当前位置:文档之家› 轴承干油润滑时耗油量的计算

轴承干油润滑时耗油量的计算

轴承干油润滑时耗油量的计算
轴承干油润滑时耗油量的计算

轴承耗油量的计算

根据轴承制造商SKF 公司提供的最低耗油量公式(经验公式)为:

Q=C ×D ×B

式中 Q —单个轴承所需要的耗油量,ml/h

C —系数,对于油气润滑,C=0.00003~0.00005;

对于油雾润滑,C=0.0005;

对于油脂润滑,C=0.003~0.005;

D —轴承外径,mm

B —轴承列宽,mm

另外,油脂的填充量有这样的条件:

g n —轴承脂润滑时的极限转速(r/min )

n — 轴承的实际工作转速(r/min ) 当n n g

<1.25时,润滑脂填充量占轴承内部自由空间的1/3;

当1.25

<5时,润滑脂填充量占轴承内部自由空间的1/3~2/3; 当n n g

>5时,润滑脂填充量占轴承内部自由空间的2/3以上;

轴承内部自由空间V 的计算公式为:

V=W ×K

式中 W —轴承的自重(Kg )

K —轴承内部自由空间系数

其中,轴承内部自由空间系数K 的值见下表:

举例说明:参数为95/145×24的深沟球轴承,实际工作转速为800~2000 r/min

轴承内径为95mm ,则内径代号为19,查手册得到型号为6019系列,油脂润滑时的极限转速为4000 r/min ,重量为1.15Kg,查上表得,K=61,

所以,轴承内部自由空间V=WK=1.15×61=70.15ml

n

n g

=4000/(800~2000)=2~5, 故1.25

而由轴承制造商SKF 公司提供的最低耗油量得:

m i n Q =C ×D ×B=0.005×145×24=17.4ml/h

齿轮箱润滑流量计算

齿轮箱润滑流量计算 摘要:本文通过一个工程实例介绍齿轮箱循环式稀油润滑系统的设计原理及计算方法。 关键词:齿轮箱稀油循环润滑系统设计原理计算方法 齿轮箱的制造质量是保证齿轮长期正常工作的必要条件,但齿轮润滑油的循环系统对齿轮寿命的影响也是很大的,如果齿轮的润滑流量不足,会造成齿轮齿面的粘着破坏,缩短齿轮的寿命,如润滑流量设计过大则会造成投资的增加、运行成本的增加。所以选择一个合理的润滑流量对齿轮箱的设计是十分重要的。 齿轮的润滑方式是采用油浴润滑方式还是采用喷淋润滑,取决于齿轮外沿的圆周切线速度。当圆周切线速度大于15m/s时,采用喷淋润滑方式;如圆周切线速度小于15m/s ,原则上可采用油浴润滑方式,但要进行热平衡校验,如果齿轮箱外形很紧凑,散热面积小,要采用喷淋润滑方式。所以齿轮箱润滑方式的确定,要视润滑油液是否达到热平衡。 齿轮箱喷淋润滑方式的流量计算是十分重要的,本文介绍一种大型齿轮箱的工程计算方法,供工程设计人员参考: 根据比热容的计算公式,经过单位变换可得出下式: K ×P F Q = ——————l/min C ×ΔT 式中:Q——润滑流量 K——系数; C——润滑油的比热容; ΔT——温差; P F——功率损失;kW 例:某冶金企业减速机,电机额定功率为5000KW,电机的过载系数为2.5倍,负载曲线见附图,齿轮为单级齿轮硬齿面人字形齿,加工精度为6级,机械效率0.99(不含轴承的机械效率),润滑油的密度取值0.85, 润滑油的比热容为1.88,并假设润滑油的流量为均匀连续介质。试计算齿轮齿面的润滑流量。 1、计算发热功率: 根据减速箱的负载功率曲线,可按算术平均功率计算公式计算该减速箱的平均功 率。 P1×T1+P2×T2 P平均= —————— ∑T 9200×16+800×40 代入数值得P 平均= ————————= 3200 kW 56 / 0.99 = 3232 kW 考虑齿轮箱的效率为0.99,齿轮箱输入轴的实际功率为P=P 平均 假设齿轮的功率损失全部转化为热量,则发热功率为P F =32 kW 2、计算润滑流量: K ×P 根据Q = ——————l/min

