当前位置:文档之家› 气液平衡相图与精馏

气液平衡相图与精馏

气液平衡相图与精馏
气液平衡相图与精馏

23

气液平衡相图与精馏

不同于二组分理想混合物的气液平衡相图,实际混合物的气液平衡相图必须通过实验测定来制作。鉴于相图不仅能显示系统的强度性质与相态间的关系,而且还能表示相转变的过程,这对相图的工业应用具有重要的价值。本专题旨在说明各种类型的气液平衡相图与精馏或蒸馏的关系。

1. 气液平衡相图的分类

在专题22中,已详细地叙述了二组分理想混合物的气液平衡相图,它是实际气液平衡相图分类的基础。由于理想液体混合物组分的逸度或蒸气压遵守Raoult 定律,而实际液体

混合物组分的逸度或蒸气压可在这个定律的基础上通过引入活度因子i γ来修正,

1>i γ的称为正偏差系统;1

正偏差系统

(5) 完全不互溶

负偏差系统

图23-1 各种类型的二组分气液平衡相图

图23-1分类实质上是以组分A和B分子间作用力的强弱作为基础。已知理想混合物的组分A和B分子间的作用力F A-B与A分子间的作用力F A-A和B分子间的作用力F B-B相等,故正偏差系统意味着F A-BF A-A和F A-B >F B-B。因为F A-B小于纯组分分子间的作用力时,混合使A和B的逸出能力提高;反之,若F A-B大于纯组分分子间的作用力,则混合使A和B的逸出能力降低。然而,偏差尚有强弱之别,这便表现出图23-1中的七种情况:一般正偏差如情况(1)所示。强正偏差如情况(2)所示,此时在恒温相图中的液相线出现了极大值,在恒压相图中的液相线相应地出现了极小值,且在极点处气液两相组成相同。由于此组成时沸点恒定且最低,故称最低恒沸点,相应组成的混合物称为最低恒沸混合物。倘若超强的正偏差,则如情况(3)和情况(4)所示,A与B分子间的弱作用使两个组分不能以任意比例互溶,于是液相出现部分互溶。甚至可像情况(5)所示,两个组分间完全不互溶。负偏差也有强弱之别,就像情况(6)和情况(7)所示,后者出现了最高恒沸点和相应的最高恒沸混合物,但不会出现液相部分互溶和不互溶的情况,因为A与B 分子间的强作用,只会使它们间溶解得更好。大多数液体混合物都呈正偏差。

2. 精馏原理

在工业和实验室中,混合物的气液相平衡与原料和产品的精馏提纯有密切的关系,基于精馏通常是在恒压的条件下进行,故恒压相图与它直接相关,精馏的原理可在恒压相图中得到清晰的表示。

图23-2是一个一般正偏差系统的恒压相图,就像图23-1中的情况(1)那样,精馏的原理就示意于这一图中。将组成为x o的液体混合物加热到温度T o,即图23-2中的系统点o,此时系统呈气液两相。气相以V o代表,液相以L o代表。暂不顾及液相,而将气相冷却到

T1温度,则气相部分冷凝而变成液相L1和气相V1。再撇开液相不顾,将气相冷却到T2温度,气相再次部分冷凝而变成液相L2和气相V2,…,如此反复进行,气相中易挥发组分B

T温度,因温度升高,L o 的含量不断增高,直至得到纯组分B。再看液相L o,将它加热到

3

V和液相3L。若撇开气相不顾,继续将液相升温至4T,则3L再次部便部分气化而变成气相

3

图23-2 精馏的原理

V和液相4L,…,如此反复进行,液相中难挥发组分A的含量不断增高,分气化而变成气相

4

以致最终得到纯组分A。实际上,由图23-2可见,气相的冷却和液相的加热是同时进行,且逆向互动的,它们间的相互接触,不仅发生热量的交换,而且伴随着物质的交换,气相在冷却的同时将难挥发的组分传递给了液相,而液相在加热的同时将易挥发的组分传递给了气相,这才导致组分A和B的分离,这就是精馏能够提纯的原理。

工程师们利用这个原理,将它巧妙地设计成精馏塔,以实现大规模工业分离的目的。图23-3是精馏塔及其分离作用的示意。塔底有一个再沸器,用来加热物料,塔顶有一个冷凝

图23-3 精馏塔及其分离作用的示意图

器,用来冷凝蒸气,并将部分冷凝液返回塔中,以维持精馏塔连续而稳定的运作。塔中有许多塔板,它们的温度随塔高而递减。每块塔板上除有许多泡罩外,还有溢流管,就像图23-3右边示意。为了清晰地表示它们的分离作用,每块塔板上只画了一个泡罩。气相与液相的逆向互动由箭头表示,与图23-2表示的方向相反,气相通过泡罩向上运动,液相通过溢流管向下运动。在塔板上传递热量和物质,液相因下溢温度升高,便将易挥发的组分给了气相,气相因上升温度降低,则将难挥发的组分给了液相,因此气相在向上运动中愈来愈富集易挥发组分,以致最终易挥发组分由塔顶出料。液相则在溢流过程中愈来愈富集难挥发组分,致使难挥发组分最终从塔釜出料。

