当前位置:文档之家› 润滑点需要油量的计算

润滑点需要油量的计算

润滑点需要油量的计算
润滑点需要油量的计算

润滑点需要油量的计算

1.稀油循环润滑系统

(1)球轴承和球面滚子轴承需油量

转速:300~500转/分供油量:1。23~2。5 毫升/分

转速:500~1800转/分供油量:16。5~28。5 毫升/分

(2)圆锥滚子轴承需油量

供油量:16。5~25 毫升/分(不考虑速度)

(3)中间滑动轴承需油量

一个润滑点:d×π×L×0.0025×20 毫升/分

两个润滑点:0.5d×π×L×0.0025×20 毫升/分

(4)偏心轴滑动轴承需油量

一个润滑点:d×π×L×0.0025×20 毫升/分

两个润滑点:0.5d×π×L×0.0025×20 毫升/分

(5)连杆滑动轴承需油量

两个润滑点:0.5d×π×L×0.0025×20 毫升/分

四个润滑点:0.25d×π×L×0.0025×20 毫升/分

(6)中间齿轮啮合需油量

df×π×W×0.0025×2×10 毫升/分

(7)偏心齿轮啮合需油量

df×π×W×0.0025×10 毫升/分

(8)滑块导轨需油量

W×L×0.0025 毫升/分(每导轨的一个润滑点)

(9)联接器的调整螺杆和螺母需油量

每个螺杆、螺母:d×π×L×0.0025 毫升/分

(10)平衡器密封圈和拉杆套需油量

密封圈:D×π×W×0.0025 毫升/分

拉杆套:d×π×L×0.0025 毫升/分(每个套)

注:平衡器润滑机构在定时器的控制下,每小时仅0。5分钟供油,其余时间不供油。

2.稀油间歇润滑系统

(1)气垫气缸密封圈需油量

D×π×W×0.0025 毫升/小时

(2)气垫导向轴套需油量

d×π×L×0.0025 毫升/小时

(3)气垫活塞导向环需油量

直径<60厘米:D×π×W×0.0025 毫升/小时

直径≥60厘米:0.5 D×π×W×0.0025 毫升/小时(用两点供油) (4)气垫导轨

W×L×0.0025 毫升/小时

3.浓油间歇润滑系统

(1)顶料机构需油量

A.主轴滑动轴承及连杆需油量

轴承处:d×π×L×0.008 毫升/2小时

连杆轴承:0.5 d×π×L×0.008 毫升/2小时(每点)

B.滑块导轨需油量

W×L×0.008 毫升/2小时(每个导轨)

C.凸轮机构需油量

D×π×W×0.008 毫升/2小时

D.轴套需油量

d×π×L×0.008 毫升/2小时(每个套)

E.拉杆套或销轴需油量

d×π×L×0.008 毫升/2小时(每个润滑点)

F.气缸活塞密封处不能用浓油润滑,必须用稀油润滑,油量计算公式同气垫气缸密封圈公式。

(2)内滑块导轨、气垫导轨需油量

计算公式同顶料机构滑块导轨计算公式。

4.油量计算公式的规定说明

d—内径(轴承、轴套、螺母等)厘米

D—外径(密封圈、凸轮、导向环等)厘米

df—齿轮分度圆厘米

L—长度(轴承、轴套、导轨等)厘米

W—宽度(齿轮、导轨等)厘米

稀油润滑公式中0。0025为油膜厚度,单位:厘米

浓油润滑公式中0。008为油膜厚度,单位:厘米

齿轮箱润滑流量计算

齿轮箱润滑流量计算 摘要:本文通过一个工程实例介绍齿轮箱循环式稀油润滑系统的设计原理及计算方法。 关键词:齿轮箱稀油循环润滑系统设计原理计算方法 齿轮箱的制造质量是保证齿轮长期正常工作的必要条件,但齿轮润滑油的循环系统对齿轮寿命的影响也是很大的,如果齿轮的润滑流量不足,会造成齿轮齿面的粘着破坏,缩短齿轮的寿命,如润滑流量设计过大则会造成投资的增加、运行成本的增加。所以选择一个合理的润滑流量对齿轮箱的设计是十分重要的。 齿轮的润滑方式是采用油浴润滑方式还是采用喷淋润滑,取决于齿轮外沿的圆周切线速度。当圆周切线速度大于15m/s时,采用喷淋润滑方式;如圆周切线速度小于15m/s ,原则上可采用油浴润滑方式,但要进行热平衡校验,如果齿轮箱外形很紧凑,散热面积小,要采用喷淋润滑方式。所以齿轮箱润滑方式的确定,要视润滑油液是否达到热平衡。 齿轮箱喷淋润滑方式的流量计算是十分重要的,本文介绍一种大型齿轮箱的工程计算方法,供工程设计人员参考: 根据比热容的计算公式,经过单位变换可得出下式: K ×P F Q = ——————l/min C ×ΔT 式中:Q——润滑流量 K——系数; C——润滑油的比热容; ΔT——温差; P F——功率损失;kW 例:某冶金企业减速机,电机额定功率为5000KW,电机的过载系数为2.5倍,负载曲线见附图,齿轮为单级齿轮硬齿面人字形齿,加工精度为6级,机械效率0.99(不含轴承的机械效率),润滑油的密度取值0.85, 润滑油的比热容为1.88,并假设润滑油的流量为均匀连续介质。试计算齿轮齿面的润滑流量。 1、计算发热功率: 根据减速箱的负载功率曲线,可按算术平均功率计算公式计算该减速箱的平均功 率。 P1×T1+P2×T2 P平均= —————— ∑T 9200×16+800×40 代入数值得P 平均= ————————= 3200 kW 56 / 0.99 = 3232 kW 考虑齿轮箱的效率为0.99,齿轮箱输入轴的实际功率为P=P 平均 假设齿轮的功率损失全部转化为热量,则发热功率为P F =32 kW 2、计算润滑流量: K ×P 根据Q = ——————l/min

