当前位置:文档之家› 电阻式传感器测量原理和测量电路

电阻式传感器测量原理和测量电路

电阻式传感器测量原理和测量电路
电阻式传感器测量原理和测量电路

电阻式传感器测量原理和测量电路

一、电阻式传感器测量原理

电阻式传感器的基本原理是将被测的非电量转化成电阻值的变化,再经过转换电路变成电量输出。根据传感器组成材料变化或传感器原理变化,产生了各种各样的电阻式传感器,主要包括压敏式传感器、热敏传感器、光敏传感器、湿敏传感器。

电阻传感器可以测量力、压力、位移、应变、加速度和温度等非电量参数。电阻式传感器结构简单,性能稳定,灵敏度较高,有的还可用于动态测量。

二、电阻式传感器测量电路

以典型的固态压阻式压力传感器为例,硅单晶材料在受到外力作用产生极微小应变时,其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化。用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯登电桥(Wheatstone bridge),利用硅材料的弹性力学特性,在同一片硅材料上进行各向异性微加工,就制成了一个集力敏与力电转换检测于一体的扩散硅传感器。再给传感器匹配一个放大电路及相关外围部件,使之输出一个标准信号,就组成了一台完整的变送器。

图1 硅压阻式压力传感器结构及等效原理图

图2 恒流驱动典型电路

硅压阻式传感器一般对温度比较敏感,但随着集成工艺技术的进步,扩散硅敏感膜的四个电阻一致性也得到进一步提高,而且在新一代的传感器中,原始的手工补偿已被激光调阻、计算机自动修调等技术所替代,传感器的温度系数已经非常小了,工作温度范围也大幅度提高了。

电阻式传感器

一、进气岐管压力传感器(压阻效应) 进气歧管压力传感器又称进气增压压力传感器,它是用来检测进气歧管内的压力变化,并将其转换成电信号,然后将信号电压送至电子控制器(ECU),ECU 依据此信号电压的大小,控制基本喷油量的大小。 进气压力传感器种类较多,有压敏电阻式、真空膜盒式、电容式等。由于压敏电阻式具有响应时间快、检测精度高、尺寸小且安装灵活等优点,因而被广泛用于D型喷射系统中。 1.半导体压敏电阻式进气压力传感器结构与原理 (1)半导体压敏电阻式进气压力传感器的结构 它是利用半导体的压阻效应制成的,主要由硅膜片、真空室、硅杯、底座、真空管和引线电极组成,其结构如下图所示。 (2)半导体压敏电阻式进气压力传感器的工作原理 如图所示,硅膜片一面通过真空室,一面承受来自进气歧管中气体的压力,在此气体压力的作用下,硅膜片会产生变形,且压力越大形变越大,膜片上应变电阻的阻值在此压应力的作用下就会发生变化,使传感器上以惠斯顿电桥方式连接的硅膜片应变电阻的平衡被打破,当电桥的输入端输入一定的电压或电流时,在电桥的输出端便可得到相应变化的信号电压或信号电流,因为此信号比较微弱,故采用了混合集成电路进行放大后输入给ECU。 因为压阻效应式歧管压力传感器的功能部件是硅膜片和应变电阻,其工作参数取决于作用于膜片上的压力的大小,因此传感器的取样压力应从压力波动较小的部位选取。

二.发动机机油压力传感器(电位器式) 发动机机油压力传感器用于检测发动机机油压力的大小,它一般通过螺钉拧入在缸体的油道里,其内部有一个可变电阻,一端输出信号,一端与搭铁的滑动臂相连。当油压增大时,油压通过润滑油道接口推动膜片弯曲,膜片推动滑动臂移动到低电阻位置,使电路中的输出电流增大;反之,油压降低时,膜片推动滑动臂移动到高电阻位置,使电路中输出电流减小,最终在机油压力表上将机油压力的大小以指针指示出来,如图4.35所示。 三、节气门位置传感器(电位器式) 节气门位置传感器又称为节气门开度传感器或节气门开关。其主要功用是检测出发动机是处于怠速工况还是负荷工况,是加速工况还是减速工况。它实质上是一只可变电阻器和几个开关,安装于节气门体上。

