当前位置:文档之家› 重大电磁场原理习题习题第2章

重大电磁场原理习题习题第2章

重大电磁场原理习题习题第2章
重大电磁场原理习题习题第2章

第二章习题答案

2-2 真空中有一长度为l 的细直线,均匀带电,电荷线密度为τ。试计算P 点的电场强度: (1)P 点位于细直线的中垂线上,距离细直线中点l 远处; (2)P 点位于细直线的延长线上,距离细直线中点l 远处。 解:

(1)可以看出,线电荷的场以直线的几何轴线为对称轴,产生的场为轴对称场,因此采用圆柱坐标系,令z 轴与线电荷重合,线电荷外一点的电场与方位角φ无关,这样

z '处取的元电荷

z q 'd d τ=,它产生的电场与点电荷产生的场相同,为:

R

20e R

4z E πετ'=d d 其两个分量:

θπετρρcos 2

0R

4z e E d dE '

=?=d (1) ()θπετsin 2

0z z R

4e E d dE z d '-=-?=

(2) 又

θρθ

ρ

tan ',cos ==

z R

所以:

θθρd dz 2sec '= (3)

式(3)分别代入式(1)(2)得:

θρ

πεθ

τρd 04dE cos =

; θρπεθτd sin 0z 4dE -

= 'sin 'sin cos θρ

πετ

θθρπετθρπεθ

τ

θρ000

004E 22d 2=?

∴==‘ (4)

又 2l 4

2l 2

l +='θsin (5)

式(5)代入式(4)得:

l

55E 00πετ

ρπετρ22=

由于对称性,在z 方向 z E 分量互相抵消,故有0=z E

ρρρπετ

e l

5e E e E 0z z 2E =

+=∴

z

E

d ρ

y

l / 2

z d '

图2-2长直线电荷周围的电场

l / 2

θ R

z '

P

θ'

(2)建立如图所示的坐标系

在x 处取元电荷dx dq τ=则它在P 点产生的电场强度为

R

20e R

4x d E d πετ'=

其在x 方向的分量为:

2

0x R 4x d dE πετ'

=

又 x l R -=

2

02

0x x l 4x d R

4x d dE )

-(''

=

'

=

πετπετ

()l 3x l 4x l 4x d E 02

l 2

l 2

l 2

l 020x πετ

πετπετ='-?=''

=

--?

∴∴

∴////1)-( x 0x x x e l

3e E E

πετ=

=∴ 2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示,试写出电位),θ?r (和电

场),(θr E

的表达式。

解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电位公式得:

2

021

0121r 4q r 4q p πεπε???+

=

+=)(

又 2

12

2

1)cos 2(θrc c r r -+= , 2

12

2

2)cos 2(θrd d r r -+=

()()θθθθθθe c e c r e c e c e r c r r r r r 1 sin cos sin cos +-=--=-=

()()θθθθθθe d e d r e d e d e r d r r r r r 2 sin cos sin cos +-=--=-=

2

1

2202

21

2201

2

0210121rc 2c r 4q rc 2c r 4q r 4q r 4q p )cos ()cos (θπεθπεπεπε???-++

-+=

+

=

+=∴)(

3

2

02

2301r 4r q r 4r q p E πεπε

+=11)( o

x

y d x '

P

x '

R

题图2-4

2r

1r

[][]??

????????-++-+-++-=23

22r 22322r 10rd 2d r e d e d r q rc 2c r e c e c r q 4)()()()(1θθθθθθπεθθcos sin cos cos sin cos

θθθθθπεθθθθπεe rc 2c r d q rc 2c r c q 41e rd 2d r d r q rc 2c r c r q 4123222232210r 23222232210 ????

??

????-++-++????

?

?

????-+-+-+-=)()

()()()()(cos sin cos sin cos cos cos cos

2-6 半径为b 的无限长圆柱中,有体密度为0ρ的电荷,与它偏轴地放有一半径为a 的无限长圆柱空洞,两者轴线平行且距离为d ,如图2-6所示,求空洞内的电场强度。

解:由于空洞存在,电荷分布不具有对称性,由此产生的场亦无对称性,因此不能用高斯定律求解。这是可把空洞看作也充满0ρ,使圆柱体内无空洞,然后再令空洞中充满-ρ,并单独作用,分

别求出两种场的分布后叠加即可。设空洞内的电场强度为E

第一步 0ρ 单独作用,如图(b )所示, 由体密度为0ρ的电荷产生的电场强度为1E

,由高斯定理

l l E q S D 200ρπρπρε=?

??

2d 11

S 11

所以: ρερρe 2E 0

01

=

x

y

o

b

ρ

(b )

ρ

x

y

o

o ' y '

ρ' ρ

d

图2-6

(a )

0ρ-

第二步 0ρ-单独作用产生的电场强度为2E

,如图(c )所示。

l l E q S D 200ρπρρπε'-='???

2d 22

S 22

ρερρ'''-=e 2E 0

0 2

第三步 将0ρ和0ρ-在空洞中产生的场进行叠加,即

()x 0

001e 2d e e 2E E E

ερρρερρρ='-'=+=2 注:x e d d

=='-ρρ

2-7半径为 a 介电常数为ε的介质球内,已知极化强度 r e r

r P

k )(=(k 为常数)。 试求:(1)极化电荷体密度p ρ和面密度p σ ; (2)自由电荷体密度ρ ;

(3)介质球内、外的电场强度E

解:(1) 2

r r k e r k P -=???

? ??-?=-?=?? p ρ , a

k r k e P a

r n =

===? p σ

(2)

因为是均匀介质,有

P E εE εD 0

+== 0

εεp E -=

因此

P E εD 0

εεε-=

=

2

r k P D ?-=???? ?

