当前位置:文档之家› 初中数学竞赛辅导讲义

初中数学竞赛辅导讲义

初中数学竞赛辅导讲义
初中数学竞赛辅导讲义

初中数学竞赛辅导讲义

初中数学竞赛辅导讲义:从创新构造入手

有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.

所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.

构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:

1.构造方程;

2.构造函数;

3.构造图形;

4.对于存在性问题,构造实例;

5.对于错误的命题,构造反例;

6.构造等价命题等.

【例题求解】

【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .

思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.

注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.

【例2】 求代数式1342222+-+++x x x x 的最小值.

思路点拨 用一般求最值的方法很难求出此代数式的最小值.

222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.

【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.

思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.

【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.

思路点拨 假设在AB 边上存在点E,使Rt △ADE ∽Rt △BEC ∽Rt △ECD,又设AE=x ,则BC BE AE AD =,即a

x b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.

【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.

思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:

已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.

注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:

(1)几何问题代数化;

(2)利用图形图表解代数问题;

(3)构造函数,借用函数图象探讨方程的解.

利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.

特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.

有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握. 对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.

学历训练

1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .

2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .

3.代数式9)12(422+-++x x 的最小值为 .

4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 . 5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .

6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求

t s st 14++的值. 7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.

8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.

9.求所有的实数x ,使得x x x x 111-+-= .

10.若是不全为零且绝对值都小于106的整数.求证:2110132>

++c b a .

11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.

12.设10<

13.从自然数l,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.

14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.

15.如图,已知一等腰梯形,其底为a 和b ,高为h .

(1)在梯形的对称轴上求作点P,使从点P 看两腰的视角为直角;

(2)求点P 到两底边的距离;

(3)在什么条件下可作出P 点?

参考答案

初中数学竞赛辅导讲义:动态几何问题透视

春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.

动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静

这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.

2.动静互化

“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.

3.以动制动

以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.

注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.

【例题求解】

【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l 所围成的面积是.

思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.

【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置( ) A.在平分AB的某直线上移动B.在垂直AB的某直线上移动

C.在AmB上移动D.保持固定不移动

思路点拨画图、操作、实验,从中发现规律.

【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB 上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P 点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:

(1)当x=3时,y的值是多少?

(2)就下列各种情形:

①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.

(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.

思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.

注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.

建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.

【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m/秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).

(1)当t为何值时,线段EF与BC平行?

(2)设1

(3)当1≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发

生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.

思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对

于(1)、(2),运用相关几何性质建立关于t的方程;对于(3),点P的位置是否发生变化,只需看

PC AP是

否为一定值.

注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.

【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2 O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结C O2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.

(1)求:CD的长(用含R、α的式子表示);

(2)试判断CD与PO1的位置关系,并说明理由;

(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于α? C′D′与P′O l的位置关系如何?并说明理由.

思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OO l上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.

学力训练

1.如图, ΔABC 中,∠C=90°,AB=12cm,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字).

2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .

3.一块等边三角形的木板,边长为l,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( )

A .23π

B .3

4π C .4 D .232π+

4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )

A .12-

B .2

2 C .1 D .21

5.如图,正三角形ABC的边长为63厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB—BC—CA运动,回到点A时,⊙O随着点O的运动而移动.

(1)若r=3厘米,求⊙O首次与BC边相切时AO的长;

(2)在O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r的取值范围及相应的切点个数;

(3)设O在整个移动过程中,在ΔABC内部,⊙O未经过的部分的面积为S,在S>0时,求关于r 的函数解析式,并写出自变量r的取值范围.

6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB的长为x,CD的长为y.

(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;

(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;

(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.

7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0

-z

+

z

2

22=

5

的两个根.

(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离;

(2)求证:AN 2=ON ·MN ;

(3)求y 与x 之间的函数关系式及自变量x 的取值范围;

(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.

8.已知:如图,梯形ABCD 中,AD ∥BC,AB=CD=3cm,∠C =60°,BD ⊥CD .

(1)求BC 、AD 的长度;

(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况);

(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.

