当前位置:文档之家› 数学模型和数学实验的关系分析

数学模型和数学实验的关系分析

数学模型和数学实验的关系分析
数学模型和数学实验的关系分析

数学模型和数学实验的关系分析

21世纪是知识经济和信息经济时代,也是以数据分析为重要内容的大数据时代,在这个时代中数学技术的重要性日渐凸显,并以前所未有的速度向其他技术领域渗透,特别是数学技术与计算机技术的结合,已经成为当代高新技术的重要内容。美国学者EDavid曾说,数学在经济竞争中是必不可少的。数学的革命性发展促进了数学教育的根本变革,数学建模、数学实验等成了高层次人才必备的基本能力,为此,应探究数学模型和数学实验的关系,以推进数学教育改革,培养学生用数学的能力。

一、数学建模概述

数学模型是为了描述客观事物的特征和内在联系,用字母、数字或其他数学符号建立的等式、不等式、图标、框图等数学结构表达式。数学模型能解释某些现实性问题,预测对象的发展状态,或为解决实际问题提供最优决策。数学建模是为实现特定目的而建造数学模型的过程。数学建模可以通过表述、求解、解释、验证几个阶段,实现现实对象到数学模型再到现实对象的循环。

如图1所示,表述是把实际问题翻译为数学问题,然后用数学语言解释实际问题;求解是用科学的数学方法解答数学模型;解释是

用数学语言把答案翻译为现实对象;验证是用现实对象验证结果的正确性。数学建模是数学理论运用于其他领域的切入点,对创新数学教育、培育创新精神具有重要意义。在数学教学中,教师可以引导学生弄清问题的本质、解决问题的方法途径等,让学生建构数学模型,或

将实际问题归纳为某类数学模型,这样有利于培养学生的创新意识、创新精神,建立以解决问题为中心的教学模式。对同一案例可以用不同的数学方法、建模思路来解决,这样能拓宽学生的数学思维,激发学生的学习兴趣,形成问题探究解答问题的开放式教学模式,使数学教学向实践、社会、生活等延伸。

此外,数学建模有利于强化实践教学。学生要用数学知识解决实际问题,就需要建立数学模型,在建立数学模型时需要广泛搜集资料、查阅问题背景、用计算机模拟计算,这有助于培养学生的创新精神和科研能力。因而,在数学教学改革中,应渗透建模思想,学习建模方法,嵌入数学模块,将数学建模融入数学教学的全过程,培育学生的创新精神、实践能力、分析与解决问题的能力。

二、数学实验概述

数学实验是从指定的实际问题出发,借助计算机和数学软件进行数学运算、证明猜想、模拟仿真、显示图形等以及解决实际问题、探索数学规律的数学实践活动。数学实验以学生为主体,以实际问题为载体,以数学软件和计算机为工具,以数学建模为过程,以优化数学模型为目标,将抽象的数学理论变成了生动具体的可视性学科,实现了数学建模的发展和延伸。同时,数学实验也是实际问题与数学理论之间的桥梁和纽带,在提出猜想、验证定理、解决问题等方面发挥着重要作用。

数学实验课是利用计算机技术培养学生用数学能力的课程,它以学生为主体,以探索和创新为首要原则,让学生去体验、探索、实

践,有助于提高学生的动手能力、思维能力和观察能力,提升学生的综合素质。数学实验课主要涉及数值计算、数理统计、优化方法三部分内容,通常以MATLAB数学软件平台进行各种运算,以数学方法安排课程内容,以数学建模引入问题和方法,整个课程从建模初步练习开始,到建模综合练习结束。随着计算机技术的快速发展,计算机的运算功能、图形功能日益强大,数学软件变得更加丰富,这使数学实验摆脱了机械性的符号演算,可以通过计算机进行观察、联想、类比等探讨规律性结果,这为数学实验教学创造了良好条件。

三、数学建模与数学实验的关系分析

(一)数学建模与数学实验的联系

数学实验与数学建模的关系就是学数学和用数学的关系,学数学是研究、学习数学,用数学是以数学为工具来分析和解决实际问题,两者之间相互联系,相互促进,用数学是数学发展的原始推动力,学数学是数学发展的内在动力。

数学实验是高校数学教育的重要课程,侧重于培养学生应用数学的能力,数学建模是数学实验的应用与升华,是数学理论与数学实验相结合的产物。数学建模用Matjematocal、Maple、Matlab等软件包为数学实践课程创造了条件,使数学问题变得直观形象,便于理解和掌握;数学建模促使数学学科不断向社会科学与自然科学渗透,也使数学实验被提到了新高度。另一方面,数学模型的建立与求解离不开数学实验,因为许多数学模型是抽象的、复杂的,只有通过数学实验,才能进行数值求解和定量分析。

