当前位置:文档之家› 人教备战中考数学压轴题专题圆的综合的经典综合题及详细答案

人教备战中考数学压轴题专题圆的综合的经典综合题及详细答案

人教备战中考数学压轴题专题圆的综合的经典综合题及详细答案
人教备战中考数学压轴题专题圆的综合的经典综合题及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;

(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG?AB=12,求AC的长.【答案】(1)证明见解析(2)23

【解析】

试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出

∠CAD+∠PAC=90°进而得出答案;

(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.

试题解析:(1)连接CD,如图,

∵AD是⊙O的直径,

∴∠ACD=90°,

∴∠CAD+∠D=90°,

∵∠PAC=∠PBA,∠D=∠PBA,

∴∠CAD+∠PAC=90°,

即∠PAD=90°,

∴PA⊥AD,

∴PA是⊙O的切线;

(2)∵CF⊥AD,

∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,

∴∠ACF=∠D,

∴∠ACF=∠B,

而∠CAG=∠BAC,

∴△ACG∽△ABC,

∴AC :AB =AG :AC , ∴AC 2=AG ?AB =12, ∴AC =23.

2.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802

AE ππ

??=

=.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

3.如图,A 是以BC 为直径的⊙O 上一点,AD ⊥BC 于点D ,过点B 作⊙O 的切线,与CA

的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.

(1)求证:BF=EF:

(2)求证:PA是⊙O的切线;

(3)若FG=BF,且⊙O的半径长为32,求BD的长度.

【答案】(1)证明见解析;(2) 证明见解析;(3)22

【解析】

分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;

(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;

(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.

详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,

∴EB⊥BC.

又∵AD⊥BC,

∴AD∥BE.

∴△BFC∽△DGC,△FEC∽△GAC,

∴BF

DG

=

CF

CG

EF

AG

=

CF

CG

∴BF

DG

=

EF

AG

∵G是AD的中点,∴DG=AG,

∴BF=EF;

(2)连接AO,AB.

∵BC是圆O的直径,

∴∠BAC=90°,

由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,

又∵OA=OB,

∴∠ABO=∠BAO,

∵BE是圆O的切线,

∴∠EBO=90°,

∴∠FBA+∠ABO=90°,

∴∠FAB+∠BAO=90°,

即∠FAO=90°,

∴PA⊥OA,

∴PA是圆O的切线;

(3)过点F作FH⊥AD于点H,

∵BD⊥AD,FH⊥AD,

∴FH∥BC,

由(2),知∠FBA=∠BAF,

∴BF=AF.

∵BF=FG,

∴AF=FG,

∴△AFG是等腰三角形.

∵FH⊥AD,

∴AH=GH,

∵DG=AG,

∴DG=2HG.

1

2 HG

DG

∵FH∥BD,BF∥AD,∠FBD=90°,∴四边形BDHF是矩形,

∴BD=FH,

∵FH∥BC

∴△HFG∽△DCG,

∴1

2

FH HG CD DG ==, 即1

2

BD CD =, ∴

23

2.153

≈, ∵O 的半径长为32, ∴BC =62, ∴BD =

1

3

BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.

4.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.

如图,M (1,2),N (4,2).

(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ; (2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;

(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.

【答案】(1)P 1和P 3;(2)3311x -≤≤;(333

3 3.r +≤ 【解析】 【分析】

(1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,

∠ANM=30°,设AB=MB=a ,tan ∠ANM=

AB BN ,即tan30°=3a

a

-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果. 【详解】

(1))如图1所示:

∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2), ∴点P 的横坐标1≤x≤4,

∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,

当∠MPN=60°时,PM=

60MN

tan ?

=3=3, 同理P′N=3,

∴点P 的纵坐标为2-3或2+3, 即纵坐标2-3≤y≤2+3, ∴线段MN 的“关联点”有P 1和P 3; 故答案为:P 1和P 3;

(2)线段MN 的“关联点”P 的位置如图所示,

∵ 直线1y x =+经过点M (1,2), ∴ x ≥1.