传感器简答题

1:简述金属电阻应变片的工作原理,主要测量电路种类及其应用情况 应变式传感器是利用金属的电阻应变效应,将测量物体变形转换成电阻变化的传感器。被广泛应用于工程测量和科学实验中。 一工作原理 (一)金属的电阻应变效应当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。如图2-1所示 设有一根长度为l、截面积为S、电阻率为ρ的金属丝,在未受力时,原始电阻为 (2-1) 当金属电阻丝受到轴向拉力F作用时,将伸长Δl,横截面积相应减小ΔS,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR。对式(2-1)全微分,并用相对变化量来表示,则有: (2-2) 式中的Δl/l为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×10-6mm/mm)。若径向应变为Δr/r,电阻丝的纵向伸长和横向收缩的关系用 泊松比μ表示为,因为ΔS/S=2(Δr/r),则(2-2)式可以写成 (2-3) 式(2-3)为“应变效应”的表达式。k0称金属电阻的灵敏系数,从式(2-3)可见,k0受两个因素影响,一个是(1+2μ),它是材料的几何尺寸变化引起的,另一个是Δρ/(ρε),是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则k0≈1+2μ,对半导体,k0 值主要是由电阻率相对变化所决定。实验也表明,在金属电阻丝拉伸比例极限内,电阻相对变化与轴向应变成正比。通常金属丝的灵敏系数k0=2左右。 (二)应变片的基本结构及测量原理 各种电阻应变片的结构大体相同,以图2-2所示丝绕式应变片为例,它以直径为0.025mm左右的合金电阻丝2绕成形如栅栏的敏感栅,敏感栅粘贴在绝缘的基底1上,电阻丝的两端焊接引出线4,敏感栅上面粘贴有保护用的覆盖层3。l称为应变片的基长,b称为基宽,l×b称为应变片的使用面积。应变片的规格以使用面积和电阻值表示,例如3×10mm2,120Ω。 用应变片测量受力应变时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据式(2-3),可以得到被测对象的应变值ε,而根据引力应变关系 б=Eε(2-4) 式中б——测试的应力;

电阻的测量方法及原理.doc

一、电阻的测量方法及原理 一、 xx 法测电阻 1、电路原理 “xx 法”就是用电压表测出电阻两端的电压U,用电流表测出通过电阻的电流I, 再根据欧姆定律求出电阻R= U/I 的测量电阻的一种方法。 电路图如图一所示。 如果电表为理想电表,即 RV=∞,RA=0用图一(甲)和图一(乙)两种接法测出的电阻相等。但实际测量中所用电表并非理想电表,电压表的内阻并非趋近于无穷大、电流表也有内阻,因此实验测量出的电阻值与真实值不同,存在误差。如何分析其误差并选用合适的电路进行测量呢? xx一(甲)所示电路称电流表外接法,(乙)所示电路为电流 表内接法,则“ xx 法”测电阻的误差分析和电路选择方法可总结为 四个字:“大内小外”。 2、误差分析 ( 1)、电流表外接法

由于电表为非理想电表,考虑电表的内阻,等效电路如图二所示,电压表的测量值 U 为 ab 间电压,电流表的测量值为干路电流,是流过待测电阻的电流与流过电压表的电流之和,故:R测 = U/I = Rab = (Rv ∥R)= (Rv ×R)/(Rv+R) < R( 电阻的真实值 ) 可以看出,此时 R 测的系统误差主要来源于 Rv 的分流作用,其相对误差为δ外 = R/R = (R-R 测)/R = R/(Rv+R) (2 )、电流表内接法 其等效电路如图三所示,电流表的测量值为流过待测电阻和电 流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的 电压之和, 故:R测 = U/I = RA+R > R 此时 R测的系统误差主要来源于RA的分压作用,其相对误差为 : δ内 =R/R = (R 测-R)/R = RA/R 综上所述,当采用电流表内接法时,测量值大于真实值,即 " 大内" ;当采用电流表外接法时,测量值小于真实值,即“小外”。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