(二)数学建模与数学实验的区别

数学实验和数学建模并不相同,数学实验是学习数学的方法,以培养学生的动脑、观察、动手能力为目的,借助数学软件来验证和应用数学规律;数学建模是运用数学的手段,以培养学生解决实际问题能力为目的,有助于提升学生的创新思维。就课程设置而言,数学实验课是理工类专业的四门数学基础课程之一,而数学建模课则多为数学选修课;在数学类专业中,数学实验课多被放置于计算、优化、统计等课程之中,数学建模课多为必修课。数学建模课以实际问题的建模、模型结果的解释应用为主要内容,包含着丰富的建模案例,但很少涉及数学模型求解;数学实验课介绍了数值计算、数据统计、方法优化等数学软件,侧重于用计算机、数学软件进行数学模型求解,涉及的实际问题较为简单。

(三)数学建模与数学实验的融合

数学实验与数学建模都以培养学生创新能力、解决实际问题的能力为目标,这两门课程的融合有助于提升学生的创造思维、竞赛意识、创新意识与应用能力和整体素质,推进学生的全面发展,推进数学教学创新。传统数学实验是偏重学习的验证性实验,而数学建模与数学实验的融合能够使学生掌握MATLAB、SAA、LINGO等数学软件,并利用这些数学软件建立数学模型、解决数学问题,有助于提高学生分析和解决问题的能力,提升学生的综合素质。同时,数学实验与数学建模的融合有助于开展讨论式、研究型、实践案例式等开放式教学,

解决传统教学中重理论,轻实践的问题,激发学生的数学兴趣,提高数学教学效率。

数学建模是沟通数学与其他学科的桥梁和纽带,也是推进数学发展的重要方式,将数学建模思想融入数学实验课之中,有助于学生运用数学技术和计算机软件解决实际问题,推进高校数学教学改革。

数学模型与数学建模实验五

实验报告五 学院名称:理学院 专业年级: 姓 名: 学 号: 课 程:数学模型与数学建模 报告日期:2015年12月8日 一、实验题目 例2.2.1 水库库容量与高程 设一水库将河道分为上、下游两个河段,降雨的开始时刻为8时,这是水位的高程为 168m ,水库容量为38109.21m ?,预测上游的流量()()s m t Q /3,d 取值如表2.2.1所示。 表2.2.1 上有流量()t Q 的预测 已知水库中水的容量( )3 810m V 与水位高程H (m )的数值关系为表2.2.2 表2.2.2 水库库容量与水位高程的关系 如果当日从8时开始,水一直保持s m /10003 的泄流量,根据所给数据,预报从降雨时刻到56h 以内每小时整点时刻水库中水的库容量与水位高程。 例2.2.2 地下含沙量 某地区有优质细沙埋在地下,某公司拟在此处采沙,已得到该地区钻探资料图的一角如 下表,在每个格点上有三个数字列,都是相对于选定基点的高度(m ),最上面的数字是覆盖表面的标高,中间的数字是沙层顶部的标高最下面的数字是沙层底部的标高,每个格子都是正方形,边长50m 。画星号处,即沼泽表层地带,没有钻探数据。试估计整个矩形区域内的含沙量。

二、实验目的 插值模型是数据挖掘的另一类模型,插值(Interpolation )的目的是根据能够获得的观测数据推测缺损的数据,此时观测数据(){}n i i i y x 1,=被视为精确的基准数据,寻找一个至少 满足条件的函数()x y y =,使得()n i x y y i i ,,2,1,Λ==,在本节我们强调的是插值模型的应用,而不是插值方法的构造。 三、问题陈述 2.2.1 一维插值 例2.2.1 水库库容量与高程 2.2.2 二维插值 例2.2.2 地下含沙量 2.2.3 泛克里金插值 四、模型及求解结果 2.2.1 一维插值 一元函数差值公式为 ()() ∑==n i i i x y x y 1 λ 其中 () x i λ是满足条件 ()ij i x δ=λ的函数,依据插值的公式,如最近邻差值,线性插值、分

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

数学建模实验报告(1)

四川师范大学数学与软件科学学院 实验报告 课程名称:数学建模 指导教师:陈东 班级:_2008级2班_____________ 学号:__2008060244___________ 姓名:___邢颖________ 总成绩:______________