4. 精馏与相图类型间的关系

不难明白,相比于理想混合物,负偏差会使恒压下气液两相的平衡组成相互接近,就象图23-1情况(6)所示,从而使精馏分离组分需要更多的塔板。相反,正偏差在恒压下使气液两相的平衡组成相互远离,就像图23-1情况(1)所示。故使精馏分离组分变得容易,且通常正偏差增大,分离变得更容易。但是,这并不是说,正偏差愈大,分离愈易。当强正偏差时,由于出现了最低恒沸混合物,它在气液两相中的组成相同,用精馏的方法便不能同时得到两个纯组分。由图23-1情况(2)不难看出,若塔釜为纯组分A ,则塔顶得到的是最低恒沸混合物,而不是纯组分B 。同样,若塔釜为纯组分B, 则塔顶得到的也是最低恒沸混合物,而不是纯组分A ,显然,这使组分的分离增加了困难。

然而,如果是超强的正偏差,组分的分离却又变得容易了。因为超强的正偏差会使组分A 和B 在液相变成部分互溶,就像图23-1情况(3)和(4)所示。此时,液相的部分互溶帮助了精馏分离,使它可在双塔流程下,同时获得纯组分A 和B 。

图23-4 水——异丁醇气液平衡恒压相图 图23-5 双塔流程分离水和异丁醇

就以水和异丁醇混合物的气液平衡为例,它的示意恒压相图如图23-4。若有一组成为w 0(异丁醇的质量分数)的物料,加热至T 0温度,它便以气液两相存在。于是,就可在图23-5所示的精馏塔Ι中精馏分离,即气液两相在塔中逆向互动,气相经历多次部分冷凝,液相经历多次部分气化,精馏结果,塔底虽然得到了纯组分水,但塔顶却只能得到最低恒沸混合物C 。如上所述,此时液相的部分互溶帮了忙,由图23-4可见,若将恒沸混合物C 冷却,它便变成共轭的两个液相——醇相和水相,因此安置一个分离器(见图23-5),就能将两相分离。水相富有较多的水,醇相富有较多的醇。然后,可将水相作为进料重返精馏塔Ι,而将醇相作为另一个精馏塔II 的进料。这样,就像图23-4所示,醇相在精馏塔II 中经历类似于塔Ι的分离过程,精馏结果,塔底得到纯异丁醇,塔顶得到最低恒沸混合物C 。将C 送入分离器,这就像图23-5双塔流程所示,能够连续不断地分别从两个精馏塔获得两个纯组分。

4. 水蒸气蒸馏

当正偏差超强时,两个组分在液相中甚至完全不互溶,就像图23-1中情况(5)所示,此时,无所谓组分间的分离,但是,它却可以成为提纯有机物的一个重要依据。鉴于完全不互溶时,各组分的蒸气压如同纯组分的蒸气压,与系统的组成无关,故系统的总压力应为两个纯组分的蒸气压之和。当系统呈现液液气三相共存时,由相律可知,F =2-3+2-0-0=1。这

就是说,当系统的温度指定时,系统的总压和气相组成也随之确定:??+=B A P p p ,C

I 精馏塔 II

醇 相 水 相 分离器水 异丁醇

进料 C

)/(B A B B ???+=p p p y 。如果系统的总压等于外压,则这个温度亦称共沸点,因为在此温度下

两个组分一起沸腾。由图23-1情况(5)的恒压相图可见,共沸点比两个纯组分的沸点都要低,这正是水蒸气蒸馏的关键所在。由于一般有机物难溶于水,且它们的沸点比水高得多,

故可用水蒸气蒸馏除去有机物中的杂质,而保证蒸馏在温度低于100。C 下进行。

水蒸气蒸馏操作简单,只要向有机物中通入水蒸气,此时一部分水蒸气便会冷凝成液体水,另一部分水蒸气与有机物蒸气一起在共沸点下逸出,经冷凝得到纯有机物和纯水,杂质则留下而被分离。举个例子,要去除硝基苯中的杂质,就可用水蒸气蒸馏。已知硝基苯C 6H 5NO 2的摩尔质量1B mol g 123??=M ,水H 2O 的摩尔质量1A mol g 18??=M ,它们的共沸点

为99°C ,此温度下纯水的饱和蒸气压kPa 7.97A =?p ,因此硝基苯的饱和蒸气压应为

3.6kPa 97.7)kPa 3.101(B =?=?p 。于是,由Dalton 分压定律可得

A A py p =? (23-1)

B B py p =? (23-2)

A B B A B A B A B

A M w M w n n y y p p ===?? (23-3) 97.3123

6.318

7.97B B A A B A =××==??M p M p w w (23-4) 式(23-3)中的A n 和B n 分别为气相中H 2O 和C 6H 5NO 2的物质的量。B A /w w 为每得到1g 硝基苯所需水的重量。由计算结果可知,尽管C 6H 5NO 2的蒸气压远低于H 2O ,但由于其摩尔质量比H 2O 大得多,馏出物中硝基苯的质量分数并不低,约占20%左右。

参考资料

[1] Findlay A, Campbell A N, Smith N O.相律及应用.源浩译.北京:化学工业出版社,1959

二元液系气液平衡相图

实验二二元液系气液平衡相图 一、实验目的 1、了解环己烷—乙醇系的沸点—组成图 2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%) 3、学会使用数字阿贝折射仪 4、学会使用WTS—05数字交流调压器 二、原理 一个完全互溶双液体系的沸点—组成图,表明在气液二相平衡时沸点和二相成分间的关系,它对了解这一体系对行为及分馏过程都有很大的实用价值。 在恒压下完全互溶双液系的沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点。 图1表示有最低恒沸点,本次实验图形也像如此的样子,A′LB′代表液相线的交点表示在该温度时互成平衡的二相的成份。 绘制沸点—成份图的简单原理如下:当总成份为X的溶液开始蒸馏时,体系的温度沿虚线上升,开始沸腾时成份为Y的气相生成。若气相量很少,x、y二点即代表互成平衡时液气二相成份。继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相和液相线上沿箭头指示方向变化。当二相成份达到某一对数值x′和y′,维持二相的量不变,则体系气液二相又在此成份达到平衡,而二相的物质数量按杠杆原理分配。 本实验利用回流的方法保持气液二相相对量一定,则体系温度恒定。待二相平衡后,取出二相的样品,用阿贝折光仪测定其折射率。得出该温度下气液二相平衡成份的坐标点,改变体系的总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点和液相点连成气相线和液相线,即得T—X平衡图。 三、步骤 1、安装接通仪器,打开冷凝水; 2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器; 3、A组加入乙醇0.5ml,用上法测定温度,然后关闭调压器,取出气相,液相的样品,测其折射率,以后分别加入1.0,2.0,4.0,8.0,12.0ml乙醇;