?-?=?=??00εεεεεερ

(3) 球内电场,

()r 00

e r

εεk

εεp E

-=

-=

( r < a )

球外电场,由高斯定理:

?

??

-=

=

=?a

2

2

0v

S

dr

r 4r k

dv q S d D πεεερ

ππ4a

k r 4D 0

2

εεε-=?

r 2

0e r

a k D

εεε-=

, ()r 2000e r a k D E εεεεε-== ( r > a ) 或

V

0V

s

p

V

p

p S

dV

dS dV dV q q S d E ερεσρρε?????

=++=

+=?

2-9 用双层电介质制成的同轴电缆如题图2-9所示,介电常数 014εε= , 022εε= 内、外导体单位长度上所带电荷分别为τ和τ-

(1)求两种电介质中以及1R <ρ 和3R >ρ处的电场强度与电通密度; (2)求两种电介质中的电极化强度;

(3)问何处有极化电荷,并求其密度。 解:

(1)由高斯定理可得:

???

????><<<=)

R ()R (R π2)R (3311ρρρτρρ

0e 0D

电场强度 εD E =, 故 ?????

????

?

?><<=<<=<=)

R ()R (R 4π2π)

R (R 8π2π)R (E 3320221011ρρρετρετρρ

ετρετρρρρρ

0e

e e e 0

(2) 由 P E εD 0

+= ,得两种电介质中的电极化强度为

??????

?<<<<=-=)

R (R 4π)

R (R 8π33221ρρ

τρρ

τερρ

e e E D P 0

(3) 内、外导体圆柱表面上和两种电介质交界面上有极化电荷,它们分别是:

在1R =ρ处:

1

p π83)(R e P τσρ-=

-=?

在3R =ρ处: 3

R e P 4πp τ

σρ=

=?

图2-9

在2R =ρ处:: 2

2

2

21p π84ππ83)(R R R e P e P τ

τ

τσρρ=

-

=

-+=??

2-10 有三块相互平行、面积均为S 的薄导体平板,A 、B 板间的厚度为d 的空气层,B 、C 板间则是厚度为d 的两层介质,它们的介电常数分别为1ε 和1ε,如题2-10所示。设A 、C 两板接地,B 板的电荷为Q ,忽略边缘效应,试求: (1) 板间三区域内的电场强度;

(2) 两介质交界面上的极化电荷面密度; (3) A 、C 板各自的自由电荷面密度。

解 (1) 在A 、C 板间的三介质区域内,分别为均匀电场,在Q 为正电荷时各电场方向如图所示,从而有

012001111

22E d E d E d E s E s Q E E

εεεε=+??

+=??=?

从而解得

0221120010212010212010212()()()()

Q Q Q

E E E s s s εεεεεεεεεεεεεεεεεεεεεε+=

==++++++及及

(2)在两介质分界面上

()(

)[]

()()()

2120102101201

n 2

021012n 21n 1p 2p 1p S Q E E e E D E D e P e P εεεεεεεεεεεεσσσ++-=

-=---=+=+=???

(3)在A 、C 板上的电荷面密度分别为 012120022010212010212()()()

A C Q Q

E E s s εεεεεσεσεεεεεεεεεεεεε-+-=-==-=++++及

2-12

如题图2-12所示球形电容器中,对半地填充有介电常数分别为1ε和2ε两种均匀介质,两介质交界面是以球心为中心的圆环面。在内、外导体间施加电压U 时,试求: (1)电容器中的电位函数和电场强度; (2)内导体两部分表面上的自由电荷密度。 解:(1) 方法一:设内导体带电荷为Q ,外导体带电荷Q -,选球坐标,应用高斯定律

Q s d D S

=?

?

由媒质分界面条件可知,在两种介质中2121D D E E

≠=,,所以

A B

C

d

d

d

2E

1E

0E

Q

2n e 1n e

题图2-10

题图2-12

()Q s d E s d E s d E s d D s d D S S S S S =+=+=

+

???

?

?

?????1

2

1

2

1

21221121

εεεε

Q E r 221

2

=???? ??+εε11π ()

r 2122

1e r Q E 2

εεεε+=

∴π (1)

令外导体为参考导体,则电位函数为

()()???

? ??-+=+=

=?

?

??22121211ππ222

1

2R r Q

r d r Q

l d E R R R r

εεεε? (2) ()()???

? ??-+=+=

=

?

?

??212121211ππ222

1

2

1

R R Q

r d r Q l d E U R R R R εεεε

()

1

22121π2R R R UR Q

-=

+∴

εε

将上式带入(1)(2)得

r

21221e r

1R R R UR E -=∴

, ???

? ??--=21221R 1r

1R R R UR ? 方法二 :用静电场的边值问题求解,在均匀介质1和介质2中,电位分别满足拉普拉斯方程,并

且边界面条件相同,所以可判断两个区域的电位函数相同,有

??

??

?===?==0U 021R r R r 2???;

取球坐标系有

r r r

r

r

r 12

22

2

2

=??+

????

+

????=

?

θθ

θ

θ??sin 1

)(sin sin 1

)(2

2

2

在两种介质中,?都与θ、φ无关,所以

r

r

r

r 122

=????=

?)(2

??

上式的通解为 21c r

c +-

=?

有边界条件解得: 1c =

2121R R U R R - 2c =2

12R R U

R -

所以 ???

?