滑动轴承计算

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。

3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑 的必要条件。 主要内容: 一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受. 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流 体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 r F a F a F r F m

非液体润滑:处于边界摩擦及混 合摩擦状态下工 作的轴承为非液 体润滑轴承。 关于摩擦干:不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩 擦性质不取决于流体粘度,与 边界膜的表面的吸附性质有 关。 液体:表面被液体隔开,摩擦性质取 决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液 体、混合、润滑。 3.液体润滑按流体膜形成原理分:

钢铁厂常用干油润滑系统及日常维护

干油润滑系统 组成: 双线式系统模型 双线式系统有润滑泵,液压换向阀,分配器,压力控制器。供油管线和电控柜组成。 一、泵站 1:油箱标准件,油箱上要配二个油位显示并且二个触点开关,油位过高、油位低,油位过低时加油泵自动启动,油位达

到高位时,加油自动停止。 2:油泵标准件(注意减速机加油)。 3:溢流阀(安全阀用) 4:加油泵。 电动加油泵能自动地将润滑脂加入到电动润滑脂泵贮脂筒中。该泵为齿轮泵,运行平稳,输出压力高,带200L 的油桶上,可以单独操作,工作简单可靠。 5:过滤器(一般选择200—300μm)。(Y型过滤器) 注意安装方向:过滤器上有标记 6:仪表和电控部分 二、换向阀(带微动开关) 1、与A、B、P、T线相连机械式换向阀 2、带微动开关用于信号的取出,控制系统 3、工作原理

DR4-5液压换向阀采用美国FAVAL公司技术,其用于控制双线润滑系统中两条供油管路的换向,首端式润滑系统中该换向阀的工作原

位置2 管路L1中压力继续升高,当作用在活塞D1左侧的油压大于F 处的弹簧压力时(3.5MPa ~24.5可调),活塞D1右移,润滑油经活塞D2进入活塞B 的右侧,活塞D2的移动使其右侧的压力经过C 向油罐卸荷 . 位置3 升高后的压力使活塞B 左移,触动开关H 使泵停机,管路L1卸荷,管路L1卸荷、上半个工作循环结束,当系统进入下半个工作循环时,管路L2建立压力,向该路中润滑点注油

三、分配器: 1、现场所用的都是VSG2—KRFKM、VSG4—KRFKM,VSG6 —KRFKM,VSG8—KRFKM,双线分配器。(0—2.3ml) 2、工作原理、双出口改单出口、供油量的调整、日常的检查(见 资料) 分配器的结构与工作原理 双线式分配器的每一个给油单元由一个先导滑阀和一个主活塞组成。 主活塞完成润滑剂的计量,并在供油管供油压力的作用下,将经过计量的润滑剂输往润滑点。 先导滑阀在两根恭油管的压差作用下动作,切换分配器内的油道,使进油口与出油口分别与主活塞的两端腔室连通。

智能润滑系统的开发与应用

论文2 智能润滑系统的 开发与应用

智能润滑系统的开发与应用 李鹏飞 (启东润滑设备有限公司 江苏启东) 摘 要:南京钢铁有限公司3#高炉抛弃1#、2#高炉传统双线集中润滑润滑系统的技术方案采用智能集中润滑系统的全新润滑方案。传统润滑方式对给油点是否供油、油量是否适量不易判断,出现问题不易点检。采用智能集中润滑系统后,将电脑技术与可编程控制同现场电磁给油器、流量传感器相结合,具有实时监控、参数调节、故障定位等功能,确保了设备的润滑效果。 关键词:炉顶润滑系统;智能集中润滑;润滑脂 1前言 我国传统高炉炉顶干油润滑系统全部采用单线或双线干油集中润滑的润滑方式,传统的单双线润滑方式对给油点是否供油不便观察、油量是否适量不易判断,出现问题不易点检。目前南钢3#高炉采用的智能集中润滑系统方案,将电脑技术与可编程控制同现场电磁给油器、流量传感器相结合,具有实时监控、参数调节、故障定位等功能,确保了设备的润滑效果。 2传统润滑系统状况 南钢1#、2#高炉原采用双线集中润滑集中润滑系统,在使用过程中常常出现以下问题: 2.1润滑泵送来的润滑脂,直接送入各分配器向润滑点供油。但离泵近、背压低、阻力小的分配器先动作,其所连接的分配器润滑点