气液平衡的计算Word版

《化工热力学》过程论文 题目:气液平衡的计算方法系别:化学材料与工程系班级:13级化工卓越班 姓名: 学号:1303022014 教师: 日期:2016-1-12

气液平衡的计算方法 摘要本文综合分析了多组分相平衡理论特点,主要介绍了利用Peng Robinson ( PR) 立方型状态方程进行氧、氮、氩系统气液平衡计算的方法(泡点、露点和闪蒸计算),对该计算方法的准确性进行分析和验证。 关键词立方型状态方程;气液平衡计算;泡点;露点;闪蒸

目录 1 前言 .................................................................................................................... - 3 - 2 状态方程的选择 ................................................................................................ - 4 - 3 混合规则 ............................................................................................................ - 5 - 4 气液平衡的计算 ................................................................................................ - 6 - 4.1 泡点计算[3] ............................................................................................. - 6 - 4.2 露点计算[3] ............................................................................................. - 7 - 4.3 等温闪蒸的计算 ..................................................................................... - 8 - 5 结论 .................................................................................................................... - 8 - 6 参考文献 ............................................................................................................ - 9 -

双液系气液平衡相图的绘制(华南师范大学物化实验)

双液系气-液平衡相图的绘制 一、实验目的 (1)用回流冷凝法测定沸点时气相与液相的组成,绘制双液系相图。找出恒沸点混合物的组成及恒沸点的温度。 (2)掌握测定双组分液体的沸点及正常沸点的测定方法。 (3)了解阿贝折射计的构造原理,熟悉掌握阿贝折射计的使用方法。 二、实验原理 2.1液体的沸点 液体的沸点是液体饱和蒸汽压和外压相等时的温度,在外压一定时,纯液体的沸点有一个确定值。 2.2双液系的沸点 双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。理想的二组分体系在全部浓度范围内符合拉乌尔定律。结构相似、性质相近的组分间可以形成近似的理想体系,这样可以形成简单的T-x (y )图。大多数情况下,曲线将出现或正或负的偏差。当这一偏差足够大时,在T-x (y )曲线上将出现极大点(负偏差)或极小点(正偏差)。这种最高和最低沸点称为恒沸点,所对应的溶液称为恒沸混合物。 恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类: (1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a)所示。 (2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图1(b)所示。 (3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点,如水-乙醇体系,如图1(c))所示。 图1. 二组分真实液态混合物气—液平衡相图(T-x 图) 考虑综合因素,实验选择具有最低恒沸点的乙醇-乙酸乙酯双液系。根据相平衡原理,对二组分体系,当压力恒定时,在气液平衡两相区,体系的自由度为1。若温度一定时,则气液亮相的组成也随之而定。当溶液组成一定时,根据杠 t A t A t A t B t B t B t / o C t / o t / o x B x B x B A B A A B B (a) (b) (c)x ' x '

二元液系相图(实验数据分析)

实验名称:二元液系相图 学院:XXXXXXXXXX 班级:XXXXXXXXX 姓名(学号):XXX(XXXXXXXX) 指导教师:XXX 实验时间:XXXXXXXXXXXXXX

二元液系相图 一、实验目的 1.测定环己烷-乙醇系统的沸点组成图(T-X图)。 2.掌握阿贝(Abbe)折光仪的使用方法。 二、实验原理 两种液态物质以任何比例混合都形成均相溶液的系统称这完全 互中溶双液系。在恒定压力下溶液沸点与平衡的气液相组成的关系,可用沸点-组成图(t-x图)表示。 完全互溶双液系的沸点-组成图可分为两三种: 一种为最简单的情况,溶液沸点介于两个纯组分沸点之间,如图6-1所示。纵坐标表示温度,横坐标表示组分B的摩尔分数(x B,y B)。下面一条曲线表示气液平衡时温度(即溶液沸点)与液想组成的关系,称液相线(T-x线)。上面的线表示平衡温度与气相组成的关系,称气相线(T-y线)。若总组成为Z B的系统在压力p及温度t时达到气液两相平衡,其液相组成为x B气相组成为y B(见图6-1)。 另两种类型为具有恒沸点的完全互溶双液系统气液平衡相图,如图6-2所示。其中(a)为具有低恒沸点相图,(b)为具有高恒沸点相图。这两类相图中气相线与液相线在某处相切。相切点对应的温度称为恒沸温度,对应组成的混合物称恒沸混合物。恒沸混合物在恒沸点达气液平衡,平衡的气、液组成相同。同一双液系在不同压力下,恒沸点及恒沸混合物是不同的。