??--=

21221R 1r 1R R R UR ? ,r

21221e r

1R R R UR E -=?-=? (2) 两种介质中的电位移矢量分别为

111E D ε=' , 222E D

ε='

根据分界面条件

(

)

12n D D e

-=?σ

对于本题,设媒质2为介质,媒质1为导体,因此有0D 1=

, n 2e D ?=σ

则内导体两部分表面上的自由电荷密度为

1

22

1n 111R R UR e R E -=

=?εεσ

)( ,

1

22

2n 122R R UR e R E -=

=?εεσ

)(

2-16 在半径分别为a 和b (b>a )的同轴长圆柱形导体之间,充满密度为0ρ的空间电荷,且内、外筒形导体之间的电压为U ,如题图2-16所示。试用边值问题的方法求电荷区内的电位函数。 解:圆柱形导体之间的电位满足泊松方程,对应的边值问题为

???????==-=?==0

U b a 02

ρρ??ερ?; 在圆柱形坐标中电位仅是ρ的函数,因此泊松方程有如下形式:

ερρ?ρρρ?0

-=???

? ???????12

= 上式的通解为

2120c c 4++-=ρε

ρρ?ln

由给定的边界条件确定积分常数:

a

b U

a b c ln 4)

(0

2201--=

ερ , 0

2

00

22024ln ln ]4)([ερερb a

b b

U a b c +---

= 所以:020022002

2

00204b a

b b U 4a b a b U 4a b 4ερερρερερρ?+

????????-----+-=ln ln ln ln )()( 2-18 两平行导体平板,相距为d ,板的尺寸远大于d ,一板的电位为零,另一板电位为0V ,两板间充满电荷,电荷体密度与距离成正比,即x x 0)(ρρ=。试求两板间的电位分布(注:x =0处板的电位为零)。

解:两平行导体平板间的电位满足泊松方程,忽略边缘效应,在直角坐标系对应的边值问题为

题图2-16

-

()??????

?==-=?==U

0x d x 0x 0

2

??ερ?;

上式泊松方程转化为:

02

2

ερ?

x x d d -= 其通解

210

3

06C x C x ++-=ερ?

由给定的边界条件确定积分常数:

0C 2= , 0

2

0016ερd

d U C +

=

所以: x x d d x U )(6220

0-+=

ερ? 上式第一项为电源对电位函数的贡献,第二项为电荷)(x ρ的贡献。

2-19 在无限大接地导体平面两侧各有一点电荷1q 和2q ,与导体平面的距离为d ,求空间电位的分布。

解:因为是无限大接地导体,所以,当1q 单独作用时,接地导体对2q 相当于屏蔽作用,当2q 单独作用时,接地导体对1q 相当于屏蔽作用,所以:

1q 单独作用时产生的电位在1q 所在侧,设1r 和2r 分别为1q 和1q 的镜像到p 的距离,由镜像法得:

)1

1(

4442

10

12

011

011r r q r q r q -=

-

πεπεπε?=

2q 单独作用时产生的电位在2q 所在侧,设3r 和4r 分别为2q 和2q 的镜像到p 的距离,由镜像法得:

)1

1(

4444

30

24

023

022r r q r q r q -=

-

πεπεπε?=

2-27 若将某对称的三芯电缆中三个导体相连,测得导体与铅皮间的电容为F μ,若将电缆中的两导体与铅皮相连,它们与另一导体间的电容为F μ,求: (1)电缆的各部分电容; x

o

)(x ρ

题图2-18

d

(2)每一相的工作电容;

(3)若在导体1、2之间加直流电压100V ,求导体每单位长度的电荷量。 解:三芯电缆的结构及各部分电容如图(a )所示

(1) 对应于两次测量的等值电容电路分别如图(b )和图(c )所示:

由图(b )得:

051.030=C F μ,017.00=C F μ

由图(c )得:

0370C C C 110.=++ F μ

01.0)017.0037.0(2

1

1=-?=

C F μ

图(a ) 图(b )

图(c )

图(d )

图(e )

(2) 工作电容是指在一定的工作状态下的等值电容,在这里是指三相工作时一相的电容,等值

电容如图(d )和(e )所示:

所以,一相的工作电容为

047.03C 10=+=C C F μ

(3) 若在导体1,2之间接一直流电压100V ,则从A,B 端看去的等效电容为:

0235.02

C ==C AB F μ

所以

35.21000235.0=?==AB AB AB U C q m C /μ

注:电缆是作为无限长来处理的,所以这里的电容均应理解为单位长度的电容。

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁场理论基础

电磁场理论基础 磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。变化的磁场能够激发电场,变化的电场也能够激发磁场。所以,要学习电磁流体力学必须熟悉电磁场理论。 1. 电场基本理论 (1) 电荷守恒定律 在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。这就是电荷守恒定律。电 荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有 等量电荷进入(或离开)该系统。 (2) 库仑定律 12212 02112?4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之 间的作用力与他们所带电荷的电量成正比,与他们之间 的距离r 平方成反比,作用的方向沿他们之间的连线, 同性电荷为斥力,异性电荷为引力。ε0为真空介电常数,一般取其近似值ε0= 8.85?10-12C ?N -1?m -2。ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。库仑反比定律也由越来越精确的实验得到验证。目前δ<10-16。库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。 (3) 电场强度 00)()(q r F r E =(V ·m -1) 真空中电荷与电荷之间相互以电场相互发生作用。 Charles Augustin de Coulomb 1736-1806 France Carl Friedrich Gauss 1777 -1885 Germany

电磁场原理习题与解答

第五章习题答案 2sin ()2a vt a B dS N a k vt +-=+-? 5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转, 其轴线与磁场平行。在轴与圆盘边缘上分别接有一对电刷。这一装置称为法拉第发电机。试 证明两电刷之间的电压为2 2ω Ba 。 证明:,选圆柱坐标, ρφe vB e B e v B v E z ind =?= ?= 其中 φρωe v = 2 2 ω ρρωρερ ρa B d B e d e v B l d E a a l ind === =?? ???∴ 证毕 5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。求 s t 0.1=时极板间任意点的位移电流密度。 解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因 题图5-2 z v ρ