首先得到供油。如果其中有1处或几处堵塞,只能通过观察分配器上运动指示杆是否动作来判断,由于分配器数量多,安装的位置不宜观察,造成堵塞不易发现;另外高炉生产处于煤气区域,设备的点检很不方便,点检人员很难做到在供油时去观察分配器的运动指示杆。 2.2润滑点给脂量的多少,受分配器预定量的控制,单实际原始设计时一般设计所有分配器为统一供油量,同时还受安装管道远近、背压高低、阻力大小等因素影响,给脂量和预定量不一致,容易发生过多或过少甚至中断供油的情况。 2.3双线润滑设备出现问题后,故障点难于查找和处理。由于把出油总管首端或末端压力作为控制条件,调节起来保证在预设压力下所有分配器动作也比较困难。各个点背压不同,总管压力很难能调到一个合适的值,润滑泵经常受虚假信号的干扰而停止。润滑泵经常出现漏油报警、压力继电器报警而停泵,维修人员、厂家技术人员经常

干油集中润滑系统配管简介

干油集中润滑系统配管简介 系统配管是干油集中润滑系统设计的一个重要环节。管路系统的合理布置、管路材料及连接方式的正确选择能确保整个系统正常工作,可靠地向各个润滑点供送润滑剂。在设计时应尽可能采用标准的配管材料和管路附件,这样可以降低配管的费用,便于安装、维修。 ■管路材料及规格的选择 ●主管路及分支管路 主管路及分支管路是指润滑泵至分配器及分配器至分配器之间的管路。此类管路应选择采用符合 GB8163 -87 《输送流体用无缝钢管》标准要求的冷拔(冷轧)无缝钢管。材料选用 10、20。主管路的规格根据润滑系统的公称压力、管路的长度、油脂的流动阻力等因素选择。双线系统的分支管路推荐选用外径 14 或 18 的无缝钢管。单线递进式系统中分配器之间的分支管路推荐选用外径 8 、 10 、 12 、 14 的无缝钢管。管路规格推荐按表一、表二选用。 表一螺纹连接用钢管 表二焊接或卡套连接用钢管 ●润滑管路 润滑管路是指分配器至润滑点之间的管路。此类管路应选择采用符合GB8163-87《输送流体用无缝钢管》标准要求的冷拔(冷轧)无缝钢管。材料选用 10 、20。管路规格推荐按表二选用。也可以采用符合GB1527- 87《拉制铜管》标准要求的拉制紫铜管,材料选用T3。管路规格推荐按表三选用。 表三润滑管路用铜管

●运动部分用管路 系统中机器移动、转动部件之间所用的分支管路、润滑管路推荐采用 Q/YT330-98《高压胶管总成》中所列的高压软管。 ■管路连接方式的选择 ●主管路及分支管路 (1)推荐选用焊接式或锥密封连接形式。 对于管子外径不大于 18 的管路也可以选用卡 套式连接。 (2)螺纹连接式管路只能用于公称压力不 大于 2OMPa 的系统。 ●润滑管路 推荐选用卡套式连接方式。用钢管时选用卡 套式管接头,用铜管时选用铜管用接头。 ■管路设计安装中的注意事项 (1)对于腐蚀性环境,管路材料应选用符合 GB2270-80《不锈钢无缝钢管》标准要求的冷拔(冷轧)不锈钢无缝钢管。 (2)管子内必须清洁,不允许有氧化皮、锈斑等杂质。采用卡套式连接的管路组装前管子要进行表面处理。采用焊接式连接的管路,焊接后再进行表面处理。 (3)要用切管器切割管子,不要用锯子锯,以免产生铁屑。 (4)弯管时尽量采用冷弯,避免热弯,防止产生氧化皮。 (5)管路布置应尽量避开温度太高或太低的地方。高温将造成油脂老化变质,低温将增大油脂的流动阻力。 (6)管路应布置在被润滑的设备或墙壁上,用管夹固定。应布置在没有机械干涉,便于观察及维修的地方。

推力轴承润滑计算书

目录 一、基本数据 二、润滑计算 三、推力盘计算 编制: 校对: 日期: 一、基本数据 1、额定转速: n= 1000r/min 2、轴向推力: P=6000Kg=60000N 3、推力瓦块数: Z =8块 4、单个推力瓦扇形夹角: θ=45° 5、推力瓦块外径: D=40cm 6、推力瓦块内径: d=24cm 7、推力瓦块宽度: b=(D-d)/2 =(40-24)/2 =8 cm 8、系数: Kσ=b×(1+ b/(2×r))×θ/ r =8×(1+8/(2×12))×45×π/(180×12) =0.7

9、每个推力瓦块工作面积: F= Kσ×r2 = 0.7×122 =100.8 cm2 10、每个推力瓦块承受的轴向推力: P 1=P/ Z =6000/8 =750Kg =7500N 11、每个推力瓦块承受的单位压力: P pj=P1/ F =750/100.8 =7.44(Kg/cm2) =0.744MPa 12、推力瓦块平均直径: D pj=(D+d)/2 =(40+24)/2 =32cm 13、单个推力瓦平均周长: l=π×D pj×θ/360 =π×32×45/360 =12.6 cm 14、平均周速: v pj=π×D pj×n/6000 =π×32×1000/6000 =16.76(m/s) 15、根据θ值和b/r比值查曲线得计算系数: K1=1.8