本实验绘制环己烷-乙醇二元液系的T-X图。其方法为将不同组成的溶液于蒸馏仪中进行蒸馏,沸腾平衡后记下温度,依次吸取少量的蒸馏液和蒸出液。分别用阿贝折光计测定其折射率,然后由环己烷-乙醇的折射率-组成标准曲线或其数据表确定相应组成,从而绘制环己烷-乙醇二元液系相图。 三、仪器和试剂 沸点测定仪;取样管;阿贝折光仪。 环己烷(分析纯);无水乙醇(分析纯);环己烷摩尔分数分别为0.2、0.4、0.6、0.8的乙醇溶液。 四、实验步骤 1.纯液体折光率的测定 分别测定乙醇和环己烷的折光率。 2.标准曲线的绘制 测定环己烷摩尔分数分别为0.2、0.4、0.6、0.8的乙醇溶液的折光率,绘制标准曲线。 3.测定沸点-组成数据 1)安装沸点测定仪。 2)溶液配制。 粗略配制环己烷质量百分数分别为0.05、0.1、0.2、0.45、0.55、0.6、0.7、0.8、0.9等组成的环己烷-乙醇溶液约50ml。

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制 一实验目的 1.确定不同组成的环己烷——乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点组成图。 2.掌握阿贝折射仪的原理及使用方法。 二实验原理 本实验用回流冷凝法测定不同浓度的环己烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T----x图。 下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD′C和BE′C 为液相线。体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。此时,气相组成为y′,与其平衡的液相组成为x′,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。 当压力一定时,对两相共存区进行相律分析:独立组分K=2,相数P=2,则自由度f=K-P+1=2-2+1=1 即有,体系温度一定,则气液两相成分确定。总量一定时,亮相的量也一定。在一实验装置中,控制气液两相的相对量一定,使体系温度一定, 则气液组成一定。 用精密温度计可以测出平衡温度,取出气液两相样品 测定其折射率可以求出其组成。折射率和组成有一一对应 关系,可以通过测定仪系列已知组成的样品折射率,绘出 工作曲线。测出样品就可以从工作曲线上找到未知样品的 组成。 三仪器与药品 仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压 变压器、1/10℃刻度温度计、25ml移液管一支、5ml、 10ml移液管各两支、锥形瓶四个、滴管若干支 药品:环己烷、乙醇、丙酮 四实验步骤 1.工作曲线的测定 把超级恒温槽调至25℃,连接好恒温槽与阿贝折 射仪,使恒温水流经折射仪。 准确配制下列溶液,测定纯环己烷,乙醇和下列 溶液的折射率,并测定溶液温度。 环己烷 1 2 3 4ml 乙醇 4 3 2 1ml 2.测定环己烷的沸点 按图装好仪器,调压变压器调至最小,将25ml苯加入蒸馏瓶,打开冷凝水,接通电源,

【清华】实验2_双液系的气液平衡相图_2006011835

`` 实验2 双液系的气液平衡相图 唐盛昌2006011835 分6 同组实验者:徐培 实验日期:2008-10-9,提交报告日期:2008-10-23 带实验助教:尚培华 1 引言(简明的实验目的/原理) 实验目的: 1.用沸点仪测定在常压下环已烷—乙醇的气液平衡相图。 2.掌握阿贝折射仪的使用方法。 实验原理: 将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的相图,称为沸点和组成(T-x)图。沸点和组成(T-x)的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间见图5—1(a);(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见图5—1(b);(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点见图5—1(c)。第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。 图1 沸点组成图 为了测定二元液系的T-x图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的T-x图。方法是用沸点仪(图2)直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿贝折射仅测定其折射率。为了求出相应的组成,必须先测定已知组成的溶液的折射率,

气液平衡的计算x (1)

合肥学院Hefei University 《化工热力学》过程论文 题目:汽液平衡的计算方法 系别:化学与材料工程系 专业:化学工程与工艺 学号: 1303021011 姓名:徐磊

教师: 高大明 2016 年1月 汽液平衡的计算方法 摘要: 在恒定的温度和压力下,汽液两相发生接触后,吸收质由汽相向液相转移,随液体中吸收质浓度的逐渐增高,吸收速率逐渐减小,解吸速率逐渐增大。经过相当长的时间接触后,吸收速率与解吸速率相等,即吸收质在气相中的分压及在液相中的浓度不再发生变化,此时汽,液两相达到平衡状态,简称相平衡。国内外学者已建立了多种T 、p 、x 推算y 的方法,它们都是在Gibbs-Duhem(G-D)方程的基础上建立起来的。 关键词:汽液平衡、G-D 方程 正文: 在计算时根据应用G-D 方程方式上的不同,可以归结为两大类:其一是直接法,它是将式(1-6.11)表示的逸度的G-D 方程同时应用于气液两相而得到联系T 、p 、x 和y 的共存方程,解此共存方程即可实现由T 、p 、x 推算y 的目的;另一种是间接法,它首先计算过量吉氏函数Q ,根据Q 与活度因子的关系(隐含了G-D 方程)计算液相活度因子,从而实现间接计算气相组成的目的。 1.Q 函数法(间接法) Q 函数法原理 汽液平衡时,按判据式)()(L V k k f f (k =1, …, K ),如气相采用逸度因子、液相采用第I 种活度因子分别计算气液相的非理想性,得