钢铁厂常用干油润滑系统及日常维护

干油润滑系统 组成: 双线式系统模型 双线式系统有润滑泵,液压换向阀,分配器,压力控制器。供油管线和电控柜组成。 一、泵站 1:油箱标准件,油箱上要配二个油位显示并且二个触点开关,油位过高、油位低,油位过低时加油泵自动启动,油位达

到高位时,加油自动停止。 2:油泵标准件(注意减速机加油)。 3:溢流阀(安全阀用) 4:加油泵。 电动加油泵能自动地将润滑脂加入到电动润滑脂泵贮脂筒中。该泵为齿轮泵,运行平稳,输出压力高,带200L 的油桶上,可以单独操作,工作简单可靠。 5:过滤器(一般选择200—300μm)。(Y型过滤器) 注意安装方向:过滤器上有标记 6:仪表和电控部分 二、换向阀(带微动开关) 1、与A、B、P、T线相连机械式换向阀 2、带微动开关用于信号的取出,控制系统 3、工作原理

DR4-5液压换向阀采用美国FAVAL公司技术,其用于控制双线润滑系统中两条供油管路的换向,首端式润滑系统中该换向阀的工作原

位置2 管路L1中压力继续升高,当作用在活塞D1左侧的油压大于F 处的弹簧压力时(3.5MPa ~24.5可调),活塞D1右移,润滑油经活塞D2进入活塞B 的右侧,活塞D2的移动使其右侧的压力经过C 向油罐卸荷 . 位置3 升高后的压力使活塞B 左移,触动开关H 使泵停机,管路L1卸荷,管路L1卸荷、上半个工作循环结束,当系统进入下半个工作循环时,管路L2建立压力,向该路中润滑点注油

三、分配器: 1、现场所用的都是VSG2—KRFKM、VSG4—KRFKM,VSG6 —KRFKM,VSG8—KRFKM,双线分配器。(0—2.3ml) 2、工作原理、双出口改单出口、供油量的调整、日常的检查(见 资料) 分配器的结构与工作原理 双线式分配器的每一个给油单元由一个先导滑阀和一个主活塞组成。 主活塞完成润滑剂的计量,并在供油管供油压力的作用下,将经过计量的润滑剂输往润滑点。 先导滑阀在两根恭油管的压差作用下动作,切换分配器内的油道,使进油口与出油口分别与主活塞的两端腔室连通。

滑动轴承计算

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。

3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑 的必要条件。 主要内容: 一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受. 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流 体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 r F a F a F r F m

非液体润滑:处于边界摩擦及混 合摩擦状态下工 作的轴承为非液 体润滑轴承。 关于摩擦干:不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩 擦性质不取决于流体粘度,与 边界膜的表面的吸附性质有 关。 液体:表面被液体隔开,摩擦性质取 决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液 体、混合、润滑。 3.液体润滑按流体膜形成原理分:

智能润滑系统的开发与应用

论文2 智能润滑系统的 开发与应用

智能润滑系统的开发与应用 李鹏飞 (启东润滑设备有限公司 江苏启东) 摘 要:南京钢铁有限公司3#高炉抛弃1#、2#高炉传统双线集中润滑润滑系统的技术方案采用智能集中润滑系统的全新润滑方案。传统润滑方式对给油点是否供油、油量是否适量不易判断,出现问题不易点检。采用智能集中润滑系统后,将电脑技术与可编程控制同现场电磁给油器、流量传感器相结合,具有实时监控、参数调节、故障定位等功能,确保了设备的润滑效果。 关键词:炉顶润滑系统;智能集中润滑;润滑脂 1前言 我国传统高炉炉顶干油润滑系统全部采用单线或双线干油集中润滑的润滑方式,传统的单双线润滑方式对给油点是否供油不便观察、油量是否适量不易判断,出现问题不易点检。目前南钢3#高炉采用的智能集中润滑系统方案,将电脑技术与可编程控制同现场电磁给油器、流量传感器相结合,具有实时监控、参数调节、故障定位等功能,确保了设备的润滑效果。 2传统润滑系统状况 南钢1#、2#高炉原采用双线集中润滑集中润滑系统,在使用过程中常常出现以下问题: 2.1润滑泵送来的润滑脂,直接送入各分配器向润滑点供油。但离泵近、背压低、阻力小的分配器先动作,其所连接的分配器润滑点