此有 ρρ πετe 2E 0 = 21r r <<ρ 1 200222 1 2 1 r r d dl E u r r r r ln πετρρπετ== = ? ? ? 1 202r r u ln =∴ πετ 所以 ρρe r r u E 1 2 ln = , ρρ εe r r u D 1 2 ln = 2A/m ρ ρππρ ε ρ ε e t 10010026000r r e t u r r t D J 1 21 2d cos ln ln ?=??= ??= 当s t 1=时 2 5 12A/m 10 816100100260004108584ρρ ρ π πρ e e J d --?=????=.cos ln . 解法二:用边值问题求解,即 ?? ? ??=====?4 01u 02ρ?ρ?? 由圆柱坐标系有 0)(1=????ρ ? ρρρ (1) 解式(1)得 21ln c c +=ρ? 由边界条件得: 4 u c 1ln - = u c 2= u 4 u +- =∴ ρ?ln ln 所以 ρρπ?e 4 t 10026000E ln sin = -?=

重庆大学电气工程学院老师名单及简介

重庆大学电气工程学院老师名单及简介 刘和平,博士,教授,博士生导师。重庆大学研究生院研究生创新实践基地技术支持专家;重庆大学—美国德州仪器数字信号处理方案主任;重庆大学—美国微芯公司PIC单片机实验室主任。 赵霞,博士,副教授。主讲“电力系统稳态分析”、“专业英语”及Power System Analysis全英文硕士课程;从事电力系统建模与仿真、电力系统风险评估及新能源接入方面的研究。 杨丽君,博士,副教授,硕士生导师。从事大型电力变压器内绝缘老化机理及寿命预测、变压器局部放电在线监测、局部放电模式识别、电力设备在线监测抗干扰技术、绝缘材料改性等方面研究。 韩力,博士,教授,博士生导师。获国家教学成果二等奖2项、国家教委教学成果三等奖1项、重庆市教学成果一等奖1项、重庆市教学成果二等奖1项、重庆市教委和重庆市高等教育学会教育科学奖励各1项,发表科研论文70余篇(其中SCI、EI检索论文20余篇),培养研究生30余人。 李剑,博士,教授,博士生导师院长助理,系主任。

周雒维,教授,博士生导师。重庆大学电气工程学院党委书记;IEEE高级会员;国务院政府特殊津贴专家;重庆市首届电力电子学科学术带头人;《电路原理》国家精品课程负责人;中国电源学会副理事长、国际交流工作委员会主任委员;《电工技术学报》、《电源技术学报》、《电源技术应用》等杂志编委;2002-2007 International Conference on Power and Energy Systems USA 国际程序委员会委员、亚洲联络人。 王正勇,电力电子与新技术系老师,主讲电路原理1.2。曾担任本科生毕业设计导师,其毕业设计方向有建筑电气与智能化工程设计与研究等。 张谦,博士,副教授,硕士生导师。主持省部级教学改革研究项目1项,主持“国家电工电子基础实验教学中心创新性实验”项目1项,参加国家及省部级教改项目4项;2008-2009学年第一学期、2009~2010学年第二学期两次荣获重庆大学教学效果好前50名教师称号;2008年荣获电气工程学院“师德师风先进个人”称号;2007年获得重庆大学青年教师讲课比赛二等奖。 廖瑞金,博士、教授、博士生导师。输配电装备及系统安全与新技术国家重点实验室主任;重庆大学电气工程学院院长;教育部长江学者特聘教授;“高电压输配电装备安全与新技术”国家自然科学基金创新研究群体带头人;国家杰出青年基金获得者;重庆市两江学者特聘教授。

2014年重庆大学电气工程学院复试之电磁场原理考题解答-200806

弊作绝拒、纪考肃严、信守实诚、争竞平公 重庆大学电磁场原理课程试 卷 2007ju~an o8学年第2学期 开课学院:电气工程课程号:15001140 考试日期: 考试方式:「开卷Q闭卷Q艮他 2008625 考试时间:120分钟 题号-一一-二二-三四五六七八九十 总分 得分 判断题(1分/每小题,共12分) 1 1 1.因为电场能量的计算公式为W e dV,所以一表示电场能量的体密 2乜 2 度。() 2.在由自由电流激发的磁场中存在磁性媒质时,则磁场不仅仅由自由电流产生。 () 3.空间任意一点的能流密度由该点处的电场强度和磁场强度确定。() 4.恒定电场是无旋有散场,恒定磁场是有旋无散场。() 5.若位移电流的磁场可以忽略,则全电流定律就退化为恒定磁场的安培环路定律。 () 6.坡印廷定理是电磁场的能量转化和守恒定理。() 7.均匀平面电磁波在实际介质中传播时,电场的振幅按指数函数衰减,但电场、磁场 分量在时间上近似同相。() 8.在传播方向上有电场分量而无磁场分量的电磁波称为横磁波- TM波,它具有多种 模式,例如TM 01是其中的一种模式。() 9.波导呈现高通特性,即波导的工作波长高于波导的截至波长时,电磁波才能通过。 () 10.在电磁辐射中,-r 1或r…■的区域称为远区,在远区为研究问题简便,可忽略推 迟效应。() 11.当电磁场量为正弦时变时,若坡印亭矢量在一周期内的平均值不为零,表示除电场 与磁场的能量相互转换外,还有平均功率向外传输。() 12.设对称阵子天线的全长为21,若1=、12,则称其为半波阵 子。 (10 分)已知xe x ye y - ze z, 试证明:(1) r = 0 ; (2) i (r n r)二(n 3)r n 证明: 二、(15)在相距为d的两平行导体 平板的极板间充有厚度都为d/2 的两层介质,第一层介质中介电 的介电系数为;0,且其中有自由电 荷分布(常数)。第二层介质的 介电常数为;。忽略极板的边缘效 应。设两极板间的电压为U,试 用求解微分微分方程法求两极板 间电位及电场强度的分布。 四 、 (15分)一个同心圆球电容 器,其内导体的外半径为a,外导 体的内半径为c,其间填充两种非 理想电介质,媒质的电导率分别为 1,2,分界面半径为b,如图所示, 当内、外导体加上电压U 1 / 2丄2丄 2 \ 2 r = (x y z )2, Z0 P o -d/2d/2 1 U 命 题 时 间 : c a b U 组 题 人 : 审 题 人 : 教 务 处 制