设直线1y x =+与P 4N 交于点A .

过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .

由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°. 设AB = MB = a ,

∴ tan AB ANM BN ∠=,即tan303a

a

?=-, 解得333.2

a -=

∴ 点A 的横坐标为333331

11.22

x a --=+=+= ∴331

.x -≤

综上 331

1.2

x -≤≤

(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:

连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,

则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53 即OD+DM+MP 433

圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,

MP 522

5

MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE?MP 5=12OM?MN ,即1231

2

×3×3, 解得:33 ∴

33

2

3 【点睛】

本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.

5.已知P 是

O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位

于AB 的上方,AB =6,OP=m ,1sin 3

P =,如图所示.另一个半径为6的1O 经过点

C 、

D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;

(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;

(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.

【答案】(1)CD=25;(2)m=

2381

2n n

- ;(3) n 的值为955或9155 【解析】

分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3

m

OH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;

(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .

在Rt △1

sin 63

POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.

(2)在Rt △1sin 3POH P PO m 中,=,=,∴3

m OH =

在Rt △OCH 中,2

2

93m CH ??- ???

=. 在Rt △1O CH 中,2

2

363m CH n ??-- ??

?=. 可得: 22

36933m m n ????--- ? ?????

=,解得23812n m n -:=.

(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时

i )1OP OO =,即m n =,由2

381

2n n n

-=,解得9n :=.

即圆心距等于

O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.

ii )11O P OO =,由22

233

m m n m -

+-()() n =, 解得:23m n =,即23n 2381

2n n

-=,解得9155n :=

. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 2

8132n m n

-=.

∵1POO ∠是钝角,∴只能是m n =,即2

8132n

n n

-=,解得955n :=. 综上所述:n 的值为

955或9

155

. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.

6.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,

(1)求证:OD =OP ;(2)求证:FE 是⊙O 的切线. 【答案】(1)证明见解析;(2)证明见解析. 【解析】

试题分析:(2)证明△POE≌△ADO可得DO=EO;

(3)连接AE,BE,证出△APE≌△AFE即可得出结论.

试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BOD

OE=OB

∴△OPE≌△ODB

∴OD="OP"

(2)连接EA,EB

∴∠1=∠EBC

∵AB是直径

∴∠AEB=∠C=90°

∴∠2+∠3=90°

∵∠3=∠DEB

∵∠BDE=90°

∴∠EBC+∠DEB=90°

∴∠2=∠EBC=∠1

∵∠C=90°∠BDE=90°

∴CF∥OE

∴∠ODP=∠AFP

∵OD=OP

∴∠ODP=∠OPD

∵∠OPD=∠APF

∴∠AFP=∠APF

∴AF=AP 又AE=AE

∴△APE≌△AFE

∴∠AFE=∠APE=90°

∴∠FED=90°

∴FE是⊙O的切线

考点:切线的判定.

7.如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.

(1)求证:CM2=MN.MA;

(2)若∠P=30°,PC=2,求CM的长.

【答案】(1)见解析;(2)2

【解析】

(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;

(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()11

22

OA PO PC CO ==+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长. 【详解】

(1)

O 中,M 点是半圆CD 的中点,

∴ CM DM =,

CAM DCM ∴∠=∠, 又CMA NMC ∠=∠, AMC CMN ∽∴??, ∴ CM AM MN CM

=,即2·CM MN MA =; (2)连接OA 、DM ,

PA 是O 的切线,

90PAO ∴∠=?, 又30P ∠=?,

()11

22

OA PO PC CO ∴==+,

设O 的半径为r ,

2PC =,

()1

22

r r ∴=+,

解得:2r =, 又CD 是直径, 90CMD ∴∠=?, CM DM =,

CMD ∴?是等腰直角三角形,

∴在Rt CMD ?中,由勾股定理得222CM DM CD +=,即()2

22216CM r ==,

则28CM =,

22CM ∴=.