首先得到供油。如果其中有1处或几处堵塞,只能通过观察分配器上运动指示杆是否动作来判断,由于分配器数量多,安装的位置不宜观察,造成堵塞不易发现;另外高炉生产处于煤气区域,设备的点检很不方便,点检人员很难做到在供油时去观察分配器的运动指示杆。 2.2润滑点给脂量的多少,受分配器预定量的控制,单实际原始设计时一般设计所有分配器为统一供油量,同时还受安装管道远近、背压高低、阻力大小等因素影响,给脂量和预定量不一致,容易发生过多或过少甚至中断供油的情况。 2.3双线润滑设备出现问题后,故障点难于查找和处理。由于把出油总管首端或末端压力作为控制条件,调节起来保证在预设压力下所有分配器动作也比较困难。各个点背压不同,总管压力很难能调到一个合适的值,润滑泵经常受虚假信号的干扰而停止。润滑泵经常出现漏油报警、压力继电器报警而停泵,维修人员、厂家技术人员经常

干油集中润滑系统配管简介

干油集中润滑系统配管简介 系统配管是干油集中润滑系统设计的一个重要环节。管路系统的合理布置、管路材料及连接方式的正确选择能确保整个系统正常工作,可靠地向各个润滑点供送润滑剂。在设计时应尽可能采用标准的配管材料和管路附件,这样可以降低配管的费用,便于安装、维修。 ■管路材料及规格的选择 ●主管路及分支管路 主管路及分支管路是指润滑泵至分配器及分配器至分配器之间的管路。此类管路应选择采用符合 GB8163 -87 《输送流体用无缝钢管》标准要求的冷拔(冷轧)无缝钢管。材料选用 10、20。主管路的规格根据润滑系统的公称压力、管路的长度、油脂的流动阻力等因素选择。双线系统的分支管路推荐选用外径 14 或 18 的无缝钢管。单线递进式系统中分配器之间的分支管路推荐选用外径 8 、 10 、 12 、 14 的无缝钢管。管路规格推荐按表一、表二选用。 表一螺纹连接用钢管 表二焊接或卡套连接用钢管 ●润滑管路 润滑管路是指分配器至润滑点之间的管路。此类管路应选择采用符合GB8163-87《输送流体用无缝钢管》标准要求的冷拔(冷轧)无缝钢管。材料选用 10 、20。管路规格推荐按表二选用。也可以采用符合GB1527- 87《拉制铜管》标准要求的拉制紫铜管,材料选用T3。管路规格推荐按表三选用。 表三润滑管路用铜管

●运动部分用管路 系统中机器移动、转动部件之间所用的分支管路、润滑管路推荐采用 Q/YT330-98《高压胶管总成》中所列的高压软管。 ■管路连接方式的选择 ●主管路及分支管路 (1)推荐选用焊接式或锥密封连接形式。 对于管子外径不大于 18 的管路也可以选用卡 套式连接。 (2)螺纹连接式管路只能用于公称压力不 大于 2OMPa 的系统。 ●润滑管路 推荐选用卡套式连接方式。用钢管时选用卡 套式管接头,用铜管时选用铜管用接头。 ■管路设计安装中的注意事项 (1)对于腐蚀性环境,管路材料应选用符合 GB2270-80《不锈钢无缝钢管》标准要求的冷拔(冷轧)不锈钢无缝钢管。 (2)管子内必须清洁,不允许有氧化皮、锈斑等杂质。采用卡套式连接的管路组装前管子要进行表面处理。采用焊接式连接的管路,焊接后再进行表面处理。 (3)要用切管器切割管子,不要用锯子锯,以免产生铁屑。 (4)弯管时尽量采用冷弯,避免热弯,防止产生氧化皮。 (5)管路布置应尽量避开温度太高或太低的地方。高温将造成油脂老化变质,低温将增大油脂的流动阻力。 (6)管路应布置在被润滑的设备或墙壁上,用管夹固定。应布置在没有机械干涉,便于观察及维修的地方。