电磁学基础知识

电磁学基础知识 电场 一、场强E (矢量,与q 无关) 1.定义:E = 单位:N/C 或V/m 方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E = 静电力恒量 k = Nm 2/C 2 匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则 4.电场力(与q 有关) F = 库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关) 1.定义:φA = = = 单位:V 说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关 5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能 需要解决的问题: ①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判) ③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号 2.静电平衡特点 ⑴E 内=0;⑵E 表面 ⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器 1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C = 3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU = 2.偏转:v ⊥E 时,做类平抛运动 位移:L = ; y = = = 速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线 1.器材: 2.纸顺序:从上向下

2014年重庆大学电气工程学院复试之电磁场_选择题练习

1. 在恒定电场中,分界面两边电流密度矢量的法向方向是 B A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 2. 导电媒质中的功率损耗反映了电路中的__D___ A. 电荷守恒定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 3. 恒定电场中,电流密度的散度在源外区域中等于__B__ A. 电荷密度 B. 零 C. 电荷密度与介电常数之比 D. 电位 4. 下面关于电流密度的描述正确的是 A A. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为正电荷运动的方向。 B. 电流密度的大小为单位时间穿过单位面积的电荷量,方向为正电荷运动的方向。 C. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为负电荷运动的方向。 D. 电流密度的大小为单位时间通过任一横截面的电荷量。 5. 在恒定电场中,分界面两边电场强度的法向方向是 A A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 6. 恒定电场中的电流连续性方程反映了_A___ A. 电荷守恒定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 7. 恒定电场的源是__B__ A. 静止的电荷 B. 恒定电流 C. 时变的电荷 D. 时变电流 8. 反映了电路中的____ A. 基尔霍夫电流定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 9. 恒定电场是 D A. 有旋度 B. 时变场 C. 非保守场 D. 无旋场 10. 恒定电场中,流入或流出闭合面的总电流等于___C__ A. 闭合面包围的总电荷量 B. 闭合面包围的总电荷量与介电常数之比 C. 零 D. 总电荷量随时间的变化率 正确答案 B D B A A A B B D C P133 1. 虚位移法求解静电力的原理依据是 C A. 高斯定律 B. 库仑定律 C. 能量守恒定律 D. 静电场的边界条件 2. 下面关于电偶极子的描述不正确的是 C

吉大物理电磁场理论基础答案.

3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则 A.线圈中无感应电流; B B.线圈中感应电流为顺时针方向; C C.线圈中感应电流为逆时针方向; D D.线圈中感应电流方向不确定。 4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心 距导线a,且a >> r。当导线电流切断后,导线环流过电量为 5.对位移电流,有下述四种说法,请指出哪一种说法是正确的 A A.位移电流是由变化电场产生的

B B.位移电流是由变化磁场产生的 C C.位移电流的热效应服从焦耳-楞次定律 D D.位移电流的磁效应不服从安培环路定理 6.在感应电场中电磁感应定律可写成 式中E K为感应电场的电场强度,此式表明 A. 闭合曲线C 上E K处处相等 B. 感应电场是保守力场 C.感应电场的电场线不是闭合曲线 D.感应电场不能像静电场那样引入电势概念

1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问 (1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题 U A =U B U A U B

;

三、计算题 1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角 B = B = B = kt kt (k 为大于零的常数。长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。解:S B m ρρ?=φLvt kt ?=21dt d m i φε=2 21kLvt =kLvt =方向a →b ,顺时针。 ο 60cos SB =用法拉第电磁感应定律计算电动势,不必 再求动生电动势

2014年重庆大学电气工程学院复试之电磁场试题1-2004级题解

《电磁场原理》04级考题及题解 一、(15分)将你选择的答案序号填入各分题的括弧内。 1、下面哪一个矢量恒等式是正确的( )? ( a ) 0≠????F ; ( b )0=????F ; ( c ) 0=???f 。 2、静电场中电位的零值点,其电场强度( )。 ( a ) 为零; ( b )不为零 ; ( c ) 不一定为零。 3、电位的偏微分方程(泊松方程或拉普拉斯方程)只适于( )介质区域。 ( a ) 各向同性、线性; ( b ) 各向同性、非线性;( c ) 各向同性、线性、均匀。 4、恒定电场的基本方程为( )。 ( a ) 00=??=??J E ,; ( b ) 0=??=??E D ,ρ; ( c ) t J E ??-=??=??ρ ,0。 5、恒定电场中,流入或流出闭合面的总电流等于( )。 ( a ) 闭合面包围的总电荷量;( b ) 总电荷量随时间的变化率; ( c ) 零。 6、选出错误的描述( )。 ( a ) 空间任意一点的能流密度由该点处的电场强度和磁场强度确定; ( b ) 理想导体内部不存在时变的电磁场; ( c ) 在分界面上磁感应强度的法向分量是不连续的。 7、透入深度d 表示电磁波衰减到表面值的( )时所经过的距离 。 ( a ) 63.2%; ( b ) e 1 ; ( c ) 21e 。 8、称导电媒质为色散媒质是因为( )。 ( a ) 电磁波是衰减波; ( b ) E 超前H ; ( c ) 相速与频率有关。 9、当电磁波在均匀导电媒质中传播时下面哪一种现象不会发生( )。