本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点

8.(问题情境)如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE.

求证:

BCE 1

S

2

=S平行四边形ABCD.(说明:S表示面积)

请以“问题情境”为基础,继续下面的探究

(探究应用1)如图2,以平行四边形ABCD的边AD为直径作⊙O,⊙O与BC边相切于点H,与BD相交于点M.若AD=6,BD=y,AM=x,试求y与x之间的函数关系式.

(探究应用2)如图3,在图1的基础上,点F在CD上,连接AF、BF,AF与CE相交于点G,若AF=CE,求证:BG平分∠AGC.

(迁移拓展)如图4,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,DH⊥CE于H,请直接写出DG:DH的值.

【答案】【问题情境】见解析;【探究应用1】

18

y

x

=;【探究应用2】见解析;【迁移

1927【解析】

【分析】

(1)作EF⊥BC于F,则S△BCE=1

2

BC×EF,S平行四边形ABCD=BC×EF,即可得出结论;

(2)连接OH,由切线的性质得出OH⊥BC,OH=1

2

AD=3,求出平行四边形ABCD的面

积=AD×OH=18,由圆周角定理得出AM⊥BD,得出△ABD的面积=1

2

BD×AM=

1

2

平行四

边形的面积=9,即可得出结果;

(3)作BM⊥AF于M,BN⊥CE于N,同图1得:△ABF的面积=△BCE的面积=1

2

平行

四边形ABCD的面积,得出1

2

AF×BM=

1

2

CE×BN,证出BM=BN,即可得出BG平分

∠AGC.

(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =

12AB =2x ,BQ =1

2

BE ,AP =

BP =,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ x ,PF =4x ,QF =

3x ,QC =4x ,由勾股定理求出AF =x ,CE

,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果.

【详解】

(1)证明:作EF ⊥BC 于F ,如图1所示: 则S △BCE =1

2BC×EF ,S 平行四边形ABCD =BC×EF , ∴12

BCE

ABCD

S

S =.

(2)

解:连接OH ,如图2所示: ∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =

1

2

AD =3, ∴平行四边形ABCD 的面积=AD×OH =6×3=18, ∵AD 是⊙O 的直径, ∴∠AMD =90°, ∴AM ⊥BD , ∴△ABD 的面积=12BD×AM =1

2

平行四边形的面积=9, 即

1

2

xy =9, ∴y 与x 之间的函数关系式y =18x

; (3)

证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示: 同图1得:△ABF 的面积=△BCE 的面积=

1

2

平行四边形ABCD 的面积, ∴

12AF×BM =1

2CE×BN , ∵AF =CE , ∴BM =BN ,

∴BG 平分∠AGC .

(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示: ∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,

∴∠ABP =60°,

∴∠BAP =30°,设AB =4x ,则BC =3x ,

∴BP =

12AB =2x ,BQ =1

2

BE ,AP =3BP =23x , ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1, ∴BE =2x ,BF =2x , ∴BQ =x ,

∴EQ =3x ,PF =4x ,QF =3x ,QC =4x , 由勾股定理得:AF =

22AP PF +=27x ,CE =22

EQ QC +=19x ,

连接DF 、DE ,则△CDE 的面积=△ADF 的面积=1

2

平行四边形ABCD 的面积, ∴AF×DG =CE×DH ,

∴DG :DH =CE :AF =19x :27x 19:27=.

【点睛】

本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.

9.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.

(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;

(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG . ①试猜想∠AFG 和∠B 的数量关系,并证明;

②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.

【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=3

【解析】

【分析】

(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.

(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作

⊙F.因为AG AG

,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.

②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.

【详解】

(1)证明:连接OC.