油润滑滑动轴承常用润滑方法

油润滑滑动轴承常用润滑方法 (1)手动润滑 在发现轴承的润滑油不足时,适时用加油器供油,这是最原始的方法。这种方法难以保持油量一定,因疏忽而忘记加油的危险较大,通常只用于轻载、低速或间歇运动的场合。最好在加油孔上设置防尘盖或球阀,并用毛毡、棉、毛等作过滤装置。 (2)滴油润滑 从容器经孔、针、阀等供给大致为定量的润滑油,最经典的是滴油油杯。滴油量随润滑油粘度、轴承间隙和供油孔位置不同有显著变化。用于圆周速度小于4~5 m/s的轻载和中载轴承。 (3)油环润滑 仅能用于卧轴的润滑方法。靠挂在轴上并能旋转的环将油池的润滑油带到轴承中。适用于轴径大于50mm的中速和高速轴承。油环最好是无缝的,轴承宽径比小于2时,可只用一个油环,否则需用两个油环。 (4)油绳润滑 靠油绳的毛细管作用和虹吸作用将油杯中的润滑油引到轴承中,用于圆周速度小于4~5m/s的轻载和中载轴承。油绳还有过滤作用。 (5)油垫润滑 利用油垫的毛细管作用,将油池中的润滑油涂到轴径表面。此方法能使摩擦表面经常保持清洁,但尘埃也会堵塞毛细孔造成供油不足。油垫润滑的供油量通常只有油润滑的1/20。 (6)油浴润滑 将轴承的一部分浸入润滑油中的润滑方法。这种方法常用于竖轴的推力轴承,而不宜用于卧轴的径向轴承。

(7)飞溅轴承 靠油箱中旋转件的拍击而飞溅起来的润滑油供给轴承,适用于较高速度的轴承。(8)喷雾润滑 将润滑油雾化喷在摩擦表面的润滑方法,适用于高速轴承。 (9)压力供油润滑 靠润滑泵的压力向轴承供油,将从轴承流出的润滑油回收到油池以便循环使用,是供油量最多,且最稳定的润滑方法,适用于高速、重载、重要的滑动轴承。

润滑脂(干油)集中润滑系统

润滑脂(干油)集中润滑系统 一、润滑脂(干油)集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动油脂泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、润滑脂(干油)集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护 对于大型机械设备或生产线的干油集中润滑系统,润滑点众多,管路维护量大,宜采用专人维护。据笔者了解,国内许多钢铁企业20世纪90年代上的生产线均配备双线或单线式干油集中润滑系统,使用效

滑动轴承习题

滑动轴承 一.是非题 1.承受双向轴向载荷的推力滑动轴承可采用多环轴颈结构。() 2.某滑动轴承当轴的转速不变,外载荷的大小不变而方向变化时,在液体摩擦状态下,轴颈的中心位置是变化的。() 3.对非液体摩擦的滑动轴承,验算pv ≤ [pv]是为了防止轴承过热。() 4.动压润滑向心滑动轴承中,最小油膜厚度处的油膜压力为最大。() 二.单项选择题 1.一滑动轴承,已知其直径间隙△=0.08mm,现测得它的最小油腊厚度h min=21μm,轴承的偏心率χ应该是______。 (a)0.26 (b)0.48 (c)0.52 (d)0.74 2.止推滑动轴承的止推轴颈通常制成空心式,这是因为______。 (a)减轻轴颈重量(b)工艺上需要 (c)减小轴颈接触面积(d)轴颈接触面上压力分布较均匀3.含油轴承是采用______制成的。 (a)硬木(b)硬橡皮 (c)粉末冶金(d)塑料 4.巴氏合金是用来制造______。 (a)单层金属轴瓦(b)双层及多层金属轴瓦 (c)含油轴承轴瓦(d)非金属轴瓦 5.在非液体润滑滑动轴承中,限制p值的主要目的是______。 (a)防止轴承衬材料过度磨损(b)防止轴承衬材料发生塑性变形 (c)防止轴承衬材料因压力过大而过度发热(d)防止出现过大的摩擦阻力矩 6.在非液体润滑滑动轴承设计中,限制pv值的主要目的是______。 (a)防止轴承因过度发热而产生胶合(b)防止轴承过度磨损 (c)防止轴承因发热而产生塑性变形 7.设计动压向心滑动轴承时,若发现最小油膜厚度h min不够大,在下列改进措施中,最有效的是______。

