当前位置:文档之家› 何时考虑中梁刚度放大系数

何时考虑中梁刚度放大系数

何时考虑中梁刚度放大系数
何时考虑中梁刚度放大系数

何时考虑中梁刚度放大系数

《高规》第5.2.2条规定:在结构内力和位移计算中,现浇楼板和装配整体式楼面中梁的刚度可考虑翼缘的作用予以放大。其建议中梁该系数取2,边梁可取1.5,一般而言,填入此系数后,梁的刚度增大,内力也会相应的增大。

计算地震作用时,模型只考虑了框架梁柱对刚度的贡献,板对总体刚度的贡献并未被考虑进去。而实际上因为板的存在,梁由矩形变为T型,刚度增大,所以计算参数时,应将中梁刚度放大。

计算配筋时,因为属于T型梁范围内的板配有一定数量的钢筋As,As一方面承担板荷载,另一方面如果有富余As',且As'能抵消掉因为梁刚度增大而引起的梁配筋的增量,那么梁的配筋就可以直接采用刚度不放大情况下的计算结果,反之,就应该考虑将梁钢筋予以适当放大。梁的上部钢筋(支座负筋)配够就可以了,不必人为再放大,否则有可能会造成超筋,当梁端纵向受拉钢筋的配筋率大于2%时,箍筋直径应增加2mm。

楼板对梁的刚度有放大的作用,考虑楼板的作用可以提高梁的承载力,而且这个数值并不小,但不好计算,所以目前大部设计好像不考虑楼板的这部分的作用,也就低估了梁的承载力,这也是影响强柱弱梁的实际一个关键因素。

梁刚度的放大主要是为了考虑楼板刚度对结构的贡献。我们知道,刚性楼板假定总是假定楼板平面内刚度无限大,这种情况下是无法考虑楼板刚度对结构的贡献的,因此规范规定通过采用梁刚度放大的方法来近似考虑,从这点来讲,梁的刚度放大并非是为了在计算梁的内力和配筋时,将楼板作为梁的翼缘,按T形梁设计,以达到降低梁的内力和配筋的目的,而仅仅是为了考虑楼板刚度的影响。

在实际工程中,倘若我们在设计工程中遇到在刚性楼板假定下,结构的位移角稍微超出了规范限制,我们可以填入此系数,考虑了楼板刚度的贡献后,结构的周期将有所减小,位移角也将有所减小,但此时梁的内力可能会增大,甚至出现超筋现象,此时我们一般按考虑刚度放大系数前的梁的内力和配筋结构作为最终结果,而位移角采用刚度放大后的结果。所以必要的时候此处要进行二次计算。这是因为考虑楼板刚度对结构的贡献主要是为了进一步挖掘楼板刚度的潜力,使结构的周期和位移计算更真实一些。而梁的刚度不放大,其本身承载力仍能满足在各种荷载组合下的设计要求,就不会存在安全隐患。当然此出处个人觉得柱、墙的内力应该按考虑刚度放大后的结构,而梁则可以按考虑前的结果,毕竟楼板对梁的受力还是有利的,此时若按放大后的结果算,可能就会造成“强梁弱柱”的情况!

梁配筋按照1.5放大来配,算位移按照2.0来配。

中梁刚度放大系数越大,地震作用下的梁内力就越大,配筋就越大;

相应的柱子内力就会减小,导致配筋量减小,便会导致强梁弱柱,不提倡。

所以在计算梁配筋的时候可以将该系数取得小一点。

pkpm结构设计参数

P K P M结构设计参数 P K P M结构设计参数 1.风荷载 风压标准值计算公式为:W K=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压W o略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D 类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。

在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5O m、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(W o T12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期T g 的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5T g以内与89规范相同,从5T g起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。