K2=0.07 K3=0.3 K4=1 K5=0.008 二、润滑计算 1、轴承工作时润滑油层中的温升: △t= P pj/(K1×γ×C) 式中: γ—润滑油的比重,γ=0.9克/厘米3。 C—润滑油比热:C=0.47千卡/公斤.度。 △t= 7.44/(1.8×0.9×0.47) =9.8℃ 2、假定油膜平均温度为 t pj= 50℃(一般为40℃~55℃) 3、润滑油的进油温度: t1= t pj-△t/2 =50-9.8/2 =45.1℃ 4、润滑油的出油温度: t2= t1+△t =45.1+9.8 =54.9℃ 5、最小油膜厚度: δmin= K2×(F×n×u/(γ×C×△t))1/2 式中: u—润滑油粘性系数,u=0.0027公斤.秒/米2。 δmin =0.07×(100.8×1000×0.0027×10-4/(0.9×0.47×9.8))1/2 =0.0057(cm)

润滑脂(干油)集中润滑系统

润滑脂(干油)集中润滑系统 一、润滑脂(干油)集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动油脂泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、润滑脂(干油)集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护 对于大型机械设备或生产线的干油集中润滑系统,润滑点众多,管路维护量大,宜采用专人维护。据笔者了解,国内许多钢铁企业20世纪90年代上的生产线均配备双线或单线式干油集中润滑系统,使用效

干油润滑系统使用说明

宁波北仑DQ4200/4200.42堆取料机干油集中润滑系统 技术说明

目录 1系统技术参数及工作原理………………STI 2 2典型双线系统工作原理……………………STI 4 3FYK分油块…………………………………STI 6 4DRB泵………………………………………STI 8 5SSP双线分配器………………………………STI 16 6YCK-M5压差开关……………………………STI 19 1.系统技术参数及工作原理 宁波北仑DQ4200/4200.42堆取料机干油集中电动润滑系统润滑点部位包括:大车集中润滑系统和回转集中润滑系统.其余润滑系统均采用分油块润滑系统. 大车集中润滑系统原理图 回转集中润滑系统原理图 电动双线集中润滑系统:整个系统由电动干油润滑泵、双线分配器、连接管路和接头等组成。 2.典型双线系统工作原理 润滑泵开始工作后,泵不断地从贮油桶中吸入油 脂,从出油口压出油脂。泵排出的 压力油脂经液动换向阀进入主管1,送至各分配器。此 时,主管2通过XYDF型液动换向阀与回油管相连,处 图A

于卸荷状态。主管1中的油脂进入各分配器的上部进油口(图A所示),利用上部进油口处的压力油推动分配器中的所有活向下运动,并将活塞下腔的油经分配器的下出油口2,定量地送入各润滑点。当所有分配器的下出油口一次送油结束后(即所有分配器中的供油活塞下行到活塞行程的末端停止运动后),主管 1中的压力将迅速上升,当压力达到额定压力后,换 向阀换向。 换向阀换向后,润滑泵输出的压力油进入主管 2,同时主管1卸荷,各分配器的下进油口进油(图B 所示),分配器中的活塞向上运动,将活塞上腔的油 经分配器的上出油口1,定量地送入各润滑点。当所 有分配器的上出油口一次送油结束后,主管2的压力 上升,当压力达到额定压力后,换向阀换向。这样系 统就完成了一次循环,每个润滑点均得到了一次定量 的润滑油脂。 分油块示意图 3.FYK型分油块 用途及特点 分油块有结构紧凑、体积小、安装补脂方便的特点。FYK型分油块是我公司为手动集中供油而设计的一种给油装置。 FYK型分油块分为两种形式,按出油口数量分,又各有8种规格。该分油块通常与油枪或移动式加油泵车配合使用,广泛应用在港口机械、冶金设备等手动集中润滑系统中。 规格型号及技术参数 FYK-A型FYK-B型 规格型号出油口数L1 L2 重量Kg 安装螺钉规格进、出油口螺纹D FYK-A-1 1 80 — 1 GB 70-85 内六角圆柱头螺钉 M10X40 标准产品为Rc1/4 可根据用户要求定 制加工 FYK-A-2 2 110 80 1.3 FYK-A-3 3 140 110 1.7 FYK-A-4 4 170 140 2 FYK-A-5 5 200 170 2.5 图B

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

轴承润滑油量计算及供油方式设计

轴承润滑油量计算及供油方式设计 轴承润滑油量计算及供油方式设计 轴承润滑油量计算滚动轴承润滑所需的油量在很大程度上取决于轴承类型、供油系统设计、润滑油类型等因素。很难给出一个适合任何情况,具有广泛适用性的简单明了的公式。具有油液自动传输功能的轴承(如角接触球轴承)所需油量大于不具有油液自动传输功能的轴承(如双列圆柱滚子轴承)所需油量。尤其当速度性系数(n.dm)值较大时,其差异更明显。 通过大量实验,供油量Q的粗略计算公式如下: Q=WdB 式中 Q??供油量,mm3/h W??系数,0.01mm/h d??轴承内径,mm B??轴承宽度,mm 然而,实际供油量还要在此数值基础上扩大4~20倍。为了获得最佳润滑效果,还需通过实验来修正供油量多少。 供油方式设计对于高速旋转的轴承,为了可靠地将润滑油送入轴承内部,应十分重视供油方式(如喷嘴形式、安装位置等)的设计。轴承润滑方式完全取决于轴承类型和配置方式。 对单列轴承而言,最佳润滑方式为从一边进入轴承内部。喷嘴孔应与内环齐平,不能指向保持架。尤其当轴承自身吸排油方向不易确定时(如角接触球轴承),润滑油必须按上述方向进入轴承内部。若条件许可,润滑油最好经过一个特制喷管后再进入轴承内部。喷管长度取决于轴承大小,直径为 0.5~1.0mm。也允许把润滑油送到轴承外圈处。在这种