(a )增大相对间隙ψ (b )增大供油量 (c )减小轴承的宽径比B /d (d )换用粘度较低的润滑油 8.设计液体摩擦动压向心滑动轴承时,若通过热平衡计算,发现轴承温度太高,可通过__ __来改善。 (a )减少供油量 (b )增大相对间隙ψ (c )增大轴承宽径比d B / (d )改用粘度较高的润滑油 9.向心滑动轴承的相对间隙ψ,通常是根据______进行选择。 (a )轴承载荷F 和轴颈直径d (b )润滑油的粘度η和轴颈转速n (c )轴承载荷F 和润滑油的粘度η (d )轴承载荷F 和轴颈转速n 10.设计动压向心滑动轴承时,若宽径比B /d 取得较大,则______。 (a )轴承端泄量小,承载能力高,温升低 (b )轴承端泄量小,承载能力高,温升高 (c )轴承湍泄量大,承载能力低,温升高 (d )轴承端泄量大,承载能力低,温升低 三.填空题 1.滑动轴承的润滑状态主要有:_____ _________、______ ________、_____ _____________。 2.滑动轴承上油孔、油槽的开设位置应在_________________ __________ _______ ________________________________________________________。 3.液体动力润滑径向滑动轴承的承载量系数C P 随着偏心率ε的增加而________。这时,相应的油 膜厚度将_________,这意味着对_________和_________精度有较高的要求。 四.综合题 某一径向滑动轴承,轴承宽径比B /d =1.0,轴颈和轴瓦的公称直径d =80mm ,轴承相对间隙ψ=0.0015,轴颈和轴瓦表面微观不平度的十点平均高度分别为R z 1 =1.6μm ,R z 2 =3.2μm ,在径向工作载荷F 、轴颈速度v 的工作条件下,偏心率χ=0.8,能形成液体动压润滑。若其它条件不变,试求:(1)当轴颈速度提高到v ' =1.7v 时,轴承的最小油膜厚度为多少?(2)当轴颈速度降低为v '=0.7v 时,该轴承能否达到液体动压润滑状态? 注:①承载量系数计算式vB F C p ηψ22 =;②取安全系数S =2;③承载量系数C p 见下表(B/d=1.0)。

干油润滑系统使用说明

宁波北仑DQ4200/4200.42堆取料机干油集中润滑系统 技术说明

目录 1系统技术参数及工作原理………………STI 2 2典型双线系统工作原理……………………STI 4 3FYK分油块…………………………………STI 6 4DRB泵………………………………………STI 8 5SSP双线分配器………………………………STI 16 6YCK-M5压差开关……………………………STI 19 1.系统技术参数及工作原理 宁波北仑DQ4200/4200.42堆取料机干油集中电动润滑系统润滑点部位包括:大车集中润滑系统和回转集中润滑系统.其余润滑系统均采用分油块润滑系统. 大车集中润滑系统原理图 回转集中润滑系统原理图 电动双线集中润滑系统:整个系统由电动干油润滑泵、双线分配器、连接管路和接头等组成。 2.典型双线系统工作原理 润滑泵开始工作后,泵不断地从贮油桶中吸入油 脂,从出油口压出油脂。泵排出的 压力油脂经液动换向阀进入主管1,送至各分配器。此 时,主管2通过XYDF型液动换向阀与回油管相连,处 图A

于卸荷状态。主管1中的油脂进入各分配器的上部进油口(图A所示),利用上部进油口处的压力油推动分配器中的所有活向下运动,并将活塞下腔的油经分配器的下出油口2,定量地送入各润滑点。当所有分配器的下出油口一次送油结束后(即所有分配器中的供油活塞下行到活塞行程的末端停止运动后),主管 1中的压力将迅速上升,当压力达到额定压力后,换 向阀换向。 换向阀换向后,润滑泵输出的压力油进入主管 2,同时主管1卸荷,各分配器的下进油口进油(图B 所示),分配器中的活塞向上运动,将活塞上腔的油 经分配器的上出油口1,定量地送入各润滑点。当所 有分配器的上出油口一次送油结束后,主管2的压力 上升,当压力达到额定压力后,换向阀换向。这样系 统就完成了一次循环,每个润滑点均得到了一次定量 的润滑油脂。 分油块示意图 3.FYK型分油块 用途及特点 分油块有结构紧凑、体积小、安装补脂方便的特点。FYK型分油块是我公司为手动集中供油而设计的一种给油装置。 FYK型分油块分为两种形式,按出油口数量分,又各有8种规格。该分油块通常与油枪或移动式加油泵车配合使用,广泛应用在港口机械、冶金设备等手动集中润滑系统中。 规格型号及技术参数 FYK-A型FYK-B型 规格型号出油口数L1 L2 重量Kg 安装螺钉规格进、出油口螺纹D FYK-A-1 1 80 — 1 GB 70-85 内六角圆柱头螺钉 M10X40 标准产品为Rc1/4 可根据用户要求定 制加工 FYK-A-2 2 110 80 1.3 FYK-A-3 3 140 110 1.7 FYK-A-4 4 170 140 2 FYK-A-5 5 200 170 2.5 图B