关于SATWE中楼层侧向刚度比的取值

关于SATWE 中楼层侧向刚度比的取值 1 层刚度的三种计算方法及选用 层刚度的三种计算方法在《PKPM 多高层结构计算软件应用指南》中有介绍(P233),分别为剪切刚度、剪弯刚度和地震作用下层剪力和层间位移的比值,在WMASS.OUT 文件中对应以RJX1,RJX2,RJX3进行了输出。 1.1 剪切刚度 剪切刚度见于高规式(E.0.1-1)等效剪切刚度比的计算: 1121221 e G A h G A h γ=× 剪切刚度计算简单,考察的是抗侧力构件的截面特性及与层高的关系,主要用于方案阶段及初步设计阶段估算、剪切变形为主的结构及结构部位,如框架结构、结构的嵌固部位(结构嵌固部位刚度比计算)、转换层设置在地面以上1、2层时的转换层与其相邻上层的等效剪切刚度比等。 高规E.0.1规定当转换层设置在1、2层时,可近似采用该公式计算得到的等效剪切刚度比1e γ进行判断。1e γ宜接近1,非抗震设计时不应小于0.4,抗震设计时不应小于0.5。 PKPM 中对应为RJX1,结构总体坐标系中塔的侧移刚度和扭转刚度(剪切刚度);输出刚度比Ratx ,X 方向本层塔侧移刚度与下一层相应塔侧移刚度的比值(剪切刚度) 1.2 地震作用下层剪力和层间位移的比值 地震作用下层剪力和层间位移的比值即按胡克定律(即楼层标高处产生单位水平位移所需要的水平力)确定结构的侧向刚度。应用于框架结构(高规3.5.2中第1条)及转换层设置在第2层以上(高规E.0.2)时刚度比的计算。 111i i i i V V γ++?= ? PKPM 中对应为RJX3,结构总体坐标系中塔的侧移刚度和扭转刚度(地震剪力与地震层间位移的比);输出刚度比Ratx1,X 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者。这对应于高规3.5.2中1款对框架结构的规定。该方法物理概念清晰,理论上适用于所有的结构,尤其适合于楼层侧向刚度有归路均匀变化的结构,适用于对结构“软弱层”及“薄弱层”的初步判别。但当楼层侧向刚度变化过大时,适应性较差。 另外,高规E.0.2规定当转换层设置在第2层以上时,应该按该方法计算转换层与其相邻上层的侧向刚度比,该值不应小于0.6。

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

梁刚度放大系数按主梁计算的思考

关于pkpm新版本中梁刚度系数放大的问题,新版本中是这样表述的: 而旧版本中是这样表述的: 我认为新版本这样写,是更加完善,更加准确的写法; 先说一下旧版本的计算问题所在 在旧版本中,存在这样的问题,就是同样一根框架梁,截面尺寸、跨度一样的前提下,被次梁分割下就会发现,主梁的刚度放大系数差距很大了,如图所示: 就会发现框架梁被多个次梁分割成一小段一小段的时候,刚度放大系数变小了,我认为这样是不符合实际的,梁的刚度放大系数跟次梁分割不分割是没有关系的,框架梁是一根整体的,而pkpm在计算的时候,次梁的分割会在框架梁上形成一个个的节点,这样导致框架梁的刚度放大系数分成几段来计算,由规范的表格可以知道,框架梁的刚度放大系数跟三个方面有关系,分别为梁的计算跨度、梁的净距、楼板的厚度,旧版中的pkpm中来计算的时候,是

把梁分段来计算的,这样导致一个完整的框架梁被分成了几小段,导致计算跨度减小,导致梁的刚度放大系数减小,这样会导致整个结构的刚度减小,总之会导致地震剪力的减小,并且位移角会增加5%作用,地震剪力墙会减小7%左右,总之来说旧版本中的这个问题,是需要我们在特殊构件补充定义里去修改被分割后的框架梁的刚度放大系数,以下是截图 修改完之后,这样才符合实际的结构工作情况,那么问题来了,以前没有注意这个问题的时候,房子也不是没有倒塌吗,那是因为没有发生大震或者中震,并且我们知道混凝土的构件设计的时候,安全储备是很大的,我们看下混凝土与钢筋的设计值和标准值就明白了; 好了,正是pkpm发现了这个问题的所在,故而在新版本中将此项改为了梁刚度放大系数按主梁计算,也就是不考虑次梁,也就避免了以上的问题,所以我认为这个改善是很有必要的。以上观点仅供参考,不足或者错误之处敬请批评。 -----------2016年12月7日