情况下,要注意察看润滑油是否进入了钢球与外圈之间形成的压力区域。 对双列轴承而言,润滑油必须从与外圈滚道边齐平的地方喷入轴承内部,以对轴承 充分润滑。当轴承外径介于150~280mm时,需要再增加一个喷嘴。 此外,为了防止在轴承底部形成油渣沉淀,需要安装一个泄油管,其长度大于5mm。为了满足现代机床高速主轴对润滑系统的要求,对油-气集中润滑系统的各个参数还要作进 一步详细而精确的研究。这是因为:润滑油类型、润滑方法、润滑量以及轴承类型、轴承 配置等因素均对轴承转速提高有着决定作用。 轴承润滑油量一般经验计算公式: 5*轴承数量*轴承外径*轴承宽度/100000 我一直用AGMA 14179-1和ISO14179-2算的,感觉算出来和实际试验差不多。

润滑脂(干油)集中润滑系统

润滑脂(于油)集中润滑系统 特点: (1)供脂量精确,避免不必要的浪费; (2)供脂时间准确,防止摩擦副润滑不足; (3)自动化程度高,可节省人力和减轻劳动强度; {4)系统工作可靠性高,可避免漏加润滑脂造成的摩擦功耗增加和设备磨损破坏; (5)设备投资较大. 润滑脂润滑特点:粘着性强、润滑持续时间长、流动性差、无法循环使用。 要求:定时间,定消耗量补充. 足够的润滑脂,保持良好的润滑状态:避免过量而造成浪费,污染. 必须保证:定时、定量供脂. 第一节干油集中润滑系统的组成和工作原理 干油集中润滑系统组成:一般由润滑脂泵(于油泵),润滑脂过滤器,压力表、换向装置、输脂主管、给油器,输脂支管等组成, 一、双线非顺序式干油集中润滑系统 (1)双线非顺序式给油器工作原理 给油器工作原理如下:Ⅱ管高压一进入给油器配油腔下腔一推动配油柱塞3 向上移动一配油腔下腔与下通道接通,将上通道与出脂口A接通一H管经配油腔下腔一下通道进人压油腔下腔一推动压油柱塞2向上移动一将压油腔上腔的润滑脂经上通道、出脂口A送人连接A口的摩擦副支管.

供脂主管压力每交替变化一次,即完成一次供脂动作. 供脂量由压油腔的直径和压油柱塞的行程决定. 指示杆6与压油柱塞2为刚性连接,通过调节螺丝8在护罩7上的位置,可以改变指示杆6的行程,从而改变压油柱塞2的行程,而达到改变供脂量,在护罩7通过视窗观察指示杆6的运动情况,判定给油器的工作情况。 (2)手动干油站工作原理

手动于油站由人工驱动的柱塞式油泵,换向阀,储脂筒,压力计、单向阀、过滤器和手摇柄等组成。、 工作原理如下:干油站的手摇柄与小齿轮1联接,摇动手摇柄一小齿轮带动齿条柱塞2左右往复运动。

干油集中润滑系统

干油集中润滑系统 一、干油集中润滑系统的结构原理 所谓“干油”,就是润滑脂;目前常用的干油集中润滑系统都是开式的,即润滑脂在润滑点消耗掉,不返回油桶。 典型的智能式干油集中润滑系统由电动干油泵、加油泵、过滤器、分配器、控制柜、管路附件组成(见下图),其油路采用一个电磁换向阀控制一个润滑点的方式,管路布置和工作原理简单,故障判断和处理相对于使用单线或双线分配器容易;缺点是分配器体积较大。该系统的突出特点是将传统的集中润滑与现代高新技术相结合,采用PLC对系统进行自动控制,并可实现计算机远程监控。控制柜中的PLC是该系统的核心,它控制系统实现:按设定的循环间隔时间,启动系统,各电磁换向阀依次得电动作,逐点给油;通过设定各电磁换向阀得电时间,控制各点给油量;电磁换向阀得电时,流量传感器检测油流信号并反馈,通过指示灯或在监控电脑画面上显示;系统高、低压、油位低自动保护及报警;系统运行和故障记录功能。采用计算机远程监控,则更可凸显系统控制和维护方便的高科技特点。系统适用于上百个给油点的大型机械设备或生产线的集中润滑,并可与单线式集中润滑系统相结合使用。与这些优点对应的是:系统的维护对电气人员、系统的使用对系统管理人员素质要求较高;系统的价格较高。 二、干油集中润滑系统的优点 智能干油集中润滑系统可根据设备工作状态,现场环境温度不同条件及设备润滑部位的不同要求,准确、定时、定量、可靠的满足各种润滑要求。以维克森VICSEN-MX型集中润滑系统为例,该系统采用递进式工作方式,泵设计成可间歇或持续工作,这样可以按照不同的需要来编辑运行程序,一个直联的减速电机驱动泵内凸轮工作,可以同时驱动3个外置泵单元。每个泵单元都配有溢流过压保护阀防止超压损坏。可设置1-200个润滑点,能够准确及时地推送油脂到各个润滑点,还可以显著提高设备寿命,更加节省润滑脂的用量,多个润滑点可以采用统一的一个集中润滑系统,不仅可以大幅度的降低运营成本,而且维护起来也更加简单。 三、干油集中润滑系统的使用与维护 1.管理者重视与采用专人维护