推力轴承润滑计算书

目录 一、基本数据 二、润滑计算 三、推力盘计算 编制: 校对: 日期: 一、基本数据 1、额定转速: n= 1000r/min 2、轴向推力: P=6000Kg=60000N 3、推力瓦块数: Z =8块 4、单个推力瓦扇形夹角: θ=45° 5、推力瓦块外径: D=40cm 6、推力瓦块内径: d=24cm 7、推力瓦块宽度: b=(D-d)/2 =(40-24)/2 =8 cm 8、系数: Kσ=b×(1+ b/(2×r))×θ/ r =8×(1+8/(2×12))×45×π/(180×12) =0.7

9、每个推力瓦块工作面积: F= Kσ×r2 = 0.7×122 =100.8 cm2 10、每个推力瓦块承受的轴向推力: P 1=P/ Z =6000/8 =750Kg =7500N 11、每个推力瓦块承受的单位压力: P pj=P1/ F =750/100.8 =7.44(Kg/cm2) =0.744MPa 12、推力瓦块平均直径: D pj=(D+d)/2 =(40+24)/2 =32cm 13、单个推力瓦平均周长: l=π×D pj×θ/360 =π×32×45/360 =12.6 cm 14、平均周速: v pj=π×D pj×n/6000 =π×32×1000/6000 =16.76(m/s) 15、根据θ值和b/r比值查曲线得计算系数: K1=1.8

K2=0.07 K3=0.3 K4=1 K5=0.008 二、润滑计算 1、轴承工作时润滑油层中的温升: △t= P pj/(K1×γ×C) 式中: γ—润滑油的比重,γ=0.9克/厘米3。 C—润滑油比热:C=0.47千卡/公斤.度。 △t= 7.44/(1.8×0.9×0.47) =9.8℃ 2、假定油膜平均温度为 t pj= 50℃(一般为40℃~55℃) 3、润滑油的进油温度: t1= t pj-△t/2 =50-9.8/2 =45.1℃ 4、润滑油的出油温度: t2= t1+△t =45.1+9.8 =54.9℃ 5、最小油膜厚度: δmin= K2×(F×n×u/(γ×C×△t))1/2 式中: u—润滑油粘性系数,u=0.0027公斤.秒/米2。 δmin =0.07×(100.8×1000×0.0027×10-4/(0.9×0.47×9.8))1/2 =0.0057(cm)

润滑脂(干油)集中润滑系统

润滑脂(于油)集中润滑系统 特点: (1)供脂量精确,避免不必要的浪费; (2)供脂时间准确,防止摩擦副润滑不足; (3)自动化程度高,可节省人力和减轻劳动强度; {4)系统工作可靠性高,可避免漏加润滑脂造成的摩擦功耗增加和设备磨损破坏; (5)设备投资较大. 润滑脂润滑特点:粘着性强、润滑持续时间长、流动性差、无法循环使用。 要求:定时间,定消耗量补充. 足够的润滑脂,保持良好的润滑状态:避免过量而造成浪费,污染. 必须保证:定时、定量供脂. 第一节干油集中润滑系统的组成和工作原理 干油集中润滑系统组成:一般由润滑脂泵(于油泵),润滑脂过滤器,压力表、换向装置、输脂主管、给油器,输脂支管等组成, 一、双线非顺序式干油集中润滑系统 (1)双线非顺序式给油器工作原理 给油器工作原理如下:Ⅱ管高压一进入给油器配油腔下腔一推动配油柱塞3 向上移动一配油腔下腔与下通道接通,将上通道与出脂口A接通一H管经配油腔下腔一下通道进人压油腔下腔一推动压油柱塞2向上移动一将压油腔上腔的润滑脂经上通道、出脂口A送人连接A口的摩擦副支管.