9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动.

设AE=x ,四边形EFGH 的面积为S .

(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?

(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形2

1 ;

(3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.

10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动,B(4,2),以BE为直径作⊙O1.

(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;

(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?

(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于A点,连结AF交⊙O1于点P,试问PA·FA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.

参考答案

初中数学竞赛辅导讲义:几何的定值与最值

几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:

1.特殊位置与极端位置法;

2.几何定理(公理)法;

3.数形结合法等.

注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、

逻辑推理与合情想象相结合等思想方法.

【例题就解】

【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.

1AB一常思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,CD2=DQ2+CQ2,DQ=

2

数,当CQ越小,CD越小,本例也可设AP=x,则PB=x

10,从代数角度探求CD的最小值.

注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:

(1)中点处、垂直位置关系等;

(2)端点处、临界位置等.

【例2】如图,圆的半径等于正三角形ABC的高,此圆在沿底边AB滚动,切点为T,圆交AC、

BC于M、N,则对于所有可能的圆的位置而言, MTN为的度数()

A.从30°到60°变动B.从60°到90°变动

C.保持30°不变D.保持60°不变

思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.

注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.

【例3】 如图,已知平行四边形ABCD,AB=a ,BC=b (a >b ),P 为AB 边上的一动点,

直线DP 交CB 的延长线于Q,求AP+BQ 的最小值.

思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.

【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M,设直线AC 与BM 相交于K,直线CB 与AM 相交于点N,证明:线段AK 和BN 的乘积与M 点的选择无关.

思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.

注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.

【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.

思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.

注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:

(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;

(2)构造二次函数求几何最值.

学力训练

1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.

2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR 的周长的最小值为.

3.如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P 在直线MN上运动,则PB

PA 的最大值等于.

4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )

A .1

B .22

C .2

D .13-

5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )

A .212π+

B .2412π+

C .214π+

D .242π+

6.如图、已知矩形ABCD,R,P 户分别是DC 、BC 上的点,E,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )

A .线段EF 的长逐渐增大

B .线段EF 的长逐渐减小

C .线段EF 的长不改变

D .线段EF 的长不能确定

7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE,AE 与CD 相交于点M,BD 与CE 相交于点N .

(1)求证:MN ∥AB ;

(2)若AB 的长为l0cm,当点C 在线段AB 上移动时,是否存在这样的一点C,使线段MN 的长度

2020年初中数学竞赛讲义:第11讲-双曲线

第十一讲 双曲线 形如x k y =(0≠k )的函数叫做反比例函数,它的图象是由两条曲线组成的双曲线,与双曲线相关的知识有: 1. 双曲线解析式x k y =中的系数k 决定图象的大致位置及y 随x 变化的状况. 2.双曲线图象上的点是关于原点O 成中心对称,在k >0时函数的图象关于直线x y =轴对称;在k <0时函数的图象关于直线x y -=轴对称. 3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 【例题求解】 【例1】 已知反比例函数x k y =的图象与直线x y 2=和1+=x y 过同一点,则当0>x 时,这个反比例函数的函数值y 随x 的增大而 (填增大或减小). 思路点拨 确定k 的值,只需求出双曲线上一点的坐标即可. 注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O 中心称,关于x y ±=轴对称),这样既能从整上思考问题,又能提高思维的周密性. (2)一个常用命题:

如图,设点A 是反比例函数x k y =(0≠k )的图象上一点,过A 作AB ⊥x 轴于B ,过A 作AC ⊥y 轴于C ,则 ①S △AOB =k 2 1; ②S 矩形OBAC =k . 【例2】 如图,正比例函数kx y = (0>k )与反比例函数x y 1=的图象相交于A 、C 两点,过A 作AB ⊥x 轴于B ,连结BC ,若S △ABC 的面积为S ,则( ) A .S=1 B .S =2 C .S=k D .S=2k 思路点拨 运用双曲线的对称性,导出S △AOB 与S △OBC 的关系. 【例3】 如图,已知一次函数8+-=x y 和反比例函数x k y =(0≠k )的图象在第一象限内有两个不同的公共点A 、B . (1)求实数k 的取值范围; (2)若△AOB 面积S =24,求k 的值. 思路点拨 (1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S △AOB= S △COB S- S △COA ,建立k 的方程.