( a ) 体电荷密度0≠ρ; ( b ) 集肤效应; ( c ) 去磁效应。 10、时变电磁场的波动性是指( )。 ( a ) 时变的电场和磁场互相激励,彼此为源,由近及远向外传播。 ( b ) 电场以电荷为源,由近及远向外传播 ( c ) 磁场以电流为源,由近及远向外传播。 二、(10分)求证 r nr r 2 n n -=?。 解:() r r r r n n ???= ? r r r n n 1-= r r n n 2 -= 三(15分)有半径为a 和b 的两个同轴圆柱导体,导体间的两种介质介电系数分别为1ε和 2ε,它们的分界面与导体轴平面相重合,在内外导体之间施加电压为0U ,如图所示。 试求: (1)介质内的电场强度与电位; (2)单位长度的电场能量e W '与电容C '。 解:由题意可知,电场在空心半圆柱体中有圆柱对称特点,以圆柱轴线为z 轴建立圆柱坐 标系, (1)设内导体单位长度带电荷为Q ,在介质内取半径为ρ 长度为1的同轴圆柱面为高 斯面,由高斯通量定理 Q S d D S =?? Q dS E dS E dS D dS D S d D S S S S S ? ???? =+=+ =?2 1 2 1 221121εε 题三图

电磁场理论基础试题集上交

电磁场理论基础习题集 (说明:加重的符号和上标有箭头的符号都表示矢量) 一、填空题 1. 矢量场的散度定理为(1),斯托克斯定理为(2)。 【知识点】:1.2 【难易度】:C 【参考分】:3 【答案】:(1)()???=??S S d A d A ττ (2)() S d A l d A S C ???= ??? 2. 矢量场A 满足(1)时,可用一个标量场的梯度表示。 【知识点】:1.4 【难易度】:C 【参考分】:1.5 【答案】:(1) 0=??A 3. 真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。 【知识点】:3.2 【难易度】:B 【参考分】:6 【答案】:(1) 0=??c l d E (2) ∑?=?q S d D S 0

(3) 0=??E (4)()r D ρ=??0 4. 电位移矢量D 、极化强度P 和电场强度E 满足关系(1)。 【知识点】:3.6 【难易度】:B 【参考分】:1.5 【答案】:(1) P E P D D +=+=00ε 5. 有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。 【知识点】:3.8 【难易度】:B 【参考分】:3 【答案】:(1) ()021=-?B B n (2) ()s J H H n =-?21 6. 焦耳定律的微分形式为(1)。 【知识点】:3.8 【难易度】:B 【参考分】:1.5 【答案】:(1) 2E E J p γ=?= 7. 磁场能量密度=m w (1),区域V 中的总磁场能量为=m W (2)。 【知识点】:5.9 【难易度】:B 【参考分】:3

2014年重庆大学电气工程学院复试之电磁场研究生复试

1、选择题 04(1) 1、下面哪一个矢量恒等式是正确的()? ( a ) ; ( b ); ( c ) 。 2、静电场中电位的零值点,其电场强度()。 ( a ) 为零; ( b )不为零; ( c ) 不一定为零。 3、电位的偏微分方程(泊松方程或拉普拉斯方程)只适于()介质区域。 ( a ) 各向同性、线性; ( b ) 各向同性、非线性;( c ) 各向同性、线性、均匀。 4、恒定电场的基本方程为()。 ( a ) ; ( b ) ; ( c ) 。 5、恒定电场中,流入或流出闭合面的总电流等于()。 ( a ) 闭合面包围的总电荷量;( b ) 总电荷量随时间的变化率; ( c ) 零。 6、选出错误的描述()。 ( a ) 空间任意一点的能流密度由该点处的电场强度和磁场强度确定; ( b ) 理想导体内部不存在时变的电磁场; ( c ) 在分界面上磁感应强度的法向分量是不连续的。 7、透入深度d 表示电磁波衰减到表面值的()时所经过的距离。 ( a ) 63.2%; ( b ) ; ( c ) 。 8、称导电媒质为色散媒质是因为()。

( a ) 电磁波是衰减波; ( b ) 超前; ( c ) 相速与频率有关。 9、当电磁波在均匀导电媒质中传播时下面哪一种现象不会发生()。 ( a ) 体电荷密度; ( b ) 集肤效应; ( c ) 去磁效应。 10、时变电磁场的波动性是指()。 ( a ) 时变的电场和磁场互相激励,彼此为源,由近及远向外传播。 ( b ) 电场以电荷为源,由近及远向外传播 ( c ) 磁场以电流为源,由近及远向外传播。 (2)2007 ~2008学年第 2学期A卷 1. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化?( ) ① 变大 ② 变小 ③ 不确定 2. 在恒定电场中,分界面两边电流密度矢量的法向分量是(); ① 不连续的 ② 连续的 ③ 不确定的 3. 虚位移法求解磁场力的原理依据是( ) ① 安培环路定律 ②毕奥--沙伐定律 ③ 能量守恒定律 4. 矩形波导中的截止波长与( )有关; ① 波导尺寸 ② 频率 ③ 波导尺寸和模式 5. 单元偶极子的近区场的条件是( ): ① r << λ, r << 1 ②r << λ, r >> 1 ③r >> λ, r >> 1 6. 下面的说法不正确的是( ); ① 相速代表信号的能量传播的速度 ② 在导电媒质中,相速与 频率有关 ③ 相速是指等相面移动的速度 7. 滞后位的概念反映了( ); ①电场的变化滞后于磁场的变化 ② 场的变化滞后于源的变化③