PKPM刚度比计算

PKPM剪切、剪弯、地震力与地震层间位移比三种刚度比的计算与选择 剪切、剪弯、地震力与地震层间位移比三种刚度比的计算与选择 (一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2。计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2。其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3。计算公式见《高规》151页。 ②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。 ⑵SATWE软件所采用的计算方法:高位侧移刚度的简化计算 ⑶应用范围:可用于执行《高规》第E.0.2条规定的工程的刚度比的计算。 (四)《上海规程》对刚度比的规定 《上海规程》中关于刚度比的适用范围与国家规范的主要不同之处在于: ⑴《上海规程》第6.1.19条规定:地下室作为上部结构的嵌固端时,地下室的楼层侧向刚度不宜小于上部楼层刚度的1.5倍。 ⑵《上海规程》已将三种刚度比统一为采用剪切刚度比计算。 (五)工程算例: ⑴工程概况:某工程为框支剪力墙结构,共27层(包括二层地下室),第六层为框支转换层。结构三维轴测图、第六层及第七层平面图如图1所示(图略)。该工程的地震设防烈度为8度,设计基本加速度为0.3g。 ⑵1~13层X向刚度比的计算结果: 由于列表困难,下面每行数字的意义如下:以“/”分开三种刚度的计算方法,第一段为地震剪力与地震层间位移比的算法,第二段为剪切刚度,第三段为剪弯刚度。具体数据依次为:层号,RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层。 其中RJX是结构总体坐标系中塔的侧移刚度(应乘以10的7次方);Ratx1为本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均刚度80%的比值中的较小者。具体数

强度,刚度 ,弹性模量

强度定义 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0。2%的塑性变形相对应的应力为名义屈服极限,用σ0。2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。 按照环境条件,材料强度有高温强度和腐蚀强度等。高温强度包括蠕变强度和持久强度。当金属承受外载荷时的温度高于再结晶温度(已滑移晶体能够回复到未变形晶体所需要的最低温度)时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。高温持续载荷下的断裂强度可能低于同一温度下的材料拉伸强度,以材料的持久极限为其计算强度的标准(见持久强度)。此外,还有受环境介质影响的应力腐蚀断裂和腐蚀疲劳等材料强度问题。 结构强度指机械零件和构件的强度。它涉及力学模型简化、应力分析方法、材料强度、强度准则和安全系数。 按照结构的形状,机械零件和构件的强度问题可简化为杆、杆系、板、壳、块和无限大体等力学模型来研究。不同力学模型的强度问题有不同的力学计算方法。材料力学一般研究杆的强度计算。结构力学分析杆系(桁架、刚架等)的内力和变形。其他形状物体属于弹塑性力学的研究对象。杆是指截面的两个方向尺寸远小于长度尺寸的物体,包括受拉的杆、受压的柱、受弯曲的梁和受扭转的轴。板和壳的特点是厚

PKPM中那七个比的详细出处及调整

PKPM中那七个比的详细出处及调整 一、轴压比 1、定义:柱(墙)的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比值。 2、作用:反映了柱(墙)的受压情况;限制柱(墙)的轴压比主要是为了控制柱(墙)的延性,因为轴压比越大,柱(墙)的延性就越差,在地震作用下柱(墙)的破坏呈脆性。 3、规范限值: 1)柱轴压比限值 《混凝土结构设计规范》(50010-2010)11.4.16条 《建筑抗震设计规范》(50011-2010)6.3.6条 《高层建筑混凝土结构技术规程》(JGJ3-2010)6.4.2条 2)剪力墙轴压比限值 《混凝土结构设计规范》(50010-2010)11.7.16条 《建筑抗震设计规范》(50011-2010)6.4.2条 《高层建筑混凝土结构技术规程》(JGJ3-2010)7.2.13条 4、不满足规范限值时调整方案: 增大柱(墙)的截面尺寸或提高该楼层柱(墙)混凝土强度等级。 二、剪重比 1、定义:水平地震力作用下楼层剪力标准值与重力荷载代表值的比值。 2、作用:为了控制结构总水平地震剪力及各楼层最小水平地震剪力,确保结构的安全。 3、规范限值: 《建筑抗震设计规范》(50011-2010)5.2.5条 《高层建筑混土结构技术规程》(JGJ3-2010)4.3.12条 注:1、周期介于3.5s和5.0s之间的结构,应允许线性插入取值; 2、7、8度时括号内的数值分别用于设计基本地震加速度为0.15g和0.30g的地区; 3、对于竖向不规则结构的薄弱层(不满足《高规》第3.5.2、3.5.3、3.5.4条),剪重比尚应乘以1.15的增大系数; 4、“扭转效应明显”是指楼层最大水平位移(或层间位移)大楼层平均水平位移(或层间位移)的1.2倍。 4、不满足规范限值时的调整方案: 1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5条调整各层地震内力”后,程序按抗震规范5.2.5条自动将楼层最小地震剪力系数直接乘以该层及以上楼层重力荷