热电阻常用的接线方式及原理

热电阻温度测量原理及常用接线方式 热电阻(如PtIOO )是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换 成电阻量的温度传感器。 温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方 法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 由于热电阻本身的阻值较小, 随温度变化而引起的电阻变化值更小, 例如,铂电阻在零 度时的阻值R0=100 Q,铜电阻在零度时 R0=100 Qo 因此,在传感器与测量仪器之间的引线 过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式, 如图所示。 图热电阻的接入方式 在图(a )所示的电路中,电桥输出电压 Vo 为 R r ) 当 R?Rt 、Rr 时, V o [(R t -R r ) 2 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 1. 二线制 (c )三线制 (d )四线制

二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 图中的两个R是固定电阻。R r是为保持电桥平衡的电位器。二线制的接入电路由于没有 考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(C)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 图中的两个R是固定电阻。R是为保持电桥平衡的电位器。三线制的接入电路由于考虑 了引线电阻和接触电阻带来的影响。R11、R12和R l3分别是传感器和驱动电源的引线电阻, 一般说来,R11和R12基本上相等,而R13不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R ii、R i2、R13和R14都是引线电阻和接触电阻。R ii和R12在恒流源回路,不会引 入误差。R13和R14则在高输入阻抗的仪器放大器的回路中,也不会带来误差。上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

基于湿敏电阻实现湿度测量电路的设计

中北大学 课程设计说明书 学生姓名:杨伟光学号:0805014125 学院:信息与通信工程学院 专业:电子信息科学与技术 题目:基于湿敏电阻实现湿度测量电路的设计 指导教师:程耀瑜职称: 教授 李文强职称: 讲师 2011 年 1 月 7 日

中北大学 课程设计任务书 2010/2011 学年第一学期 学院:信息与通信工程学院 专业:电子信息科学与技术 学生姓名:杨伟光学号:0805014125 课程设计题目:基于湿敏电阻实现湿度测量电路的设计起迄日期:12月26日~1月7日 课程设计地点:中北大学 指导教师:程耀瑜,李文强 系主任:程耀瑜 下达任务书日期: 2010 年 12 月 26 日 课程设计任务书

课程设计任务书

目录

1 设计目的 (1) 2 设计意义 (1) 3 湿度的定义与测量方法 (1) 3.1 湿度的定义 (1) 3.2 湿度的测量方法 (1) 4. CHR-01型湿敏电阻 (2) 4.1 CHR-01型湿敏电阻的工作原理 (2) 4.2 CHR-01型湿敏电阻的性能参数 (2) 4.3 CHR-01湿敏电阻的外形尺寸及内部结构示意图 (3) 4.4使用湿敏电阻注意的问题 (3) 5. 实验所用芯片简介 (4) 5.1 OP07AJ简介 (4) 5.2 555定时器简介 (5) 6. 湿度测量方案简介 (6) 7. 电路工作原理 (6) 7.1 由运算放大器构成的湿度检测电路工作原理 (6) 7.2 由555定时器构成的湿度检测电路工作原理 (7) 8. 湿度测量电路原理图与仿真结果 (9) 8.1 由运算放大器构成的湿度检测电路原理图 (9) 8.2 由运算放大器构成的湿度检测电路仿真结果 (10) 8.3 由555定时器构成的湿度检测电路原理图 (11) 8.4 由555定时器构成的湿度检测仿真结果 (12) 9. 实验数据采集与分析 (13) 10. 实验总结与感想 (14) 附录一所需元器件清单 (16) 附录二参考文献 (17) 1.设计目的