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

2016 电磁场原理 期末考试题 -A卷

重庆大学《电磁场原理(I )》课程试卷 第1页 共1页 重庆大学《电磁场原理(I )》课程试卷 2015 — 2016 学年 第 2 学期 开课学院: 电气工程 课程号: 考试日期: 2016.6.26 考试方式: 考试时间: 120 分钟 一、单选题(共20分) 1.镜像法的理论根据是静电场的 ( ) A 、高斯通量定理 B 、唯一性定理 C 、互易原理 2. 两个不接地半径分别为R 1、R 2的导体球,球心相距为d ,且d>>(R 1+R 2)。 两球分别可看作孤立导体球,设R 1球带电荷量为Q 1,R 2球不带电。现在用一根细导线将两球连在一起,则两球表面上电荷面密度( ) A 、电荷面密度之比,正比于两球的半径之比 B 、电荷面密度之比,反比于两球的半径之比 C 、电荷面密度相等 3. 恒定电流场中,不同导电媒质交界面上电流密度满足衔接条件J 1n =J 2n ,它等介于用电位函数表示的式子( ) A 、121 2n n ??εε??=?? B 、12??= C 、1212n n ?? γγ??=?? 4. 一平板电容器,板间距离为d ,介质的电导率为γ,接有电流为I 的恒流源,测得其功率损耗为P ;如将板间距离扩为2d ,而电容器的功率损耗不变,则所接电流源的电流应变为( ) A 、/2I B C 、5. 无源的均匀导电媒质(介电常数ε,磁导率μ,电导率γ)中,时变电磁场的电场强度E (r,t)满足的波动方程为:( ) A 、22 20t t μεεγ ???--=??E E E B 、22 20t t μγμε???--=??E E E C 、2 220t t με μγ???--=??E E E 6. 恒定电流场基本方程的积分形式等价于电路理论中的( ) A 、基尔霍夫定律 B 、欧姆定律 C 、互易定理 7. 空气与磁介质(导磁媒质)的分界面为无限大平面,有一载流线圈位于空气一侧,则该线圈( ) A 、将受到远离分界面的斥力 B 、将不受力 C 、将受到朝向分界面的吸力 8. 随着激励源频率的增高,相位的推迟作用将( ) A 、不变 B 、增大 C 、减小 9.两个载流线圈的自感分别为L 1和L 2,互感为M 。分别通有电流I 1和I 2,则系统的储能为:( ) A 、2211221122m W L I L I =+ B 、22 1122121()2m W L I L I MI I =++ C 、22 1122 121(2)2 m W L I L I MI I =++ 命题 人: 组 题人: 审题人: 命 题时间: 教务 处 制 学院 专业、班 年级 学号 姓名 考试教室 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

最新电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁场原理课教案

课程教案 (按章编写) 课程名称:电磁场原理 适用专业:电气工程及自动化 年级、学年、学期:2年级,学年第二学期 教材:《电磁场原理》,俞集辉主编,重庆大学出版社,2007.2参考书:《工程电磁场导论》,冯慈璋主编,高等教育出版社2000年6月《电磁场与电磁波》第三版,谢处方、饶克谨编,赵家升、袁敬闳修 订,高等教育出版社1999年6月第三版 《工程电磁场原理》倪光正主编,,高等教育出版社,2002 《电磁场》雷银照编,高等教育出版社2008年6月 《Electromagnetic fields and waves》Robert R. G. 等编著,Higher Education Press, 2006 任课教师:汪泉弟俞集辉何为李永明张淮清杨帆徐征编写时间:2010年1月 学时分配: 矢量分析:6学时; 静电场:12学时; 恒定电场:4学时; 恒定磁场:10学时; 时变场:12学时; 平面电磁场:8学时; 导行电磁波:6学时; 电磁能量辐射与天线:6学时。

第1章矢量分析 一、教学目标及基本要求 1.通过课程的介绍,知道“电磁场原理”课程的学习内容、作用;课程的特点、已具 有的基础;学习的重点、难点和解决的办法;教材、参考书和教学时间安排;本课程学习的基本要求等等。 2.对矢量分析章节的学习,要建立起标量场和矢量场的概念,掌握梯度、散度和旋度 等“三度”运算,以及此基础上的场函数的高阶微分计算。 3.掌握矢量的基本运算法则和相应的微分、积分方法,学会按矢量场的散度和旋度分 析场的基本属性。 4.掌握矢量微分算符的基本应用以及高斯散度定理和斯托克斯定理,了解场的赫姆霍 兹定理、两个特殊积分定理的推导和圆柱坐标系与球坐标系中矢量微分算符的情况。 二、教学内容及学时分配 1.1矢量代数与位置矢量(0.5学时) 1.2标量场及其梯度(1学时) 1.3矢量场的通量及散度(1学时) 1.4矢量场的环量及旋度(1学时) 1.5场函数的高阶微分运算(1学时) 1.6矢量场的积分定理(0.5学时) 1.7赫姆霍兹定理(0.5学时) 1.8圆柱坐标系与球坐标系(0.5学时) 三、教学内容的重点和难点 重点 1.场概念的建立 2.标量场的梯度、矢量场的散度和旋度的定义及计算。 难点 1.微分矢量算符 的理解和直角坐标系中的应用 2.散度、旋度概念的理解及检源的作用 四、教学内容的深化与拓宽 介绍本课程与电磁学的区别和联系,电磁场理论借助数学表述的准确、精炼关系。应强调学习知识和解决问题的能力培养是相辅相成的。 五、教学方式与手段及教学过程中应注意的问题 采用多媒体手段利用电子课件进行教学,在教学过程中应注意: a.讲数学内容,应联系后面电磁场的物理实际; b.既要讲清数学概念和定理,更要重视它们的应用,在应用中巩固对概念和定理的认识; c.运用多媒体教学手段,要更加重视课内讲授的方式,在必要的地方应辅以粉笔板书。