] /)(exp[* *,,**RT p p V x p py k L k m k k k k k k -=I γ?? 整理上式可得系统总压p , ∑∑==-==K k k k L k m k k k k K k k RT p p V x p py p 1 **,,**1 /]/)(ex p[?γ?I 得 ?? ??????????????? ????-???? ????-???????????? ????-???? ????+????????? ????-???? ????+-=∑∑∑∑-=-==-=11],[],[11],[],[2111],[],[* *,**exp ] /)(exp[K j K j x j j K k x k E m K j K j x j j K k x k E m K k K j K j x j j K k x k k k L k m k k k x p x x p RT V x T x x T RT H x Q x x Q Q RT p p V x p p ??. 如果暂时不考虑*k p 、*k ?、L k m V *,、k ?、E m H 和E m V ,则式中除了Q 以外,其它的 变量就是已输入的T 、p 、x 。而Q 函数正是T 、p 、x 的函数,式(2-2.3)实质上是一个Q 函数的偏微分方程,只要有足够数量的一系列T 、p 、x 的实验数据,原则上可以解得Q =Q (T , p , x )。但实践上却有很大困难,因为导数出现在exp 中,是一个超越型的偏微分方程,没有解析解,只能通过数值方法求解。 2.直接法 直接法原理 直接法是从逸度的Gibbs-Duhem 方程出发建立起来的T 、p 、x 推算y 的方法。对于一个含有K 个组分的系统,其液相逸度的Gibbs-Duhem 方程为, p RT V T RT H H x p f x m m K k k m k K k k k d d ln d )(2 )(1 o ,1 o )(L L L +-= ∑∑== 当处理一系列T 、p 、x 实验数据时, T 、p 和)(L k f 均可形式上表达为液相组成x 1、 x 2、…、x K -1的函数,上式变为

二组分真实液态混合物的气—液平衡相图的绘制

实验四二组分真实液态混合物的气—液平衡相图的绘制 一、实验目的 1.掌握二组分真实液态混合物的沸点、气液组成的测定方法。 2.掌握阿贝折光仪的使用。 3.绘制环已烷—乙醇体系的沸点—组成图,确定其恒沸点及恒沸组成。 二、实验原理 在恒定压力下,二组分达到气液平衡时,表示溶液的沸点与组成的相图称为沸点—组成图,即t x —图可分为三类: —图。二组分真实液态混合物的t x (1)溶液的沸点介于两纯组分沸点之间(图4—10(a))。 (2)各组分对拉乌尔定律发生最大正偏差,其溶液有最低恒沸点(图4—10(b))。 (3) 各组分对拉乌尔定律发生最大负偏差,其溶液有最高恒沸点(图4—10(c))。 对(2)、(3)类系统在最低或最高沸点处的气液两相组成相同,加热蒸发的结果只能使气相总量增加,气液两相组成及溶液沸点保持不变,这是的温度称为恒 沸点,相应的组成称为恒沸组成。 为了测定t x —图,需在气—液两相达到平衡后,同时测 定气相组成、液相组成和溶液的沸点。本实验采用折光率法 测定系统的组成。即需测定已配置好的不同组成的溶液的折 光率,然后绘制折光率与组成的标准曲线,即本实验的工作 曲线。实验采用简单蒸馏瓶,用电热丝直接放入溶液中加热 (如图4—11),以减少过热和暴沸现象。气相分析是取冷凝 器下端小玻璃球中的冷凝液,液相分析是取蒸馏瓶内的液体。 分析仪器采用阿贝折光仪。 三、仪器和药品 蒸馏瓶一个;温度计一支(50℃~100℃,0.01精度);阿 贝折光仪一台;长、短滴管各一支;20ml量筒一个;1ml刻 度滴管一支。 环已烷;无水乙醇;20%、40%、60%、80%环已烷—乙 醇混合液;脱脂棉。 四、实验步骤

气液相平衡分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 气液相平衡分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6622-58 气液相平衡分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 在吸收操作中,气体总量和溶液总量都随吸收的进行而改变,但惰性气体和吸收剂的量则始终保持不变,因此,常采用物质的量比表示相的组成,以简化吸收过程的计算。 物质的量比是指混合物中一组分物质的量与另一组分物质的量的比值,用X或y表示。 吸收液中吸收质A对吸收剂S的物质的量比(摩尔比)可以表示为 XA=nA/ns (11—1) 物质的量比与摩尔分数的换算关系为 XA=工A/(1一XA) (11—2) 式中XA——吸收液中组分A对组分S的物质的量比; nA,ns——组分A与S的物质的量,kmol;

XA——吸收液中组分A的摩尔分数。 混合气体中吸收质A对惰性组分月的物质的量比可以表示为 式中YA——混合气中组分A对组分B的物质的量比; nA,nR——组分A与B的物质的量,kmol yA——混合气中组分A的摩尔分数。 在一定温度和压力下,混合气体与液相接触时,溶质便从气相向液相转移,而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶质在液相中的浓度逐渐增加,溶质返回气相的量也逐渐增大,当单位时间内溶于液相中的溶质量与从液相返回气相的溶质量相等时,气相和液相的量及组成均不再改变,达到动态平衡。它是吸收过程的极限,它们之间的关系称为相平衡关系。 在一定温度下,当气相总压力不高时,稀溶液中溶质的平衡浓度和该气体的平衡分压的平衡关系可用

双液系气液平衡相图的绘制

实验三双液系气液平衡相图的绘制姓名:学号: 班级:实验日期:2015年9月21日 提交报告日期:2015年9月28日 1、实验目的 1.了解沸点仪的原理和使用方法。 2.在大气压力下用沸点仪测绘环己烷-乙醇双液系的气相平衡相图。 3.掌握阿贝折射仪的使用方法。 2、实验原理 双液系是指两种液态物质混合而成的物系。双液系可以分为完全互溶双液系、部分互溶双液系和完全不溶双液系。 将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的平衡状态图,简称相图。沸点和组成的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间;(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见;(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点。第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。 为了测定二元液系的相图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的相图。方法是用沸点仪直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿

编号123456 7 8 贝折射仅测定其折射率。为了求出相应的组成,必须先测定已知组成的溶液的折射率,作出折射率对组成的工作曲线,在此曲线上即可查得对应于样品折射率的组成。 3、实验仪器和试剂 1.仪器 沸点仪1个、加热电源(0.5kW)1台、阿贝折射仪1台、长颈胶头滴管2支、镜头纸、 超级恒温槽、50~10℃温度计1支。 2.药品 乙醇、环己烷、丙酮。 4、实验操作步骤及方法要点 1.启动超级恒温槽的加热和搅拌系统,把超级恒温槽的控制温度调至27℃。 2.测定标准溶液的折射率 用与超级恒温槽相连接的已经恒温的阿贝折射仪测定标准溶液的折射率,作折射率对组成的工作曲线。 3.溶液沸点及气液平衡组成的测定。 往沸点仪中加入20mL乙醇,通冷却水,打开电源并调电压至12V,加热溶液至沸腾。待其温度计上所指示的温度保持恒定后,读下该温度值,同时停止加热,并立即在小泡中取气相冷凝液,迅速测定其折射率,并用另一滴管取少量液相测定其折射率。 接下来,往沸点仪中分别加入1mL、2mL、2mL、2mL、5mL环己烷,并按前述方法测定气液平衡温度和气液两相的折光率。结束后,将沸点仪中溶液倒入回收瓶并用电吹风把沸点仪烘干。 往沸点仪中加入20mL环己烷,经行实验。在之后往沸点仪中分别加入的是1mL、2mL、2mL、2mL、5mL乙醇。 注意:每次测量折射率后,要将折射仪的棱镜打开晾干,以备下次测定用。 5、实验数据 1)原始实验测量数据 大气压力:97.13kPa 室温:25.5℃ 以下数据测定过程中阿贝折射仪(恒温槽)温度为27.0℃。

二组分气液平衡相图的绘制讲义

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液相线与汽相线组成的完整相图。 下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD′C和BE′C 为液相线。体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。此时,气相组成为y′,与其平衡的液相组成为x′,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。 当压力一定时,对两相共存区进行相律分析:独立组分C=2,相数P=2,则自由度F=C-P+1=2-2+1=1 即有,体系温度一定,则气液两相成分确定。总量一定时,两相的量也一定。在一实验装置中,控制气液两相的相对量一定,使体系温度一定, 则气液组成一定。用精密温度计可以测出平衡温度,取出 气液两相样品测定其折射率可以求出其组成。折射率和组 成有一一对应关系,可以通过测定仪系列已知组成的样品 折射率,绘出工作曲线。测出样品就可以从工作曲线上找 到未知样品的组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入0.1 ml, 0.2 ml, …, 0.9 ml的环己烷,然后依次移入0.9 ml, 0.8 ml,…, 0.1 ml的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷0.5, 1.0, 1.5, 2.0, 4.0, 14.0 ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入

气液两相流 整理

第一章概论 相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开 两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法 目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器 气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中 2、粗分散体系:较大的气泡或液滴分散在连续相中 3、混合流动型:两相均非连续相 4、分层流动:两相均为连续相 气液两相流的基本特征: 1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失 2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型 3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失 4、沿程流体体积流量有很大变化,质量流量不变 气液两相流研究方法: 1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。 优点:使用方便,在一定条件下能取得好的结果 缺点:使用有局限性,且很难从其中得出更深层次的关系 2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。 优点:有一定的理论基础,应用广泛 缺点:存在简化和假设,具有不准确性 3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。 优点:以理论分析为基础,可以得到解析关系式 缺点:建立关系式困难,求解复杂 研究气液两相流应考虑的几个问题: 1、不能简单地用层流或紊流来描述气液两相流 2、水平或倾斜流动是轴不对称的 3、由于相界面的存在增加了研究的复杂性 4、总能量方程中应考虑与表面形成的能量问题 5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质 6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点 流动型态:相流动中两相介质的分布状况称为流型或两相流动结构 流型图:描述流型变化及其界限的图。把流型变换的实验数据加以总结归纳后,按照两个或多个主要的流动参数绘成曲线,便可以得到流型图。 影响流型的因素:1、各相介质的体积比例2、介质的流速3、各相的物理及化学性质(密度、粘度界面张力等)4、流道的几何形状5、壁面特性6、管道的安装方式 流型分类:1、根据两相介质分布的外形划分;垂直气液两相流:泡状流、弹状流、段塞流、环状流、雾状流。水平气液两相流:泡状流、团状流、层状流、波状流、冲击流、环状流、雾状流。 2、按流动的数学模型或流体的分散程度划分为:分散流、间歇流、分离流。 两种分类方法的比较:第一类划分方法较为直观;第二类划分方法便于进行数学处理 气液两相流的特性参数: 质量流量:单位时间内流过过流断面的流体质量,kg/s, 气相质量流量:单位时间内流过过流断面的气体质量,kg/s, l g G G G+ =

双液系的气液平衡相图

双液系的气-液平衡相图 1. 简述由实验绘制环己烷-乙醇气-液平衡T-x相图的基本原理。 答:通过测定不同沸点下组分的气、液相的折射率,在标准的工作曲线上找出该折射率对应的浓度,结合其沸点画出平衡相图。 2. 在双液系的气-液平衡相图实验中,作环己烷-乙醇的标准折光率-组成曲线的目的是什么? 答:作标准曲线的目的是通过测气、液相相得折射率从而在标准工作曲线上找出对应的浓度。 3. 用精馏的方法是否可把乙醇和环己烷混合液完全分离,为什么? 答:不能完全分离。因为环己烷-乙醇二组分具有最低恒沸点。 4. 测定纯环己烷和纯乙醇的沸点时,沸点仪中有水或其它物质行吗? 答:有水和其他物质都是不行的。因为有水和其他物质会使所测沸点改变。 5. 为什么工业上常生产95%酒精?只用精馏含水酒精的方法是否可能获得无水酒精? 答:因为水-乙醇二组分具有最低恒沸点,所以工业上常生产95%的酒精。用精馏的方法无法获得无水酒精,只能获得95%的酒精。 6. 在双液系的气-液平衡相图实验中,如何判断气-液相达平衡状态?