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化 例1. 4 提示:原式=1 12 - 62 -+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22 +16+3y 2 =142 +4+3是开口向上,对称轴为7 1 -=x 的抛物线. 例3. 分三种情况讨论:①0≤a +?)(,∴f (a )=2a ,即2a =2132-2+a ,则?? ? ??=--=413 172b a 综上,(a ,b )=(1,3)或(17-2-, 4 13 ) 例4. (1) 121≤≤x ,y 2 = 21+216143-2+-)( x .当=4 3时,y 2 取得最大值1,a =1; 当21= x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=2 3. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2. 10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x 当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有 22 4 ===DA EB CA BC , 从而=AC = 3831=AB .故原式取最小值时,=3 8. (3)如图, 原式= [] 22222 2 2)24()13()32()01(032--0y x y x -+-+-+-+-+)()(

初中数学竞赛辅导资料(12)

初中数学竞赛辅导资料(12) 用交集解题 甲内容提要 1. 某种对象的全体组成一个集合.组成集合的各个对象叫这个集合的元素.例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个. 2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集 例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集. 3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集. 不等式组的解集是不等式组中各个不等式解集的交集. 例如 不等式组? ??<->)2(2)1(62 x x 解的集合就是( ) 不等式(1)的解集x >3和不等式(2)的解集x >2的交集,x >3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答.把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案. 有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案.(如例2) 乙例题 例1. 一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值. 解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B ={3,8,13,18,23,28,……} 除以7余2自然数集合C ={2,9,16,23,30,……} 集合A 、B 、C 的公共元素的最小值23就是所求的自然数. 例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数. 解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个位数的集合是{1,3,7,9}; 其中差等于6的有:1和7;3和9;13和7,三组; 平方数的个位数字相同的只有3和7;1和9二组. 同时符合三个条件的个位数字是3和7这一组 故所求质数是:23,17; 43,37; 53,47; 73,67共四组. 例3. 数学兴趣小组中订阅A 种刊物的有28人,订阅B 种刊物的有21人,其中6人两种都订,只有一人两种都没有订,问只订A 种、只订B 种的各几人?数学兴趣小组共有几人? 解:如图左、右两椭圆分别表示订阅A 种、B 种刊物的人数集合,则两圆重叠部分就是它们

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD, ∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同 一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不 出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点 连线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 1 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速 前进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相 等;又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中七年级数学竞赛培优讲义全套专题16 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

初中数学竞赛辅导讲义及习题解答 第15讲 统计的思想方法

第十五讲 统计的思想方法 20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求. 统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】 【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大; (2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案. 注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的: (1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势. 【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( ) A .2a+3b B .b a +3 2 C .6a+9b D .2a+b 思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2) 三角形的边角性质 内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线 段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其 他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个 内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠2 22c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数 学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组 ?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

初中九年级数学竞赛培优讲义全套专题10 最优化

专题10 最优化 阅读与思考 数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有: 1.配方法 由非负数性质得()02 ≥±b a . 2.不等分析法 通过解不等式(组),在约束条件下求最值. 3.运用函数性质 对二次函数()02 ≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为: (1)当0>a ,a b x 2-=时,a b ac y 442-=最小值 ; (2)当0

【例3】()2 13 22+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ). 解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论. 【例4】(1)已知2 11- + -=x x y 的最大值为a ,最小值b ,求2 2b a +的值. (“《数学周报》杯”竞赛试题) (2)求使()168422 +-+ +x x 取得最小值的实数x 的值. (全国初中数学联赛试题) (3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题) 解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等. 【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低? (河南省竞赛试题) 解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费( ) ay m y n a S 222+--=,通过有理化,将式子整理 为关于y 的方程.

相关主题
文本预览
相关文档 最新文档