智能润滑系统常见故障分类

目录 1.文本一直初始化/文本无参数块/CPU无响应----------------------------4 2.反馈继电器微亮----------------------------------------------------------------4 3.系统工作52#润滑点时出现跳闸现象--------------------------------------4 4.监控画面重力和压力无显示或不发生变化-------------------------------4 5. 上位机润滑点显示堵塞,但现场实际正常------------------------------5 6. 一号总线控制器工作时,现场润滑点不工作,使用二号控制器时正常,把二号控制器换到一号,现场仍不工作----------------------------5 7.加油泵无法加油----------------------------------------------------------------5 8.监控通讯不上-------------------------------------------------------------------6 9. 润滑泵自动不能运行--------------------------------------------------------6 10. 加油泵自动不能自动加油-------------------------------------------------6 11. 3000系统中现场不能正常打点-------------------------------------------6 12. 气动阀有关问题-------------------------------------------------------------7 13. 主控柜内L400断路器(现场电磁阀电源)系统工作时经常跳闸---------------------------------------------------------------------------------------7 14. 监控画面上有规律的堵塞点,每隔12个润滑点堵塞---------------------------------------------------------------------------------------7 15. 系统不能自动运行----------------------------------------------------------7 16. 监控上不能启动润滑系统-------------------------------------------------7

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。 3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 主要内容:

一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受 . 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 非液体润滑:处于边界摩擦及混合摩擦状态下工作的轴承为非液体润滑轴承。 关于摩擦 干: 不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩擦性质不取决于流体粘度,与边界膜的表面 的吸附性质有关。 液体:表面被液体隔开,摩擦性质取决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液体、混合、 润滑。 r F a F a F r F m

滚动轴承脂润滑方式

滚动轴承脂润滑方式 1、特点。 优点:⑴润滑装置简单。如果使用密封轴承或者不需要补充脂的非密封轴承,则不需要任何附加的润滑装置。相比之下,油润滑系统需要油泵、油管、油箱等,要复杂得多。 ⑵润滑脂不易泄漏,轴承的密封结构比较简单。 ⑶轴承的维护、保养方便。 ⑷润滑脂有密封作用.可防止外部灰尘,水分和其它杂质侵入轴承。 ⑸容易提高机械装置的清洁度。 缺点: ⑴轴承摩擦大,散热不好,允许的转速比较低。 ⑵温度很高时,润滑脂的基础油会加快蒸发和氧化变质。润滑脂的胶体结构也会变化而加速分油。随着温度升高,润滑脂寿命迅速降低。大部分润滑脂的使用温度与寿命的关系是:每当轴承温度升高10~15℃,润滑脂的寿命下降 l/2。因此,除特殊的高温润滑脂外,一般润滑脂不能在高温下作用。 ⒉润滑脂组成及其作用 ????? 基础油:约占75~95%稠化济约占5~20%添加剂 各部分的作用: ⑴基础油:采用矿物油,或者合成油。润滑脂的润滑性能主要由

基础油的润滑性能所决定。基础油的粘度对轴承内油膜的形成和油膜的承载能力、轴承寿命影响很大。 ⑵稠化剂:分皂基和非皂基两种。皂基稠化剂有锡基、钠基、铝基、铅基等多种。稠化剂的种类影响润滑脂的滴点、耐水性。稠化剂以纤维状态分散于基油中,纤维互相交织成网,并把油吸附和固定在网中,使油成膏状。 ⑶添加剂:后边讲 ⒊针入度:润滑脂的稠度用针入度表示,它也是一项重要的指标。针入度的规定是指将质量150g 的圆锥体在5s内沉入温度为25℃的润滑脂内的深度,以1/10mm为单位。 针入度用以表示润滑脂的“软度”,反映使用中的流动性。 针入度数值越小,表示润滑脂越稠;针入度越大,表示润滑脂越稀。 润滑脂的流动性取决于润滑脂的粘度和稠度。粘度越大,稠度越大,润滑脂的流动性越差。对低温下脂润滑的轴承,要求低温起动性能,需要保证在低温下脂的流动性。针入度与轴承使用条件关系见表7-5。 ⒋滴点:润滑脂在规定的试验条件下由半固态变为液态时的温

立式泵滚动轴承稀油自润滑供油量计算

立式泵滚动轴承稀油自润滑供油量计算 立式泵滚动轴承稀油自 配套技术与产品AccessoryTechnologfes矗Prod~Is 润滑供油量计算 大连深蓝泵业有限公司(辽宁116031)尚家巨姜云洁郝宁李涛张翠萍 【摘要】对一种立武泵轴承自润滑系统的润滑油循环动力进行分析.根据润滑油在轴承室内的实际 循环过程,进行力学分析,利用c语言程序辅助计算,对供油量进行定量分析,从而得出影响润滑油供油蓝 的主要因素,为这种轴承自润滑结构的设计提供了理论依据. 【关键词】立式泵滚动轴承自润滑供油量c语言程序 一 ,前言 润滑在轴承的使用中占有重要的地位,对立式泵用 稀油润滑的滚动轴承来说,润滑油循环状况的好坏,直 接影响轴承的温升,寿命及整个泵组的运行状况.即润 滑油的循环状况决定润滑能力的高低,而供油量的多少 直接反映润滑油循环状况的好坏. 二,稀油润滑系统结构及原理 1稀油润滑系统的结构 立式泵稀油润滑系统结构简图如图1所示. 图l润滑系统结构简图 1.滚动轴承 2.轴承套 3.衬套 4.轴承箱体 润滑油的循环路线如图l中箭头所示:储油室一轴 2O06年第4期 承套下部一轴承套下部斜面一输油孔一轴承(轴承箱体 上回油孔)一储油室.