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

电阻应变式称重传感器原理

电阻应变式称重传感器原理 电阻应变式称重传感器原理 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。 一、电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω)(2—1) 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以 ΔS/S = 2Δr/r (2—4) 从材料力学我们知道 Δr/r = -μΔL/L (2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L = K *ΔL/L (2--6) 其中 K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7) 式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。 需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在 1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。 在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便

传感器与检测技术试卷及答案

1.属于传感器动态特性指标的是(D ) A 重复性 B 线性度 C 灵敏度 D 固有频率 2 误差分类,下列不属于的是(B ) A 系统误差 B 绝对误差 C 随机误差 D粗大误差 3、非线性度是表示校准(B )的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B ) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A 工作频率宽 B 线性围宽 C 单位输入量引起的输出量大 D 允许输入量大 6 下列不属于按传感器的工作原理进行分类的传感器是(B) A 应变式传感器 B 化学型传感器 C 压电式传感器 D热电式传感器 7 传感器主要完成两个方面的功能:检测和(D) A 测量 B感知 C 信号调节 D 转换 8 回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A 多次测量 B 同次测量 C 正反行程 D 不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A 相对误差 B 绝对误差 C 引用误差 D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2 系统误差可消除,那么随机误差也可消除。(×) 3 对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4 平均值就是真值。(×) 5 在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 测量值是通过直接或间接通过仪表测量出来的数值。 测量误差是指测量结果的测量值与被测量的真实值之间的差值。

高中电学实验第一讲:电阻的测量方法及原理

高中电学实验第一讲:电阻的测量方法及原理 一、伏安法测电阻 1、电路原理 “伏安法”就是用电压表测出电阻两端的电压U,用电流表测出通过电阻的电流I,再根据欧姆定律求出电阻 R= U/I 的测量电阻的一种方法。 电路图如图一所示。 如果电表为理想电表,即 R V=∞,R A=0用图一(甲)和图一(乙)两种接法测出的电阻相等。但实际测量中所用电表并非理想电表,电压表的内阻并非趋近于无穷大、电流表也有内阻,因此实验测量出的电阻值与真实值不同,存在误差。如何分析其误差并选用合适的电路进行测量呢? 若将图一(甲)所示电路称电流表外接法,(乙)所示电路为电流表内接法,则“伏安法”测电阻的误差分析和电路选择方法可总结为四个字:“大内小外”。

2、误差分析 (1)、电流表外接法 由于电表为非理想电表,考虑电表的内阻,等效电路如图二所示,电压表的测量值 U 为ab间电压,电流表的测量值为干路电流,是流过待测电阻的电流与流过电压表的电流之和,故:R测 = U/I = Rab = (Rv∥R)= (Rv×R)/(Rv+R) < R(电阻的真实值) 可以看出,此时 R测的系统误差主要来源于 Rv 的分流作用,其相对误差为δ外= ΔR/R = (R-R测)/R = R/(Rv+R)

( 2)、电流表内接法 其等效电路如图三所示,电流表的测量值为流过待测电阻和 电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和, 故:R测 = U/I = RA+R > R 此时R测的系统误差主要来源于RA的分压作用,其相对误差为: δ内= ΔR/R = (R测-R)/R = RA/R 综上所述,当采用电流表内接法时,测量值大于真实值,即" 大内";当采用电流表外接法时,测量值小于真实值,即“小外”。 3、电路的选择 (一)比值比较法 1、“大内”:当 R >> RA 时, ,选择电流表内接法测量,误差更小。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