∵OA=OC,EC=EA,

∴OF⊥AC,

∴FC=FA,

∴∠OFA=∠OFC,

∵∠CFA=2∠BAC,

∴∠OFA=∠BAC,

∵∠OEA=90°,

∴∠EAO+∠EOA=90°,

∴∠OFA+∠AOE=90°,

∴∠FAO=90°,

∴AF⊥AB.

(2)①解:结论:∠GFA=2∠ABC.

理由:连接FC.

∵OF 垂直平分线段AC , ∴FG =FA , ∵FG =FA ,

∴FC =FG =FA ,以F 为圆心FC 为半径作⊙F . ∵AG AG =, ∴∠GFA =2∠ACG , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵CD ⊥AB ,

∴∠ABC +∠BCA =90°, ∵∠BCD +∠ACD =90°, ∴∠ABC =∠ACG , ∴∠GFA =2∠ABC .

②如图2﹣1中,连接AG ,作FH ⊥AG 于H .

∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE , ∴△CDB ≌△AEO (AAS ), ∴CD =AE , ∵EC =EA , ∴AC =2CD .

∴∠BAC =30°,∠ABC =60°, ∴∠GFA =120°, ∵OA =OB =2, ∴OE =1,AE =,BA =4,BD =OD =1,

∵∠GOE =∠AEO =90°,

∴OG ∥AC ,

323

DG OG ∴=

=

, 22221

3

AG DG AD ∴=+=

∵FG =FA ,FH ⊥AG , ∴AH =HG =21

,∠AFH =60°, ∴AF

27

sin 60AH ?

=, 在Rt △AEF 中,EF =221

3

AF AE -=,

∴OF =OE +EF =43

, ∵PE ∥OG , ∴

PE EF

OG 0F

=, ∴

134

233=, ∴PE =

36

. 【点睛】

圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

10.如图,AB 为⊙O 的直径,DA 、DC 分别切⊙O 于点A ,C ,且AB =AD . (1)求tan ∠AOD 的值. (2)AC ,OD 交于点E ,连结BE . ①求∠AEB 的度数;

②连结BD 交⊙O 于点H ,若BC =1,求CH 的长.

【答案】(1)2;(2)①∠AEB =135°;②22

CH = 【解析】 【分析】

(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO ,即可求tan ∠AOD 的值; (2)①根据切线长定理可得AD=CD ,OD 平分∠ADC ,根据等腰三角形的性质可得

DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;

②由BC=1,可求AE=EC=1,BE2

=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.

【详解】

(1)∵DA是⊙O切线,∴∠BAD=90°.

∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AOD

AD

AO

==2;

(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,

AE=CE.

∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,

∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.

②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2

=.

∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,

∴△ABE∽△HBC,∴BC CH

EB AE

=,即

1

2

CH

=,∴CH2

2

=.

【点睛】

本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

人教版中考数学压轴题 易错题自检题学能测试试卷

一、中考数学压轴题 1.已知:在平面直角坐标系中,抛物线2 23y ax ax a =--与x 轴交于点A ,B (点B 在 点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2. (1)如图1,求此抛物线的解析式; (2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点 D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围); (3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若 72 8 CG AG = ,求点P 的坐标. 2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”: ①个位上的数字是千位上的数字的两倍; ②百位上的数字与十位上的数字之和是12的倍数; (3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”. 例如:1423于4132为“相关和平数” 求证:任意的两个“相关和平数”之和是1111的倍数. 3.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知) (1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=?,试判断ABC 是否是“准黄金”三角形,请说明理由.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