轴承位于轴承箱体上部,轴承箱体下部为储油室, 油面到轴承之间有一定的距离.泵不运转的情况下,油不触及到轴承.轴承套下部向内倾斜,形成一个斜面. 2.润滑系统的原理 泵不运转时,润滑油与轴承不接触.泵运转时,轴 承套随轴一起旋转,轴承套下部的倾斜端面带动其内部的润滑油一起旋转,这部分润滑油在离心力的作用下, 产生一个沿斜面向上的升力,在此升力的作用下,推动斜面上部的润滑油通过输油孔,到达轴承上部,在重力作用下,通过旋转的轴承,起到润滑作用,而后回到轴 承箱体的储油室,多余的润滑油由轴承箱体上的回油孔返回储油室. 三,油润滑系统供油量的计算 1.结构尺寸 由于润滑油的供油量是影响轴承润滑的主要因素, 因此对供油量进行定量分析是必要的.轴承套结构尺寸如图2所示. 参数说明: —— 斜面与水平方向夹角,单位为(.); R1——斜面内半径,单位为m; R2——斜面外半径,单位为m; —— 受斜面作用的流体重心距离,单位为m; —— 受斜面作用油的高度,单位为m; 通用栅榭 1234

轴承的加油标准

轴承的加油标准 凡是能降低摩擦力的介质都可作为润滑材料,润滑材料亦称润滑剂。机械设备中 常用的润滑剂有液体、半固体和固体等。 润滑油的性能指标 1.润滑油的理化性能指标 (1)颜色润滑油的颜色与基础油的精制深度及所加的添加剂有关。在使用或贮存过程则与油品的氧化、变质程度有关。如呈乳白色,则有水或气泡存在;颜 色变深,则氧化变质或污染。 (2)粘度粘度是润滑油最重要和最基本的性能指标。大多数润滑油都按运动粘度来划分牌号。润滑油的粘度越大,所形成的油膜越厚,有利于承受高负荷,但其流动性差,这也增加了机械运动的阻力,或者不能及时流到需要润滑的部位, 以致失去润滑作用。 (3)粘温特性温度变化时,润滑油的粘度也随之变化。温度升高则粘度降低,反之亦然。润滑油粘度随温度变化的特性称为润滑油的粘温特性,它是润滑油的 重要指标之一。 表示润滑油粘温特性的方法有两种:一种是粘度比,另一种是粘度指数VI。粘度指数是由两种标准油的假定粘度指数演算而得的。一种油的VI值越大,表示它的粘度随温度的变化越小,通常认为该油品的粘温特性越好。 (4)凝点和倾点凝点是指在规定的冷却条件下油品停止流动的最高温度,一般润滑油的使用温度应比凝点高5~7℃。凝点可按GB/T510-83规定的方法进 行测定。 倾点是油品在规定的条件下冷却到能继续流动的最低温度,也是油品流动的极限温度,故能更好地反映油品的低温流动性,实际使用性比凝点好。润滑油的最低使用温度应高于油品倾点30℃以上。倾点可按GB/T3535-83规定的方法进 行测定。 (5)闪点闪点是表示油品蒸发性的一项指标。油品蒸发性越大,其闪点越低。同时,闪点又是表示石油产品着火危险性的指标。在选用润滑油时,应根据使用温度和润滑油的工作条件进行确定。一般认为,闪点比使用温度高20~30℃即可安全使用。闪点可按GB/T267-88或GB/T261-83规定的方法测定。 (6)酸值酸值指中和1克油样中全部酸性物质所需的氢氧化钾的毫克数,单位是mgKOH/g。对于新油,酸值表示油品精制的深度或添加剂的加入量(当加有酸性添加剂时);对于旧油,酸值表示氧化变质的程度。一般润滑油在贮存和使用过程中,由于在一定的温度下与空气中的氧发生反应,生成一定的有机酸,或由于碱性添加剂的消耗,油品的酸值会发生变化。因此,酸值过大说明氧化变质严重,应考虑换油。酸值可按GB/T264-83规定的方法进行测定。 (7)水溶性酸碱(又称反应); 这主要用于鉴别油号在精制过程中是否将无机酸碱水洗干净;在贮存、使用过程中,有无受无机酸碱的污染或因包装、保管不当而使油品氧化分解,产生有机酸类,致使油品产生水溶性酸碱。一般地讲,油品中不允许有水溶性酸碱,否则,与水、汽接触的油品容易腐蚀机械设备。这是一项定性试验,可按 GB/T259-88规定的方法进行。 (8)机械杂质; 机械杂质是润滑油中不溶于溶剂的沉淀物或胶状悬浮物的含量。它们大部分是砂石和铁屑之类,或由添加剂带来的一些难溶于溶剂的有机金属盐。机械杂质将加速机械设备的正常磨损,严重时将堵塞油路、油嘴和过滤器,破坏正常润滑。