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

盈建科参数设置

结构总体信息 1、结构体系:按实际情况填写。 2、结构材料信息:按实际情况填写。 3、结构所在地区:一般选择“全国”。分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。B类建筑和A类建筑选项只在坚定加固版本中才可选择。 4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。 5、嵌固端所在层号:(P219~224)抗规6.1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。 如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。 由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。在YJK中的结果文件wmass.out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。 如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。 6、与基础相连构件最大底标高: 7、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。程序不能自动识别转换层,需要人工指定。 对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 9、加强层所在层号:人工指定。根据《高规》10.3、《抗规》6.1.10条并结合工程实际情况填写。 10、底框层数:用于框支剪力墙结构。高规10.2 11、施工模拟加载层步长:一般默认1. 12、恒活荷载计算信息:(P66) 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载一模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况; 3)按模拟施工二:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。4)模拟施工加载三:采用分层刚度分层加载模型,接近于施工过程。 故此建议一般对多、高层建筑首选模拟施工3。对钢结构或大型体育馆类(指没有严格的标准层概念)结构应选一次加载。对于长悬臂结构或有吊柱结构,由于一般是采用悬挑脚手架的施工工艺,故对悬臂部分应采用一次加载进行设计。当有吊车荷载时,不应选用模拟施工3。 19、风荷载计算信息:一般来说大部分工程采用YJK缺省的“一般计算方式”即可,如需考虑更细致的风荷载,则可通过“特殊风荷载”实现。

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、 位移比和刚重比“六种比值” 高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,- 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求- 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性- 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层- 4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。- 5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响- 6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆- 位移比(层间位移比):- 1.1 名词释义:- (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。- (2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。- 其中:- 最大水平位移:墙顶、柱顶节点的最大水平位移。- 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。- 层间位移角:墙、柱层间位移与层高的比值。- 最大层间位移角:墙、柱层间位移角的最大值。- 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。- 1.3 控制目的: -

高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:- 1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。- 2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。- 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。- 1.2 相关规范条文的控制:- [抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。- [高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。- [高规]4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:- 结构休系Δu/h限值- 框架1/550- 框架-剪力墙,框架-核心筒1/800- 筒中筒,剪力墙1/1000- 框支层1/1000- 1.4 电算结果的判别与调整要点:- PKPM软件中的SATWE程序对每一楼层计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,详位移输出文件WDISP.OUT。但对于计算结果的判读,应注意以下几点:- (1)若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;- (2)验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心-

液压机横梁的强度与刚度的计算

横梁的强度与刚度的计算 由于横梁是三个方向上尺寸相差不太多的箱体零件,用材料力学的强度分析方法不能全面地反应它的应力状况。目前,在进行初步设计计算时,还只能将横梁简化为简支梁进行粗略核算,而将许用应力取得很低。按简支梁计算出的横梁中间截面的应力值和该处实测应力值还比较接近,因此作为粗略核算,这种方法还是可行的。但无法精确计算应力集中区的应力,那里的最大应力要大很多。 有限单元法的以展提供了比较精确地计算横梁各部分应力的可能性,因此,目前在设计横梁时,普遍使用有限单元法计算。但作为分析强度的基础,下面将介绍支梁算法。 当上下横梁刚度不够时,会给立柱带来附加弯矩。上横梁刚度如太小,或两个方向上刚度不一样,在液压缸加载时,上横梁和工作缸法兰的接触面会形成局部接触,使工作缸过早损坏。一般对横梁的刚度要求为立柱间每米跨度上挠度不超过0.15mm。由于横梁均属于跨度比较小而高度相对比较大的梁,因此在计算挠度时,除了考虑弯矩引起的挠度外,还必须计算由于剪力引起的挠度。 一、上横梁的强度与刚度的计算: 由于上横梁的刚度远大于立太平的刚度,因此可以将上横梁简化为简支梁,支点间距离为宽边立柱中心距。 (1)单缸液压机工作的公称力简化为作用于法兰半圆环重心上的两个集中力,如下图:

单缸液压机上横梁受力简图 最大弯矩在梁的中点: M max =P/2(1/2-D/∏) 式中:P—液压机公称压力(N); D—缸法兰的环形接触面平均直径(cm); L—立柱宽边中心距(cm)。 最大剪力为: Q =P/2 最大挠度在梁的中点: ?0=P/48EJ×(L/2-D/∏)×[3L2-4(L/2-D/∏)2]+KPL/4GA[1-2(D/∏L)] =PL3/48EJ×[1-6(D/∏L)2+4(D/∏L)3]+KPL/4GA[1-2(D/∏L)] 式中:E—梁的弹性模量(N/㎝2); J—梁的截面惯性矩(cm2); G—梁的剪切弹性模量(N/㎝2); A—梁的截面积(cm2); K—截面形状系数,见式(2—80)。

第4章结构构件的强度刚度稳定性

第4章 结构构件的强度、刚度及稳定性 起重机械钢结构作为主要承重结构,由许许多多构件连接而成,常见构件有轴心受力构件、受弯构件及偏心受压构件。承载能力计算包括强度、刚度和稳定计算。稳定问题包括整体稳定和局部稳定,在连续反复载荷作用下,尚需要计算疲劳强度。本章介绍轴心受压构件、受弯构件及偏心受压构件的强度、刚度、整体稳定性及局部稳定性的计算。 4.1 轴心受力构件的强度、刚度及整体稳定 4.1.1 轴心受力构件的强度 轴心受力构件的强度按下式计算: []j N A σσ= ≤ (4-1) 式中: j A —构件净截面面积, mm 2; N —轴心受力构件的载荷, N ; []σ—材料的许用应力,N/mm 2。 4.1.2 轴心受力构件刚度 构件过长而细,在自重作用下会产生较大的挠度,运输和安装中会因刚度较差而弯扭变形,在动力载荷作用下也易产生较大幅度的振动。且对于轴心受压构件,刚性不足容易产生过大的初弯曲和自重等因素产生下垂挠度,对整体稳定性产生不利影响。为此,必须控制构件的长细比不超过规定的许用长细比][λ,构件的刚度按下式计算: []l r λλ= ≤ (4-2) 式中:0l —构件的计算长度,mm ; []λ—许用长细比,《起重机设计规范》GB/T 3811-2008规定结构构件容许长 细比见表4-1; r —构件截面的最小回转半径,mm 。 r = (4-3) 式中: A —构件毛截面面积,mm 2; I -构件截面惯性矩,mm 4;

4.1.3 轴心受压构件整体稳定性 (1) 理想轴心受压构件 轴心受压构件的截面形状和尺寸有种种变化,构件丧失整体稳定形式有三种可能:弯曲屈曲、弯扭屈曲和扭转屈曲。对于双轴对称的截面(如工字形),易产生弯曲屈曲;对于单轴对称的截面(如槽形),易产生弯扭屈曲;对于十字形截面,易产生扭转屈曲。 理想轴心受压构件是指构件是等截面、截面型心纵轴是直线、压力的作用线与型心纵轴重合、材料完全均匀。 早在18世纪欧拉对理想轴心压杆整体稳定 进行了研究,得到了著名的欧拉临界力公式。 图4-1所示为轴心受压构件的计算简图,据此可以建立构件在微曲状态下的平衡微分方程: 0=?+''?y N y EI (4-4) 解此方程,可得到临界载荷0N ,又称欧拉临界载荷E N : 2 20o E l EI N N π= = (4-5) 式中:0l —压杆计算长度,当两端铰支时为实际长度l ,mm ; E —材料的弹性模量,N/mm 2; I —压杆的毛截面惯性矩,mm 4。 由式(4-5)可得轴心受压构件的欧拉临界应力为: 222 0220)/(λ ππσσEA r l EAr A N E E ==== (4-6) N x N y N