圆中综合题复习专题

圆中综合题复习专题 第一组 1.若集合A ={(x ,y)|x 2+y 2≤16},B ={(x ,y)|x 2+(y -2)2≤a -1}且A ∩B =B ,则a 的取值范围是________. 解:由题意知B ?A.当a<1时,B =?,满足题意;当a =1时,B ={(0,2)},满足题意;当a>1时,则集合A ,B 分别表示圆面x 2+y 2≤16与圆面x 2+(y -2)2 ≤a -1,由题意得B 内含于A ,从而4-a -1≥2,解得a ≤5.综上,a ≤5. 2.已知两点A (1,2),B (5,5)到直线l 的距离分别是3和2,则满足条件的直线共有_____条. 解以A (1,2)为圆心,3为半径的圆A :(x -1)2+(y -2)2=9,以B (5,5)为圆心,2为半径的圆B :(x -5) 2+(y -5)2=4,根据题意所要满足的条件,则l 是圆A 与圆B 的公切线,因为A (1,2),B (5,5)两点间的距离d =5,即d =r 1+r 2,所以圆A 与圆B 相外切,所以有3条公切线. 3.过点(3,1)作圆()1122=+-y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为________. 解:点P (3,1)与圆心C (1,0)PA 2,则以P (3,1)为圆心,以2为半径的圆P 方程为(x -3)2+(y -1)2 =4,则两圆的交点即为A ,B ,两圆相减可得AB 的方程为2x +y -3=0. 4.在平面直角坐标系xOy 中,已知圆1C : ()()22481x y -+-=,圆2C :()()22 669x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是_______________________. 解:由题意,圆C 与圆C 1和圆C 2的公共弦分别为圆C 1和圆C 2的直径,设C (a ,0),则(a ﹣4)2+(0﹣8)2+1=(a ﹣6)2+(0+6)2+9,∴a =0,∴圆C 的方程是x 2+y 2=81. 5.圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a 的值为________. 15+,解得a =± 51=-,得0a =.综上 a =±0. 6.在平面直角坐标系xOy 中,若与点A(2,2)的距离为1且与点B(m ,0)的距离为3的直线恰有两条,则实数m 的取值范围是________. 解:由题意知以A(2,2)为圆心,1为半径的圆与以B(m ,0)为圆心,3为半径的圆相交,所以4<(m -2)2+ 4<16,所以-23+2

人教版中考数学压轴题 易错题难题专题强化试卷学能测试

一、中考数学压轴题 1.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形). (1)当x = (s )时,PQ ⊥BC ; (2)当点M 落在AC 边上时,x = (s ); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标; (2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、 Q ∠的数量关系并说明理由; (3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

人教版中考数学压轴题检测

一、中考数学压轴题 1.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC , 连接CD 交AB 于E , (1)如图(1)求证:90AEC ∠=?; (2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接 MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠ (3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==?的面积等于8,求线段MN 的长度 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点

M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y) (1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D, OA=2,OC=1. ①点A、B、C在此斜坐标系内的坐标分别为A,B,C. ②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为. ③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为. (2)若ω=120°,O为坐标原点. ①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标. ②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是. 4.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE (2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD. 求证:DB=DE. (3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E,使CE=AD请问DB与DE是否相等? 并证明你的结论.

初三中考数学综合题一

初三中考数学综合题(一) A 卷 一、选择题(每小题3分,共30分) 1.下列各数中是负数的是( ) A .-(-3) B .-(-3)2 C .-(-2)3 D .|-2| 2.下列计算正确的是( ) A .3a = B .632a a a ÷= C .()1 22a a -=- D .() 3 2628a a -=- 3.6月5日是世界环境日,“海洋存亡,匹夫有责”,目前全球海洋总面积约为36105.9万.平方千米,用科学记数法(保留三个有效数字)表示为( ) A .6 1061.3?平方千米 B .7 1061.3?平方千米 C .81061.3?平方千米 D .91061.3?平方千米 4.一个几何体的三视图如图所示,则这个几何体是( ). 5.已知下列四个命题:(1).对角线互相垂直平分的四边形是正方形;(2).相邻的两个角都互补的四边形是平行四边形;(3).平分弦的直径垂直于弦,并且平分弦所对的两条弧;( 4).对角线垂直相等的四边形是菱形。其中真命题的个数是( ) A .0 B .1 C .2 D .3 6.已知112233 (2)(1)(2)P y P y P y --,,,,,是反比例函数2y x =的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y << 123y y y << C.213y y y << D. 以上都不对 7.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为( ) A .45° B .125° C .55° D .35° 8.已知点P (x ,y )在函数x x y -+= 2 1 的图象上,那么点P 应在平面直角坐标系中的( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 9.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .3010.如图,在平面直角坐标系中,点A 在第一象限, ⊙A 与x 轴相切于B ,与y 轴交于C (0,1), D (0,4)两点,则点A 的坐标是 ( ) A .35 (,)22 B .3(,2)2 A B C D 主 视 图左视图俯 视图(第4题)