电阻应变式传感器的基本原理、结构和应用

一、原理 由欧姆定律知,对于长为 、截面积为 、电阻率为 的导体, 其电阻 若 、 和 均发生变化,则其电阻也变化,对上式全微分, 有 设半径为的圆导体, = ,代入上式,电阻的相对变化为 因为 则 式中——导体的纵向应变。其数值一般很小,常以微应变 度量, 1 =10-6; ——材料泊桑比,一般金属=0.3-0.5; ——压阻系数,与材质有关; E——材料的弹性模量。 上式中, 表示几何尺寸变化而引起电阻的相对变化量; 表示由于材料电阻率的变化而引起电阻的相对变化量。

不同属性的导体,这两项所占的比例相差很大。 若定义导体产生单位纵向应变时,电阻值相对变化量为导体的灵敏度系数,则 显然,S S愈大,单位纵向应变引起的电阻值相对变化愈大,说明应变片愈灵敏。 可用不同的导体材料制成应变片,目前主要有金属电阻应变片和半导体应变片两类。 二、金属电阻应变片 1.结构形式

原理: 对于金属电阻应变片,材料电阻率随应变产生的变化很小,可忽略,得: 电阻丝应变片又称金属丝电阻应变片,其优点是制作方便,应变横向效应大. 选用应变片时,要考虑应变片的性能参数,主要有:应变片的电阻值、灵敏度、允许电 流和应变极限等。市售金属电阻应变片的电阻值已趋于标准化,主要规格有60Ω、120Ω、350Ω 600Ω和1000Ω等,其中120Ω用得最多。 应变片产品包装上标明的"标称灵敏系数",出厂时测定的该批产品的平均灵敏度系数值。 2.其他结构形式

三、半导体应变片 结构形式 对于半导体应变片,几何尺寸变化引起的电阻变化远小于由材料电阻率变化引起的电阻变化,前者可忽略不计,可得 从而可得半导体应变片灵敏度系数为 半导体应变片的最突出优点是灵敏度大,S可达60~150, 能直接与记录仪器连接而不需放大器,使测量系统简化。 此外,其横向效应小,机械滞后小和体积小。缺点是电阻值和灵敏度的温度稳定性差。 当应变较大时,非线性严重。由于受晶向、杂质等因素影响,灵敏度分散度大。 学习时注意观察应变片粘贴的位置及方向。

基于单片机的电阻测量设计修改

基于单片机的电阻测量设计修改

1.设计目的及其意义 本设计基于单片机和AD转换器实现电阻的测量。采用ADC0809,实现由模拟电压转换到数字信号,通过单片机系统处理后,由LCD显示被测量电阻的阻值。测量范围为1Ω~5KΩ,精度大于98%。 2.方案设计 2.1 总体设计思路 本设计包括硬件和软件设计两个部分。模块划分为电压测量(数据采集)、模数转换、阻值显示等子模块。电路结构可划分为:电压测量,电压转换电阻,阻值显示及相关的控制管理软件组成。用户终端完成信息采集、处理、数据传送、显示等功能。 从设计的要求来分析该设计须包含如下结构:电压测量电路,电压转换电路,阻值显示电路、单片机及相关的控制软件组成;它们之间的构成框图如图1总体设计框图所示: 电压测电压 转换 电阻 AT89C 测量精

图1 总体设计框图 处理器采用51系列单片机AT89C51。整个系统是在系统软件控制下工作的。当测量一个电阻时,经过电压采集,电压转换为电阻,电阻显示三个部分可以在LCD上显示该被测电阻的阻值。当被测电阻为100Ω范围以内时,通过开关选择测量量程,再次测量该电阻,以减小误差。 2.2 具体电路模块设计 2.2.1 电压测量的设计 如图2所示为被测电阻电压测量。电压经过已知电阻R1和被测电阻Rx 接到地。通过OUT输出被测电阻Rx上的电压。送到ADC0809的IN0口。 图 2 被测电阻电压测量图