润滑点需要油量的计算

润滑点需要油量的计算 1.稀油循环润滑系统 (1)球轴承和球面滚子轴承需油量 转速:300~500转/分供油量:1。23~2。5 毫升/分 转速:500~1800转/分供油量:16。5~28。5 毫升/分 (2)圆锥滚子轴承需油量 供油量:16。5~25 毫升/分(不考虑速度) (3)中间滑动轴承需油量 一个润滑点:d×π×L×0.0025×20 毫升/分 两个润滑点:0.5d×π×L×0.0025×20 毫升/分 (4)偏心轴滑动轴承需油量 一个润滑点:d×π×L×0.0025×20 毫升/分 两个润滑点:0.5d×π×L×0.0025×20 毫升/分 (5)连杆滑动轴承需油量 两个润滑点:0.5d×π×L×0.0025×20 毫升/分 四个润滑点:0.25d×π×L×0.0025×20 毫升/分 (6)中间齿轮啮合需油量 df×π×W×0.0025×2×10 毫升/分 (7)偏心齿轮啮合需油量 df×π×W×0.0025×10 毫升/分 (8)滑块导轨需油量 W×L×0.0025 毫升/分(每导轨的一个润滑点) (9)联接器的调整螺杆和螺母需油量 每个螺杆、螺母:d×π×L×0.0025 毫升/分 (10)平衡器密封圈和拉杆套需油量 密封圈:D×π×W×0.0025 毫升/分 拉杆套:d×π×L×0.0025 毫升/分(每个套) 注:平衡器润滑机构在定时器的控制下,每小时仅0。5分钟供油,其余时间不供油。 2.稀油间歇润滑系统 (1)气垫气缸密封圈需油量 D×π×W×0.0025 毫升/小时 (2)气垫导向轴套需油量 d×π×L×0.0025 毫升/小时 (3)气垫活塞导向环需油量 直径<60厘米:D×π×W×0.0025 毫升/小时 直径≥60厘米:0.5 D×π×W×0.0025 毫升/小时(用两点供油) (4)气垫导轨 W×L×0.0025 毫升/小时 3.浓油间歇润滑系统 (1)顶料机构需油量 A.主轴滑动轴承及连杆需油量

干油集中润滑系统

干油集中润滑系统 安 装 调 试 维 护 说 明 书

干油集中润滑系统主要由电动(手动)润滑泵、液压换向阀、双(单)线分配器、干油过滤器、各类管接头、无缝钢管、铜管、软管和各类管夹等组成。 在干油集中润滑系统中,安装和调试对整个润滑系统的正常使用起到非常重要的作用,所以要求安装人员必须对润滑系统中各个设备做到正确的安装,在调试过程中按使用说明书进行正确的使用,切不可蛮干,以下对润滑系统中常用设备的安装和调试逐一进行说明:一、电动润滑泵的安装、调试、维护 安装: 1、润滑泵应垂直安装和固定在便于维修及灰尘较少的地方,并注 意环境温度是否适合泵的工作温度范围。 2、润滑泵应安装在润滑系统的中心位置,这样系统管道较短,压 力降可保持在最低限度,以保证泵产生足以克服润滑点背压的压力。 3、电动机旋转方向按转向标牌方向接线。 4、必须使用干净的润滑脂。因为含有杂质的润滑脂往往是润滑泵 和系统产生故障的主要原因,充填润滑脂时必须使用专用加油泵,通过加油口加入。泵在首次充填润滑脂前,最好先加些润滑油,因为润滑油流动作好,会充满所有的部位,有利于排除空气。如有的润滑部位不能使用润滑油,那么润滑泵必须运转至无空气存在的润滑脂从管道末端排出为止。 5、为了防止润滑脂进入压力表,在首次启动润滑泵前,要拆下带 有压力表的接头和弯管,然后启动润滑泵,直至润滑脂从接头

处排出为止,然后重新装上弯管并使之紧固,在弯管内注满润 滑油,最后装上带有压力表的接头。 维护和保养: 1、过滤网:过滤网要经常清洗,必要时还需用汽油或煤油清洗。 2、限压阀:可以从0调到40MPa任意调节,调节螺钉右旋可把压 力调高,左旋则调低,限压阀的设定压力不能超过泵的最大工 作压力,出厂时已调至30MPa。 3、保险片:由于某些故障原因而系统中的压力达到50MPa时,保 险片破裂,润滑脂从管中溢出。在新的保险片装入前,首先要 查明系统超压的原因并排除故障。调换保险片时须把凸面朝上,且须放入2片,如保险片装反,泵会因压力超过允许值而遭到 损坏。 常见故障和排除: 1、电动润滑泵压力表无压力——检查溢流阀是否调得太低,顺时 针旋转压力调高,逆时针压力调低。 2、电动润滑泵不出油——可能是吸入空气,检查油筒内油的状态, 如是粘度太大适当加入稀油调稀,直至管道内正常出油。 3、过滤器堵塞——清洗过滤网。 二、手动润滑泵的安装、调试、维护 安装: 1、手动润滑泵应垂直安装,操作手柄向上,泵的上方要留有指示杆上升的空间。如安装在室外或多粉尘的环境时,应将泵置于防护罩内。

相关主题
文本预览
相关文档 最新文档