线圈相

对磁场运动的速度;θ为线圈运动方向与磁场方向的夹角。 若线圈相对磁场作旋转运动并切割磁力线时,则线圈两端的感应电势ε为: 式中,ω为旋转运动的相对角速度;A为每匝线圈的截面积;φ为线圈平面的法线 方向与磁场方向间的夹角。 根据上述基本原理,磁电传感器可以分为两种类型:变磁通式(变磁阻式)和恒定磁通式。由于变磁通式磁电传感器结构简单、牢固、工作可靠、价格便宜,被广泛用于车辆上作为检测车轮转速的轮速传感器。图1为变磁通式磁电传感器的结构原理。其中传感器线圈、磁铁和外壳均固定不动,齿轮安装在被测的旋转体上。 当齿轮与被测的车轮轴一起转动时,齿轮与铁芯之间的气隙随之变化,从而导致气隙磁阻和穿过气隙的主磁通发生变化。结果在感应线圈中感应出交变的电动势,其频率等 于齿轮的齿数Z和车轮轴转速n的乘积,即: f=Zh (4) 感应电动势的幅值与车轮轴的转速和气隙有关,当气隙一定时,转速越大,其幅值越大;当转速一定时,气隙越小,其幅值越大。 1.2 轮速传感器特性试验研究 目前,测量车轮转动速度的一般方法是将变磁阻式磁电传感器安装在车轮总成的非旋转部分上,与随车轮一起转动的由导磁材料制成的齿圈相对。当齿圈随车轮一起转动时,由于齿圈与传感器之间气隙的的交替变化,导致两者间磁阻的变化,从而在传感器内的线 圈上感生出交变的电压信号。

传感器与信号处理

传感器 一、名词解释 1.传感器;能感受规定的被测量并按照一定规律转化成可用输出信号的器件和装置。 2.应电效应 某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。 3.压阻效应 4.霍尔效应 金属或半导体薄片置于磁感应强度为B的磁场中,当有电流I通过时,在垂直于电流和磁场的方向上将产生电动势U H,这种物理现象称为霍尔效应。 5.热电效应 将两种不同的导体A和B连成闭合回路,当两个接点处的温度不同时,回路中将产生热电势。 6.光电效应 光电效应是物体吸收到光子能量后产生相应电效应的一种物理现象。 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.误差按出现的规律分、、。 4.对传感器进行动态的主要目的是检测传感器的动态性能指标。 1.敏感元件、转换元件、测量电路 2.电容传感器、电感传感器、电阻传感器、压电式传感器 3.系统误差、随机误差、粗大误差 4.标定(或校准或测试) 5.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 6.传感检测系统目前正迅速地由模拟式、数字式,向----------方向发展。 7.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为Rs= 。 5.测量范围 6.智能化 7.(△K0 / K0)×100% 8.电容式压力传感器是变型的。 9.图像处理过程中直接检测图像灰度变化点的处理方法称为。 8.极距(或间隙) 9.微分法 10.目前应用于压电式传感器中的压电材料通常有、、。 11.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型12.热敏电阻按其对温度的不同反应可分为三类、、。 13.光电效应根据产生结果的不同,通常可分为、、三种类型。 14.传感器的灵敏度是指稳态标准条件下,输出与输入的比值。对线性传感器来说,其灵敏度是。 10.压电晶体、压电陶瓷、有机压电材料 11.变间隙型、变面积型、变介电常数型 12.负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)、临界温度系数热敏电阻(CTR)

第二章PSD传感器与信号处理电路

第二章 PSD传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD(Position Sensitive Detector)。 本章介绍PSD及其信号处理电路的工作原理及选型。 2.1 PSD传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD(Position Sensitive Detector)是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD的位置。入射光的强度和尺寸大小对PSD的位置输出信号均无关。PSD的位置输出只与入射光的“重心”位置有关。 PSD可分为一维PSD和二维PSD。一维PSD可以测定光点的一维位置坐标,二维PSD可测光点的平面位置坐标。由于PSD是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD为PIN三层结构,其截面如图2.1.1所示。表面P层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD光敏面上某一点时,假设产生的总的光生电流为I0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I1和I2。显然,I1和I2之和等于光生电流I0,而I1和I2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R1和R2。如果PSD表面层的电阻是均匀的,则PSD的等效电路为图2.1.1〔b〕所示的电路。由于R sh很大,而C j很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R1和R2的值取决于入射光点的位置。 假设负载电阻R L阻值相对于R1和R2可以忽略,则有: I I R R L x L x 1 2 2 1 == - + (2.1.1) 式中,L为PSD中点到信号电极的距离,x为入射光点距PSD中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I0= I1+I2与式(2.1.1)联立得:

第二章PSD传感器与信号处理电路

a 第二章 PSD 传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD (Position Sensitive Detector )。 本章介绍PSD 及其信号处理电路的工作原理及选型。 2.1 PSD 传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD (Position Sensitive Detector )是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD 将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD 的位置。入射光的强度和尺寸大小对PSD 的位置输出信号均无关。PSD 的位置输出只与入射光的“重心”位置有关。 PSD 可分为一维PSD 和二维PSD 。一维PSD 可以测定光点的一维位置坐标,二维PSD 可测光点的平面位置坐标。由于PSD 是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD 为PIN 三层结构,其截面如图2.1.1所示。表面P 层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD 光敏面上某一点时,假设产生的总的光生电流为I 0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I 1和I 2。显然,I 1和I 2之和等于光生电流I 0,而I 1和I 2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R 1和R 2。如果PSD 表面层的电阻是均匀的,则PSD 的等效电路为图2.1.1〔b 〕所示的电路。由于R sh 很大,而C j 很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R 1和R 2的值取决于入射光点的位置。 假设负载电阻R L 阻值相对于R 1和R 2可以忽略,则有: (2.1.1)I I R R L x L x 1221==-+式中,L 为PSD 中点到信号电极的距离,x 为入射光点距PSD 中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I 0= I 1+I 2与式(2.1.1)联立得:

相关主题
文本预览
相关文档 最新文档