电磁学第二章

第二章 静电场中导体与电介质 一、 选择题 1、 一带正电荷的物体M,靠近一不带电的金属导体N,N 的左端感应出负电荷,右端感应出正电荷。若将N 的左端接地,则: A 、 N 上的负电荷入地。 B 、N 上的正电荷入地。 C 、N 上的电荷不动。 D 、N 上所有电荷都入地 答案:B 2、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。若在它的下方放置一电量为q 的点电荷,则: A 、只有当q>0时,金属球才能下移 B 、只有当q<0就是,金属球才下移 C 、无论q 就是正就是负金属球都下移 D 、无论q 就是正就是负金属球都不动 答案:C 3、 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,已知A 上的电荷密度为σ+,则 在导体板B 的两个表面1与2上的感应电荷面密度为: A 、σσσσ+=-=21, B 、σσσσ2 1 ,2121 +=-= C 、σσσσ2 1 ,2121 -=-= D 、0,21 =-=σσσ 答案:B 4、 半径分别为R 与r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面 的电荷面密度之比r R σσ为: A 、r R B 、2 2 r R C 、2 2 R r D 、R r 答案:D 5、 一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板距离均为h 的两点a,b 之间的电势差为() A 、零 B 、 2εσ C 、 0εσh D 、0 2εσh 答案:A 6、 一电荷面密度为σ 的带电大导体平板,置于电场强度为0E (0E 指向右边)的均匀外电场中,并使板面垂直于0E 的方向,设外电 场不因带电平板的引入而受干扰,则板的附近左右两侧的全场强为() A 、0000 2,2εσ εσ+- E E B 、0000 2,2εσ εσ++ E E C 、0 000 2,2εσεσ-+ E E D 、0 000 2,2εσεσ-- E E 答案:A 7、 A,B 为两导体大平板,面积均为S,平行放置,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大 小E 为() A 、 S Q 01 2ε B 、 S Q Q 0212ε- C 、 S Q 01ε D 、 S Q Q 0212ε+ 答案:C 8、带电时为q 1的导体A 移近中性导体B,在B 的近端出现感应电荷q 2,远端出现感应电荷q 3,这时B 表面附近P 点的场强为n E ?0 εσ= ,问E 就是谁的贡献?()

电磁场原理期末复习提纲

期末复习提纲 I 基本概念和理论 1. 基本概念 (1)何谓标量场?何谓矢量场? (2)“ ”算符的微分特性和矢量特性? (3)电场强度是怎样定义的?其物理意义如何? (4)电位的定义式和它的物理意义。电位和电场强度之间的积分和微分关系。 (5)什麽是介质的极化?介质极化的影响怎样用等效极化电荷的分布来表示? (6)电位移矢量是怎样定义的?它的物理意义? (7)特别注意泊松方程和拉普拉斯方程的适用范围。 (8)从唯一性定理来理解:按照间接求解方法来计算静电场问题,为什麽要特别强调有效区域问题? (9)什麽叫静电独立系统? (10)恒定电场中的几种媒质分界面衔接条件与静电场中有何不同? (11)毕奥---沙阀定律的应用条件?磁场计算能否运用叠加原理? (12)正确理解安培环路定律的涵义,运用其积分形式求解磁场问题切实注意积分路径的选择。 (13)为什麽要引入磁矢量位?其定义式如何? (14)什麽是媒质的磁化?媒质磁化的影响怎样用等效磁化电流的分布来表示? (15)正确认识电、磁场的分布和电、磁场能量的分布之间的关系。 (16)正确理解Maxwell方程组中各个方程的物理意义,深刻认识电场和磁场之间相互依存、相互制约、不可分割,而成为一个整体的两个方面。 (17)什麽叫推广的电磁感应定律?什麽叫全电流定律?全电流是指哪几种电

流? (18) 坡印廷定理和坡印廷矢量的物理意义是什麽?深刻理解坡印廷矢量反映的 电磁能流密度概念。 (19) 深刻理解动态位解答所揭示的时变电磁场的波动性,以及场点电场、磁场 的场量滞后于波源变化的推迟性。 (20) 如何看待时空组合变量?? ? ? ?- v R t 所描述的波动? (21) 电能是如何沿着输电导线传播的? (22) 何谓电准静态电磁场?按什麽条件来判别是电准静态电磁场? (23) 何谓磁准静态电磁场?按什麽条件来判别是磁准静态电磁场? (24) 在时变电磁场中什麽叫良导体?什麽叫似稳条件? (25) 何谓集肤效应?何谓去磁效应?何谓邻近效应?它们分别与哪些因素相 关? (26) 什麽是涡流?涡流会产生什麽样的影响?如何减小这种影响? (27) 什麽叫均匀平面电磁波?它的主要特征是什麽? (28) 均匀平面电磁波在理想介质中的传播特性? (29) 均匀平面电磁波在导电媒质中的传播特性? (30) 什麽是色散现象?什麽是色散媒质? (31) 对于有电磁波传播的导体,什么叫做低损耗介质?什么叫做良导体? (32) 什么叫导行电磁波?为什么空心金属导波管内不可能存在TEM 波? (33) TM 波的最低模式为什么是TM 11? (34) 什么叫截止频率f c ?什么叫截止波长λc ?什么叫波导色散? (35) 为什么称TE 10波为矩形波导的主模? (36) 什么叫波阻抗?什么叫本征阻抗? (37) 电磁辐射的定义,电磁辐射的机理是什么? (38) 单元偶极子的近区场概念,近区场的特点。 (39) 单元偶极子的远区场概念,远区场(辐射场)的特点。

电磁学第二章习题答案

习题五(第二章 静电场中的导体与电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内 表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件就是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个就是空心,一个就是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 与r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a,外半径为b 的金属球壳,带有电量Q, 在球壳空腔内距离球心为r 处有一点电荷q,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

相关主题
文本预览
相关文档 最新文档