2.2.2 模数ADC转换的设计 由电压测量得到的电压经过ADC模数转换可得到8位的电压值,经过欧姆定律(即电压之比等于电阻之比)可得到被测电阻的阻值的大小。公式如下 本设计用到的R1的阻值为600Ω和300Ω。 由被测电阻得到的电压值经ADC0809的26脚IN0输入,经过内部的AD 转换,在OUT1~7输出数字电压量,经过上述公式的转变,在P2口上的显示的数字量为被测电阻的阻值数字量。如图3所示为被测电阻电压量转换为阻值量。 图 3 被测电阻电压量转换为阻值量图 2.2.3 液晶显示电路的设计 经过ADC0809模数转换得到的电阻值数字量,在MCU的P2口输入,MCU 系统处理后在P0口由LCD1602显示出来该被测电阻的阻值。如图4所示为被测电阻阻值显示。

pt100温度传感器原理

pt100温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:V o=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测V o时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出 2.55V,因此电压追随器的输出电压V1亦为 2.55V。其后差动放大器之输出为

电子电路设计实验(热电阻温度测量系统的设计与实现)

北京邮电大学 电子电路综合设计实验 课题名称:热电阻温度测量系统的设计与实现

索引 一、概要 1.1、课题名称 热电阻温度测量系统的设计与实现 1.2、报告摘要 为了实现利用热敏电阻测量系统温度,设计实验电路。利用热电阻100为温度测量单元,系统主要包括传感电路、放大电路、滤波电路、转换电路和显示电路五个单元构成。通过包含热敏电阻的电桥电路实现温度信号向电信号的转换,利用三运放差分电路实现放大差模信号抑制共模信号并通过二极管显示二进制数来显示温度值。此电路可以定量的显示出温度的与转换器输入电压的关系,再通过量化就可以实现温度测量的功能。报告中首先给出设计目标和电路功能分析,然后讨论各级电路具体设计和原理图,最后总结本次实验并给出了电路图。 1.3、关键字 测量温度热敏电阻差分放大低通滤波转换 二、设计任务要求 (1)了解掌握热电阻的特性和使用方法。 (2)了解数模转换电路的设计和实现方法。 (3)了解电子系统设计的方法和基本步骤。 (4)设计一个利用热电阻100 为温度测量元件设计一个电子测温系统,用发光二极管显示的输出状态,并模拟测温(实际上实验室给的是300), 用软件绘制完整的电路原理图()。 三、设计思路与总体结构图

图1:热电阻温度测量的系统原理框图 如图将系统划分为传感器电路、放大电路、滤波电路、转换电路显示器和电源电路共六个单元。传感器是由100及若干精密电阻和电位器构成的电桥电路组成;放大器是有运放324构成仪表放大器,具有较高的共模抑制比和输入阻抗;滤波电路采用高精度07二阶低通有源滤波器;模数转换电路是用0804进行设计,并利用555N产生频率为1到1.3的时钟信号来使数模转换电路实现实时同步;显示电路由发光二极管构成;电源电路采用变压器、稳压模块和整流桥等器件进行设计。 四、分块电路和总体电路的设计 4.1、温度传感器电路设计 4.1.1铂热电阻 热电阻是利用温度变化是自身阻值随之变化的特性来测量温度的,工业上广泛的用于测量中低温区(-200℃—500℃)的温度。 铂热电阻在氧化性介质中,甚至在高温下,物理、化学性质都比较稳定,因此具有较好的稳定性和测量精度,主要用于高精度温度测量和标准测温装置中。 铂热电阻与温度的关系,在0—630.74℃以内为 在-190-0以内为: 式中为t时的电阻值;是0时的电阻值;t为任意温度值;A、B、C为 分度系数,,。 但是实际实验中的使用的是300,而且根据在实验室的实际测量300在20℃时是325Ω,而且其阻值随着温度的升高而降低。 4.1.2热电阻温度传感器的接入方式 热电阻由于精度高、性能稳定等优点在工业测试中得到广泛应用。流过热电阻的电流一般为4-5,不能过大,否则产生热量过多而导致影响测量精度。

相关主题
文本预览
相关文档 最新文档