中梁放大系数的理解

对于待讨论的话题来说,用反诘解决不了问题! 既然楼上认为那篇文章可以解读这个问题,为什么不能贴出来,让大家解惑呢? 我搜到了“叶列平”先生的一篇发言稿《汶川地震建筑震害调查分析》,里面大概讲了一些楼板对柱铰形成的影响,但不够细致,可能和你掌握的那篇论文不一致。可能怕我理解能力有限读不懂吧,楼上不肯私下里给出这篇文章,但我还是建议楼上把论文亮出来,让理解能力更强的同仁看看! 针对楼上质疑我回答两点: 一、为什么都不统一用真实结构计算,这样不更能反应变形协调吗? 《高规》的变形控制是的前提是“刚性板”,和“梁刚度”没关系,我不清楚为什么两个问题总有人混淆? 顺便说一句:《高规》要求的变形控制是种失真控制,而非真正的变形。问题不是出在程序应该如何设定上,更不是出在我这,要质疑变形和内力不协调只能质疑高规的“刚性板”,但和“梁刚度”没关系。 二、叶教授的关于《汶川地震建筑震害调查分析》的文章我读过了,有见地。但没见其指出过“柱铰”的出现和梁刚度放大有关,仅见指出“和填充墙的作用、现浇楼板参与造成梁端超强有关”。 下面说一点我对“柱铰机制”形成的理解: 梁超强(或强梁弱柱)的原因不是梁刚度的放大,而是楼板钢筋的参与。梁刚度放大是在内力分析阶段讨论的问题,是种客观存在(楼板不配筋也存在),而楼板钢筋参与负弯矩分配是承载力的节点分析阶段讨论的问题。 内力分析后应用于配筋的应该是:M 柱≥η(M 梁 +M 板 ), 承载力阶段“梁”配筋时采用(M 梁+M 板 )、板筋照配, 造成实际“广义梁端”承载力为(M 梁+M 板 +M 板2 ), 形成M 柱<η(M 梁 +M 板 +M 板2 ),“柱铰机制”形成。 赵兵的论点错在:承载力阶段的问题转移到内力分析阶段解决。 内力分析阶段的梁刚度不放大,柱配筋的承载力ηM 梁1与梁刚度放大下的柱配筋的承载力ηM 梁2 比较是偏 大的, 但依然不能保证:ηM 梁1 ≥η(M梁2+M板) 即柱实际承载力≯理论强柱弱梁下柱承载力:弯矩放大*(放大梁刚度后梁端配筋+楼板参与钢筋)。 本想精心准备一下再论,但对于质疑只好草草回复了。附几篇论文及小刚架模型:《汶川地震建筑震害调查分析》、《板筋参与梁端负弯矩承载力问题的探讨》、《柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估》,有关这方面的研究建议大家再看“白绍良”教授等人的文章,理解起来并不难,但愿对有心人有点帮助! 附图为用《结构力学求解器 1.5》的两张弯矩图片,一为梁刚放大,二为梁刚不放大,顺便指出:梁刚不放大时,梁端弯矩大、跨中弯矩小。

PKPM中七个比的控制和调整

高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个: 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5,高规 6.4.2和7.2.14。 轴压比不满足时的调整方法: 1)程序调整:SATWE程序不能实现。 2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 2、剪重比:剪重比是规范考虑长周期结构用振型分解反应谱法和底部剪力法计算时,因地震影响系数取值可能偏低,相应计算的地震作用也偏低,因此出于安全考虑,规范规定了楼 层水平地震剪力得最小值.若楼层水平地震剪力小于规范对剪重比的要求,水平地震剪力的取值应进行调整,主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规 4.3.12。这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。 剪重比不满足时的调整方法: 1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2)人工调整:如果还需人工干预,可按下列三种情况进行调整: a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度; b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标; c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。 3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.3,高规3.5.2;对于形成的薄弱层则按高规3.5.8,抗规3.4.4予以加强。

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

11结合工程实际或日常生活实例说明构件的强度,刚度和稳定性概念.