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学综合习题(六)

中考数学综合习题(六) 一、 填空题 1、计算:(2)--= ;15- = ;1 3()2 -= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= . 4、将3 2 x xy -分解因式的结果为 . 5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm. 6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm. 选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( ) A 、3 2 5 2a a a += B 、32 6 (2)4a a -= C 、2 2 2 ()a b a b +=+ D 、623 a a a ÷= 8、下列各图中,∠1大 于∠2的 是( ) 9、下列运算中,错误.. 的是( ) A 、 (0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b a b a b ++= -- D 、x y y x x y y x --=++ 10、将不等式841 13822 x x x x +<-?? ?≤-??的解集在数轴上表示出来,正确的是( ) 11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )

12、已知某种品牌电脑的显示器的大约为4 210?小时,这种显示 寿命 器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( ) 13、下列说法正确的是( ) A 、9的算术平方根是3 B 、设a 是实数,则a a -的值可能是正数,也可能是负数 C 、点(2,3)P -关于原点的对称点的坐标是(2,3)-- D 、抛物线2 6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( ) A 、七(3)班外出步行的有8人 B 、七(3)班外出的共有40人 C 、在扇形统计图中,步行人数所占的圆心角度数为82° D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人 15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A 、∠ADE=∠CDE B 、DE ⊥E C C 、AD·BC=BE·DE D 、 CD=AD+BC 三、解答下列各题 A B C D E F 12 20 乘车50% 步行 20% 骑车30% 乘车 步行 骑车

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学综合复习题共三套含答案

复习题(一) 一、选择题:(本题共10小题,每小题4分,共40分. 在每题所给出的四个选项中,只有 一项是符合题意的. 请把所选项前的字母代号填在题后的括号内.) 1、计算2 )3(-,结果正确的是( ) A 、-9 B 、9 C 、-6 D 、6 2、若a 为任意实数,则下列等式中恒成立的是 ( ). A 、2 a a a =+ B 、a a a 2=? C 、1=÷a a D 、0=-a a 3、如图,桌面上有一个一次性纸杯,它的俯视图应是如图所示的( ) 4、下列结论中正确的是( ) A 、无限小数都是无理数 B 、 3 3 是分数 C 、(-4)2的平方根是±4 D 、a a 221 -=- 5、已知反比例函数y =x a 2 -的图象在第二、四象限,则a 的取值范围是( ) A 、a ≤2 B 、a ≥2 C 、a <2 D 、a >2 6、正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A 、5 B C 、1 2 D 、2 7、如图,奥运会五环旗是由五个圆组成的图形,此图中存在的圆和圆的位置关系有( ) A 、相交与内含 B 、只有相交 C 、外切与外离 D 、相交与外离 8、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位 置,若B A AC ''⊥,则BAC ∠是( ) A 、50° B 、60° C 、70° D 、80° 9、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1,则这个圆锥的底面半径为( ) A 、 2 1 B 、22 C 、2 D 、22 10、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解 的克数.如图所示,观察硝酸钾和氯化铵在水里的溶解度,下列叙述不正确...的是( ) A 、硝酸钾的溶解度比氯化铵的溶解度大 B 、约25℃时二者的溶解度相等 C 、温度为10℃时氯化铵的溶解度大 D 、温度为40℃时,硝酸钾的溶解度大

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

相关主题
文本预览
相关文档 最新文档