答:观察贝克曼温度计的读数,如果读数稳定3-5分钟,说明已达平衡状态。 7. 在双液系的气-液平衡相图实验中,每次加入沸点仪中的环己烷或乙醇是否应按记录表所规定的体积精确计量?为什么? 答:不需要按记录表的加。因为组分的浓度不是按所加物质的量计算得来的,而是通过测折射率间接得到的。 8. 在双液系的气-液平衡相图实验中,在测定沸点时,溶液出现分馏现象,将使绘出的相图图形发生什么变化? 答:出现馏分将使测得的沸点偏高,使相图向上移动。 9. 在双液系的气-液平衡相图实验中,蒸馏器中收集气相冷凝的小球大小对结果有何影响? 答:小球太小难以收集气相,小球太大,小球内的组分更新太慢,产生馏分,导致实验误差。 10. 在双液系的气-液平衡相图实验中,通过测定什么参数来测定双液系气-液平衡时气相和液相的组成? 答:通过测定组分的折射率来测定双液系气-液平衡时气相和液相的组成。 11. 在双液系的气-液平衡相图中,如何通过测定溶液的折光率来求得溶液的组成? 答:通过测得的折射率在标准曲线上找出对应的浓度,根据气、液相平衡浓度与测得的沸点作出平衡相图。

气液相平衡分析详细版

文件编号:GD/FS-2042 (解决方案范本系列) 气液相平衡分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

气液相平衡分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在吸收操作中,气体总量和溶液总量都随吸收的进行而改变,但惰性气体和吸收剂的量则始终保持不变,因此,常采用物质的量比表示相的组成,以简化吸收过程的计算。 物质的量比是指混合物中一组分物质的量与另一组分物质的量的比值,用X或y表示。 吸收液中吸收质A对吸收剂S的物质的量比(摩尔比)可以表示为 XA=nA/ns (11—1) 物质的量比与摩尔分数的换算关系为 XA=工A/(1一XA) (11—2) 式中XA——吸收液中组分A对组分S的物质

的量比; nA,ns——组分A与S的物质的量,kmol; XA——吸收液中组分A的摩尔分数。 混合气体中吸收质A对惰性组分月的物质的量比可以表示为 式中YA——混合气中组分A对组分B的物质的量比; nA,nR——组分A与B的物质的量,kmol yA——混合气中组分A的摩尔分数。 在一定温度和压力下,混合气体与液相接触时,溶质便从气相向液相转移,而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶质在液相中的浓度逐渐增加,溶质返回气相的量也逐渐增大,当单位时间内溶于液相中的溶质量与从液相返回气相的溶质量相

双液系的气—液平衡相图

双液系的气—液平衡相图 一、实验目的 1.绘制在Pθ环已烷—乙醇的气液平衡相图,了解相图和相律基本概念; 2.掌握测定双组分液体的沸点及正常沸点的方法; 3.掌握用折光率确定二元液体的组成方法。 二、实验原理 液体的沸点是指液体的蒸气压和外压相等时的温度,在一定的外压下,纯液体的沸点有确定值。但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。根据相律: 自由度=组分数-相数+2 因此,一个气—液共存的二组分体系,其自由度为2。只要任意再确定一个变量,整个体系的存在状态就可以用二维图形来描述。 两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的相图,称为沸点和组成(T-x)图。沸点和组成(T-x)的关系有下列三种: (1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间见图1(a); (2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见图1(b); (3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点见图1(c)。 第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。

图1. 沸点和组成(T-x)图 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的T-x图。方法是用沸点仪(如图2所示)直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿贝折光仪测定其折光率。根据已知组成的溶液折光率,作出一定温度下(25℃)该溶液的折光率—组成工作曲线,然后根据测得的样品溶液的气液两相的折光率,在此曲线上即可按描法得到待测未知样品溶液的组成。 图2. 沸点测定仪示意图 三、仪器与药品 沸点测定仪1只丙酮(分析纯) 水银温度计(50~100℃,分度值0.1℃)1支超级恒温水浴1台玻璃温度计(0~100℃,分度值1℃)1支称量瓶(高型)10只

气液平衡-实验报告解读

化工专业实验报告 实验名称:二元气液平衡数据的测定 实验人员: 同组人 实验地点:天大化工技术实验中心606 室 实验时间:2015年4月20日下午14:00 年级:2014硕;专业:工业催化;组号:10(装置2);学号:指导教师:______赵老师________ 实验成绩:_____________________

一.实验目的 (1)测定苯-正庚烷二元体系在常压下的气液平衡数据; (2)通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能; (3)应用Wilson 方程关联实验数据。 二.实验原理 气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。 平衡数据实验测定方法有两类,即间接法和直接法。直接法中又有静态法、流动法和循环法等。其中循环法应用最为广泛。若要测得准确的气液平衡数据,平衡釜是关键。现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。用常规的平衡釜测定平衡数据,需样品量多,测定时间长。所以,本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图 1 所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从 A 和 B 两容器中取样分析,即可得到一组平衡数据。 图1 平衡法测定气液平衡原理图 当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:

二元液系相图实验报告

二元液系相图 一、实验目的 二、1、用沸点仪测定在常压下环己烷-乙醇的气液平衡相图。 三、2、了解沸点的测定方法。 四、3、掌握阿贝折射仪的测量原理及使用方法。 五、二、实验原理 六、1、液体的沸点是指液体的饱和蒸汽压和外压相等时的温度。在一定外压下,纯液体的沸点有确定的值。但对于完全互溶的双液系,沸点不仅与外压有关,而且还与双液系的组成有关。 七、 八、2、用阿贝折射仪测定气液组成的折光率,来获得气液组成。 三、实验装置

四、仪器及试剂 仪器:EF-03沸点测量仪、阿贝折射仪、沸点仪、取样管 试剂:无水乙醇、环己烷 五、实验步骤 1、安装好干燥的沸点仪。 2、加入纯乙醇30ml左右,盖好瓶塞,使电热丝浸入液体中,温度传感器与液面接触。

3、开冷凝水,将稳流电源调至(1.8-2.0A),接通电热丝,加热至沸腾,待数字温度计上读数恒定后,读下该温度值。 4、关闭电源,停止加热,将干燥的取样管自冷凝管上端插入冷凝液收集小槽中,取气相冷凝液样,迅速用阿贝折射仪测其折光率。 5、用干燥的小滴管取液相液样,用阿贝折射仪测其折光率。 6、分别在沸点仪中加入混合液,1、2、3、4、5、6重复上述操作。 7、根据环己烷-乙醇标准溶液的折射率,将上述数据转换成环己烷的摩尔分数,绘制相图。 8、实验完毕后,关闭冷凝水,关闭电源,整理实验台。 六、阿贝折光仪的使用 1、用擦镜纸将镜面擦干,取样管垂直向下将样品滴加在镜面上,注意不要有气泡,然后将上棱镜合上,关上旋钮。 2、打开遮光板,合上反射镜。 3、轻轻旋转目镜,使视野最清晰。 4、旋转刻度调节手轮(下手轮),使目镜中出现明暗面(中间有色散面),图a。

双液系的气液平衡相图(物理化学实验)

双液系的气液平衡相图 实验者:林澄昱生04 2010030007 同组者:张弯弯 实验日期:2012-03-10 提交日期:2012-03-16 实验指导:刘晓惠 1引言 两种蒸气压不同的挥发性液体在混合之后,其溶液组成与与其平衡气相的组成不同。 在恒外压下,二组分系统达到气液平衡时,表示液态混合物的沸点与平衡时气液两相组成关系的相图,称为沸点和组成(T-x)图。大致分为三大类,包括: (1)理想液体混合物或接近理想液体混合物的双液系,其混合物沸点介于两纯物质沸点之间。见图1(a); (2)各组分蒸气压对拉乌尔定律产生很大的负偏差,有最高恒沸点。见图1(b); (3)各组分蒸汽压对拉乌尔定律产生很大的正偏差,有最低恒沸点。见图2(c)1。 图1 三类沸点组成(T-x)图 本实验为了绘制常压下环己烷-乙醇的气液平衡相图,先利用阿贝折射仪测定一系列已知组成混合溶液及纯液体的折射率,绘制标准曲线,再通过沸点仪测定一系列混合溶液的沸点,收集少量气相冷凝液以及溶液,测定其各自折射率,反查标准曲线得到气液两相的组成,绘得双液系的气液平衡相图。 2实验操作 2.1实验药品、仪器及测试装置示意图 2.1.1实验药品 环己烷,无水乙醇; 2.1.2实验仪器 沸点仪,调压器,温度传感器,锥形瓶,分析天平(AR2140),阿贝折射 仪(型号不明,为靠近恒温箱的一台),恒温箱,胶头滴管,10ml吸量管, 洗耳球; 2.1.3装置示意图

1. 冷却水入口 2. 气相冷凝液贮存小泡 3. 温度传感器 4. 喷嘴 5. 电热丝 6. 调压器2 图2 沸点仪 2.2实验条件 恒温槽温度:26 ℃ 室温:未测 气压:未测 2.3实验操作步骤及方法要点 2.3.1标准曲线的测定及绘制 2.3.1.1标准溶液的配制 取5个干燥、洁净的锥形瓶,编号为1~5,分别称量空瓶质量并记录;依照表1分别量取并加入相应体积的环己烷和无水乙醇,每加 入一种溶液以后称量其质量并记录;得到5份已知组分的标准溶液。 表1 标准溶液的配制方案 通过称量得到的质量,可以计算得到每锥形瓶中液体含有的环己烷质量分数,通过测定其折射率,可以确定特定环己烷质量分数与折 射率的关系;同时,直接量取纯的无水乙醇和环己烷,测定其折射率, 可以绘制在环己烷质量分数在0~1之间的无水乙醇混合溶液与折射率 的关系曲线。 2.3.1.2标准溶液折射率测定 (1)将阿贝折射仪与恒温箱相连,调节反光镜使目镜视野明亮,此 时仪器可以用来测量; (2)用胶头滴管加入待测溶液,在右目镜视野中观察,用右侧旋钮 调节色散程度,使明暗分界线清晰,再用左侧旋钮调节,使明 暗交界线处于叉丝中心。注意接下来实验过程中保证左侧旋钮

相关主题
文本预览
相关文档 最新文档