第 一 章 1-1结合工程实际或日常生活实例说明构件的强度、刚度和稳定性概念。 1-2 什么是内力?怎样用截面法求内力? 1-3 什么是应力?为什么要研究应力?内力和应力有何区别和联系? 1-4 试求图1-8所示两单元体的剪应变。 第 二 章 2-1 什么是平面假设?建立该假设的根据是什么?它在推证应力公式中起什么作用? 2-2 杆内的最大正应力是否一定发生在轴力最大的截面上? 2-3何谓虎克定律?它有几种表达形式?它的应用条件是什么? 2-4 若杆的总变形为零,则杆内任一点的应力、应变和位移是否也为零?为什么? 2-5 低碳钢和铸铁在拉伸和压缩时失效形式有何不同?说明其原因。 2-6 如何判断材料的强度、刚度和塑性的大或小? 第 三 章 3-1 何谓挤压?它和轴向压缩有何不同? 3-2 剪切实用计算和挤压使用计算使用了那些假设?为什么采用这些假设? 第 四 章 4-1传动轴的外力偶矩和功率、转速有何关系?减速箱中转速高的轴和转速低的轴哪个直径大?为什么? 4-2 扭矩和剪应力之间有何关系?图4-35所示圆轴的横截面那些图的剪力分布是正确的? 4-3 外径为D ,内径为d 的空心圆轴,其32d 32D I 44P π-π=,16 d 16D W 3 3t π-π=对否? 4-4对等直圆轴、阶梯轴、实心圆轴和空心圆轴扭转时,如何选取危险截面和危险点? 4-5为什么条件相同的受扭空心圆轴比实心圆轴的强度和刚度大? 第 五 章

5-1 何谓平面弯曲、对称弯曲? 5-2 “梁上max M 所在的截面上剪力一定等于零”,对吗?为什么? 5-3 在写剪力方程和弯矩方程时,函数的定义域在什么情况下是开区间、什么情况下是闭区间? 5-4 截面上的剪力等于截面一侧梁上所有外力在梁轴的垂线(y 轴)上投影的代数和,是否说明该截面的剪力与其另一侧梁上的外力无关? 5-5 根据内力微分关系,Q dx dM =可以知道,在Q=0的截面上M 有极值。为什么在均布载荷作用的悬臂梁(图5-11C )的自由端A 截面上的Q 和M 均等于零? 第 六 章 6-1 什么是纯弯曲、横力弯曲、平面弯曲和对称弯曲?梁发生这些弯曲的条件是什么? 6-2 横力弯曲必须满足什么条件才能用纯弯曲正应力公式Z I My =σ来计算梁的正应力? 6-3 截面形状及尺寸完全相同的一根钢梁和木梁,如果所受外力也相同,其内力图是否也相同?它们横截面上的正应力是否相同?梁上对应点的纵向应变是否相同? 6-4 将直径为d 的圆截面木梁锯成矩形截面梁,如图6-36所示。欲使该矩形截面梁的弯曲强度和弯曲刚度最好,截面的高宽比h/b 为多少? 第 七 章 7-1两梁的尺寸、支承及所受载荷完全相同,一根为钢梁,一根为木梁,且木钢E 7E =,试求(1)两梁中最大应力之比;(2)两梁中的最大挠度之比。 7-2 已知等直梁的挠曲线方程)l 7x l 10x 3(y 4224EIl 360qx --=,试分析梁 的载荷及 支承情况,并画出其简图。 7-3梁的挠曲线近似微分方程的应用条件是什么? 7-4 如何用叠加法迅速求出图7-32所示梁中点的挠度?