供脂主管压力每交替变化一次,即完成一次供脂动作. 供脂量由压油腔的直径和压油柱塞的行程决定. 指示杆6与压油柱塞2为刚性连接,通过调节螺丝8在护罩7上的位置,可以改变指示杆6的行程,从而改变压油柱塞2的行程,而达到改变供脂量,在护罩7通过视窗观察指示杆6的运动情况,判定给油器的工作情况。 (2)手动干油站工作原理

手动于油站由人工驱动的柱塞式油泵,换向阀,储脂筒,压力计、单向阀、过滤器和手摇柄等组成。、 工作原理如下:干油站的手摇柄与小齿轮1联接,摇动手摇柄一小齿轮带动齿条柱塞2左右往复运动。

轴承润滑油量计算及供油方式设计

轴承润滑油量计算及供油方式设计 轴承润滑油量计算及供油方式设计 轴承润滑油量计算滚动轴承润滑所需的油量在很大程度上取决于轴承类型、供油系统设计、润滑油类型等因素。很难给出一个适合任何情况,具有广泛适用性的简单明了的公式。具有油液自动传输功能的轴承(如角接触球轴承)所需油量大于不具有油液自动传输功能的轴承(如双列圆柱滚子轴承)所需油量。尤其当速度性系数(n.dm)值较大时,其差异更明显。 通过大量实验,供油量Q的粗略计算公式如下: Q=WdB 式中 Q??供油量,mm3/h W??系数,0.01mm/h d??轴承内径,mm B??轴承宽度,mm 然而,实际供油量还要在此数值基础上扩大4~20倍。为了获得最佳润滑效果,还需通过实验来修正供油量多少。 供油方式设计对于高速旋转的轴承,为了可靠地将润滑油送入轴承内部,应十分重视供油方式(如喷嘴形式、安装位置等)的设计。轴承润滑方式完全取决于轴承类型和配置方式。 对单列轴承而言,最佳润滑方式为从一边进入轴承内部。喷嘴孔应与内环齐平,不能指向保持架。尤其当轴承自身吸排油方向不易确定时(如角接触球轴承),润滑油必须按上述方向进入轴承内部。若条件许可,润滑油最好经过一个特制喷管后再进入轴承内部。喷管长度取决于轴承大小,直径为 0.5~1.0mm。也允许把润滑油送到轴承外圈处。在这种

情况下,要注意察看润滑油是否进入了钢球与外圈之间形成的压力区域。 对双列轴承而言,润滑油必须从与外圈滚道边齐平的地方喷入轴承内部,以对轴承 充分润滑。当轴承外径介于150~280mm时,需要再增加一个喷嘴。 此外,为了防止在轴承底部形成油渣沉淀,需要安装一个泄油管,其长度大于5mm。为了满足现代机床高速主轴对润滑系统的要求,对油-气集中润滑系统的各个参数还要作进 一步详细而精确的研究。这是因为:润滑油类型、润滑方法、润滑量以及轴承类型、轴承 配置等因素均对轴承转速提高有着决定作用。 轴承润滑油量一般经验计算公式: 5*轴承数量*轴承外径*轴承宽度/100000 我一直用AGMA 14179-1和ISO14179-2算的,感觉算出来和实际试验差不多。

干油集中润滑系统

干油集中润滑系统 一、干油集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动干油泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、干油集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(m in χψ-=d h B. )1(m in χψ+=d h C. 2/)1(m in χψ-=d h D. 2/)1(m in χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

智能润滑系统常见故障分类

目录 1.文本一直初始化/文本无参数块/CPU无响应----------------------------4 2.反馈继电器微亮----------------------------------------------------------------4 3.系统工作52#润滑点时出现跳闸现象--------------------------------------4 4.监控画面重力和压力无显示或不发生变化-------------------------------4 5. 上位机润滑点显示堵塞,但现场实际正常------------------------------5 6. 一号总线控制器工作时,现场润滑点不工作,使用二号控制器时正常,把二号控制器换到一号,现场仍不工作----------------------------5 7.加油泵无法加油----------------------------------------------------------------5 8.监控通讯不上-------------------------------------------------------------------6 9. 润滑泵自动不能运行--------------------------------------------------------6 10. 加油泵自动不能自动加油-------------------------------------------------6 11. 3000系统中现场不能正常打点-------------------------------------------6 12. 气动阀有关问题-------------------------------------------------------------7 13. 主控柜内L400断路器(现场电磁阀电源)系统工作时经常跳闸---------------------------------------------------------------------------------------7 14. 监控画面上有规律的堵塞点,每隔12个润滑点堵塞---------------------------------------------------------------------------------------7 15. 系统不能自动运行----------------------------------------------------------7 16. 监控上不能启动润滑系统-------------------------------------------------7