中梁刚度放大系数

中梁刚度放大系数和强柱弱梁 时至今日,网上还在讨论“中梁刚度放大系数的取值问题”,有某些人,甚至是软件编制人员也错误的认为,梁的刚度放大可以随着设计者的控制而变化,针对这种错误论点,我不断在论坛上批驳,有点像祥林嫂了,真不知道何日才能正气战胜歪风?算了,在自己的小天地里说说吧,准备过一段时间整理一下写成论文。如有人引述,希望注明出处,算给本人论文留点素材,谢谢! 经验丰富的设计者或审图人不一定都理解结构的原理和概念,甚至规范条文也未必能完全体现事物的本质规律! 先说几种错误观点: 1.“只有计算位移时,才考虑梁刚度放大系数,计算内力时不考虑,是因为梁的刚度放大后,其内力增大,配筋增大,从而使其承载力得到提高……有可能由强柱弱梁转换为强梁弱柱(计算位移等指标时刚度放大取2,配筋等计算时取1)”这是“承载力问题转移到内力分析阶段解决”! 2.“因为梁的刚度放大后,其分配内力增大,配筋增大...",内力不会因为一个系数的变化而变化,设计截面决定受力,所谓内力变化仅是建立的力学模型上的变化,不是实际内力的变化。即使仅在力学上,梁的刚度放大后,竖向荷载作用下的梁端弯矩会减小。地震力不会因为你设个1.0的系数而变小的,它和结构形式和截面有关,不和你设系数多少有关。是先有力,才有配筋。 3.“受压时考虑楼板对梁的刚度放大,受拉时不考虑”。内力计算时考虑刚度放大,是和截面有关,T型截面刚度无论是受压还是受拉,基本上就是n倍矩形截面刚度。 4.“我们计算的内力是T型梁的内力,而我们进行梁的配筋时,用T型梁的内力计算矩形梁的配筋,使矩形梁的配筋增大,然而实际破坏模型中再一次考虑了楼板翼缘的参与;这种情况会进一步加剧柱铰的形成”,并没有重复考虑翼缘作用,翼缘和楼板配筋不是一个概念,考虑翼缘刚度作用是结构分析阶段,考虑板筋是承载力分析阶段;按这种思路,梁截面和梁配筋也是重复考虑了! 从本质说,“梁的刚度放大”和“强柱弱梁”没有关系,和梁柱的刚度也没关系。强柱弱梁是强度要求,刚度放大是客观事实。要保证强柱弱梁,承载能力是关键,刚度或线刚度没有意义。 1.在弹性阶段,板及板中钢筋参与结构整体受力是事实,“梁的刚度放大”的目的是为了在整体计算中体现楼板参与而做的一种简化——就如在计算无梁楼盖是采用条板法分析是一个意思,是种由多维分析向三维或二维分析在力学上的简化措施。 2.强柱弱梁是抗震的一项基本要求,一种为大部分人所接受的“先局部,保整体”顺序破坏的概念。强柱弱梁是我们设计的“目的”,而不是“手段和过程"! 3.就目前一般的弹性设计来看,“梁的刚度放大”是必须的,和强柱弱梁没有交叉点,因为刚度客观存在,也是内力分析前、刚度矩阵形成的前提,强柱弱梁是我们的目的,前提不影响结果(目的)。而这个前提是不能随设计者意志力为转移。 4.加大柱的断面和配筋(柱的客观刚度)并不能决定强柱弱梁的形成,强柱弱梁是靠梁柱实际的承载能力比来实现的!理论上,无论刚度比多大的梁柱,通过调整梁柱配筋和断面都可

PKPM位移比

PKPM刚度比、位移比、周期比详细讲解 周期比 规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。 对于通常的规则单塔楼结构,如下验算周期比: 1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T1 3)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。再考察下一个次长周期。4)考察第一平动周期的基底剪力比是否为最大 5)计算Tt/T1,看是否超过0.9 (0.85) 周期比控制什么?如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性 周期比不满足要求,如何调整?一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不满足要求说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。 F验算周期比的目的,主要为控制结构在罕遇大震下的扭转效应。 F多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算。如果上部没有连接,应该各个塔楼分别计算并分别验算,如果上部有连接,验算方法尚不清楚。 F体育场馆、空旷结构和特殊的工业建筑,没有特殊要求的,一般不需要控制周期比。 F当高层建筑楼层开洞口较复杂,或为错层结构时,结构往往会产生局部振动,此时应选择“强制刚性楼板假定”来计算结构的周期比。以过滤局部振动产生的周期。 位移比 规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平

相关主题
文本预览
相关文档 最新文档