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。 3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 主要内容:

一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受 . 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 非液体润滑:处于边界摩擦及混合摩擦状态下工作的轴承为非液体润滑轴承。 关于摩擦 干: 不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩擦性质不取决于流体粘度,与边界膜的表面 的吸附性质有关。 液体:表面被液体隔开,摩擦性质取决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液体、混合、 润滑。 r F a F a F r F m

13滑动轴承习题与参考答案

习题与参考答案 一、选择题(从给出的A 、B、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度hmin 的目的是 A 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B、E 。 3 巴氏合金是用来制造 B 。 A . 单层金属轴瓦 B . 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C . 铸造锡磷青铜 D . 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n的增加或载荷F的减少 C . 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 B 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h mi n不够大,在下列改进设计的

措施中,最有效的是 A 。 A. 减少轴承的宽径比d l / B. 增加供油量 C . 减少相对间隙ψ D. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C . 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。 A . 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C . 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 B 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 B ,又称绝对粘度。 A . 运动粘度 B . 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, D 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 D 。 A. 液体摩擦 B . 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 C 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 B 与公称直径之比。 A. 半径间隙r R -=δ B . 直径间隙d D -=? C. 最小油膜厚度h m in D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 C 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 C 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 A 。

立式泵滚动轴承稀油自润滑供油量计算

立式泵滚动轴承稀油自润滑供油量计算 立式泵滚动轴承稀油自 配套技术与产品AccessoryTechnologfes矗Prod~Is 润滑供油量计算 大连深蓝泵业有限公司(辽宁116031)尚家巨姜云洁郝宁李涛张翠萍 【摘要】对一种立武泵轴承自润滑系统的润滑油循环动力进行分析.根据润滑油在轴承室内的实际 循环过程,进行力学分析,利用c语言程序辅助计算,对供油量进行定量分析,从而得出影响润滑油供油蓝 的主要因素,为这种轴承自润滑结构的设计提供了理论依据. 【关键词】立式泵滚动轴承自润滑供油量c语言程序 一 ,前言 润滑在轴承的使用中占有重要的地位,对立式泵用 稀油润滑的滚动轴承来说,润滑油循环状况的好坏,直 接影响轴承的温升,寿命及整个泵组的运行状况.即润 滑油的循环状况决定润滑能力的高低,而供油量的多少 直接反映润滑油循环状况的好坏. 二,稀油润滑系统结构及原理 1稀油润滑系统的结构 立式泵稀油润滑系统结构简图如图1所示. 图l润滑系统结构简图 1.滚动轴承 2.轴承套 3.衬套 4.轴承箱体 润滑油的循环路线如图l中箭头所示:储油室一轴 2O06年第4期 承套下部一轴承套下部斜面一输油孔一轴承(轴承箱体 上回油孔)一储油室.

轴承位于轴承箱体上部,轴承箱体下部为储油室, 油面到轴承之间有一定的距离.泵不运转的情况下,油不触及到轴承.轴承套下部向内倾斜,形成一个斜面. 2.润滑系统的原理 泵不运转时,润滑油与轴承不接触.泵运转时,轴 承套随轴一起旋转,轴承套下部的倾斜端面带动其内部的润滑油一起旋转,这部分润滑油在离心力的作用下, 产生一个沿斜面向上的升力,在此升力的作用下,推动斜面上部的润滑油通过输油孔,到达轴承上部,在重力作用下,通过旋转的轴承,起到润滑作用,而后回到轴 承箱体的储油室,多余的润滑油由轴承箱体上的回油孔返回储油室. 三,油润滑系统供油量的计算 1.结构尺寸 由于润滑油的供油量是影响轴承润滑的主要因素, 因此对供油量进行定量分析是必要的.轴承套结构尺寸如图2所示. 参数说明: —— 斜面与水平方向夹角,单位为(.); R1——斜面内半径,单位为m; R2——斜面外半径,单位为m; —— 受斜面作用的流体重心距离,单位为m; —— 受斜面作用油的高度,单位为m; 通用栅榭 1234

相关主题
文本预览
相关文档 最新文档