数学与软件科学学院 实验报告 学期:_2009__ 年至2010 _年____ 第_ 二___ 学期 2010 年 4 月 1 _日 课程名称:_数学建模__ 专业:数学与应用数学____ 2008__ _级_ 2 ___班 实验编号: 1 实验项目_Matlab 入门_ 指导教师 陈东 姓名: 邢颖 ____ 学号: 2008060244 一、实验目的及要求 实验目的: 实验要求: 二、实验内容 (1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (2)有一个 4*5 矩阵,编程求出其最大值及其所处的位置. (3)编程求 (4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高? (5)有一函数 ,写一程序,输入自变量的值,输出函数值. 三、实验步骤(该部分不够填写.请填写附页) (2) x=[1 6 2 7 6;4 6 1 3 2;1 2 3 4 7;8 1 4 6 3]; t=x(1,1); for i=1:4 for j=1:5 if x(i,j)>t t=x(i,j); a=[i,j]; end ∑=20 1! n n y xy x y x f 2sin ),(2 ++=

end end (3)程序1: x(1)=1; s=1; for n=2:20 x(n)=x(n-1)*n; s=s+x(n); end s 程序2; s=0,m=1; for n=2:20; m=m*n; s=s+m; end s 结果:s = 2.5613e+018 (4)程序 s=100 h=s/2 for n=2:10 s=s+2*h h=h/2 end s,h 结果:s = 299.6094 h = 0.0977 (5)程序: function f=fun1(x,y) f=x^2+sin(x*y)+2*y

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模迭代实验报告(新)

非 线 性 迭 代 实 验 报 告 一、实验背景与实验目的 迭代是数学研究中的一个非常重要的工具,通过函数或向量函数由初始结点生成迭代结点列,也可通过函数或向量函数由初值(向量)生成迭代数列或向量列。 蛛网图也是一个有用的数学工具,可以帮助理解通过一元函数由初值生成的迭代数列的敛散性,也帮助理解平衡点(两平面曲线交点)的稳定性。 本实验在Mathematica 平台上首先利用蛛网图和迭代数列研究不动点的类型;其次通过蛛网图和迭代数列研究Logistic 映射,探索周期点的性质、认识混沌现象;第三通过迭代数列或向量列求解方程(组)而寻求有效的求解方法;最后,利用结点迭代探索分形的性质。 二、实验材料 2.1迭代序列与不动点 给定实数域上光滑的实值函数)(x f 以及初值0x ,定义数列 )(1n n x f x =+, ,2,1,0=n (2.2.1) }{n x 称为)(x f 的一个迭代序列。 函数的迭代是数学研究中的一个非常重要的思想工具,利用迭代序列可以研究函数)(x f 的不动点。 对函数的迭代过程,我们可以用几何图象来直观地显示它——“蜘蛛网”。运行下列Mathematica 程序: Clear[f] f[x_] := (25*x - 85)/(x + 3); (实验时需改变函数) Solve[f[x]==x , x] (求出函数的不动点) g1=Plot[f[x], {x, -10, 20}, PlotStyle -> RGBColor[1, 0, 0], DisplayFunction -> Identity]; g2=Plot[x, {x, -10, 10}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]; x0=5.5; r = {}; r0=Graphics[{RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, x0}}]}]; For[i = 1, i <= 100, i++, r=Append[r, Graphics[{RGBColor[0, 0, 1], Line[{{x0, x0}, {x0, f[x0]}, {f[x0], f[x0]}}] }]]; x0=f[x0] ]; Show[g1, g2, r, r0, PlotRange -> {-1, 20}, (PlotRange 控制图形上下范围) DisplayFunction -> $DisplayFunction] x[0]=x0; x[i_]:=f[x[i-1]]; (定义序列) t=Table[x[i],{i,1,10}]//N ListPlot[t] (散点图) 观察蜘蛛网通过改变初值,你能得出什么结论? 如果只需迭代n 次产生相应的序列,用下列Mathematica 程序: Iterate[f_,x0_,n_Integer]:= Module[{ t={},temp= x0},AppendTo[t,temp]; For[i=1,i <= n, i++,temp= f[temp]; AppendTo[t,temp]]; t ] f[x_]:= (x+ 2/x)/2; Iterate[f,0.7,10]

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数模实验报告

数学建模与实验实验报告 姓名:李明波 院系:仪器科学与工程学院 学号:22013108 老师:王峰

数学建模与实验实验报告 实验一 实验题目 (1)已知某平原地区的一条公路经过如下坐标所示的点,请采用样条插值绘出这条公路(不考虑 (2)对于上表给出的数据,估计公路长度。 实验过程 (1)第一问代码如下: X=[0,30,50,70,80,90,120,148,170,180,202,212,230,248,268,271,280,290,300,312,320,340,3 60,372,382,390,416,430,478]; Y=[80,64,47,42,48,66,80,120,121,138,160,182,200,208,212,210,200,196,188,186,200,184,1 88,200,202,240,246,280,296]; %给出坐标点 xx=0:1:478;%选取0~478内的点 yy=spline(X,Y,xx);%样条插值法找出曲线 plot(X,Y, 'p ',xx,yy, 'g ');%绘出曲线图 x=[440,420,380,360,340,320,314,280,240,200]; y=[308,334,328,334,346,356,360,392,390,400]; hold on xy=440:-1:200; yx=spline(x,y,xy); plot(x,y, 'p ',xy,yx, 'g '); 运行上述代码得到结果如下:

上图为所绘公路图 (2)代码如下: X=[0 30 50 70 80 90 120 148 170 180 202 212 230 248 268 271 280 290 300 312 320 340 360 372 382 390 416 430 478 440 420 380 360 340 320 314 280 240 200]; Y=[80 64 47 42 48 66 80 120 121 138 160 182 200 208 212 210 200 196 188 186 200 184 188 200 202 240 246 280 296 308 334 328 334 346 356 360 392 390 400]; for k=1:length(X)-1 len(k)=sqrt((X(k+1)-X(k))^2+(Y(k+1)-Y(k))^2); end; Len=sum(len);Len 运行得到结果如下: 即公路长为967.46米。

2018数学建模课程论文以及课程实验题目

2017-2018学年第二学期数学建模课程论文题目 请大家在三个题目中选择二个来完成,完成的二个题目装订为一个文档。打印从封面开始,页码从摘要开始编。 交论文时间:12周三下午3:30-5:50;至善楼217 A题食品加工 一项食品加工,为将几种粗油精炼,然后加以混合成为成品油。原料油有两大类,共5种:植物油2种,分别记作V1和V2;非植物油3种,记为O1、O2和O3。各种原料油均从市场采购。现在(一月份)和未来半年中,市场价格(元/吨)如下表所示: 月份油V1 V2 O1 O2 O3 一1100 1200 1300 1100 1150 二1300 1300 1100 900 1150 三1100 1400 1300 1000 950 四1200 1100 1200 1200 1250 五1000 1200 1500 1100 1050 六900 1000 1400 800 1350 成品油售价1500元/吨。植物油和非植物油要在不同的生产线精炼。每个月最多可精炼植物油200吨,非植物油250吨。假设精炼过程中没有重量损失。精炼费用可以忽略。每种原料油最多可存贮1000吨备用。存贮费为每吨每月50元。成品油和经过精炼的原料油不能存贮。对成品油限定其硬度在3至6单位之间。各种原料油的硬度如下表所示: 油V1 V2 O1 O2 O3 硬度8.8 6.1 2.0 4.2 5.0 假设硬度是线性地合成的。 另加条件:现存有5种原料油每种500吨。要求在6月底仍然有这样多的存货;每个月最多使用3种原料油;如果某月使用了原料油V1和V2,则必须使用O3。 (1)为使公司获得最大利润,应取什么样的采购和加工方案。 (2)分析总利润同采购和加工方案适应不同的未来市场价格应如何变化。考虑如下的价格变化方式:2月份植物油价上升x%,非植物油价上升2x%;3月份植物油价上升2x%,非植物油价上升4x%;其余月份保持这种线性上升势头。对不同的x值(直到2),就方案的必要的变化以及对总利润的影响,作出计划。

焦梦数学模型与实验试卷

西南大学 数学与统计学院 《数学模型与实验》课程试题 命题人:焦梦 222009314011261 一、选择题:本大题共8小题,每小题5分,共40分。 1. 是指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。 ( ) A .对象 B .模型 C .参照物 D. 公式 2.当模型假设改变时,可以导出模型结构的相应变化;当观测数据有微小改变时,模型参数也只有相应的微小变化。说明模型的 好。 ( ) A .逼真性 B .可行性 C .渐进性 D. 强健性 3.经济订货批量公式(EOQ 公式)是 。 ( ) A .r c c T 212= ,222c r c Q = B .r c c T 21=,2 22c r c Q = C .r c c T 212= ,22c r c Q = D. r c c T 21 2=,2 22c r c Q = 4. 是参数估计的常用方法。 ( ) A .微分法 B .差分法 C .数值法 D.最小二乘法 5.人口的指数增长模型和阻滞增长模型都属于 。 ( ) A .优化模型 B .概率模型 C .微分方程模型 D. 统计回归模型 6.在生猪的出售时机一文中,令Q ’(t)=0,得p ’(t)w(t)+p(t)w ’(t)=4,则等式左边所表示的含义是 。 ( ) A .每天的收入 B .每天收入的增值 C .每天投入的资金 D.每天利润的增值 7.在数学建模的过程中,常用的数学软件不包括 。 ( ) A .PHOTOSHOP B .LINGO C .SPSS D. MAPLE 8.在MATLAB 中输入3x ,应键入字符 。 ( ) A .x.^3 B .x.^1/3 C .x.^(1/3) D. x.*(1/3) 二、填空题:本大题共4小题,每小题4分,共16分。 9. 模型假设的作用是 。

数学建模-实验报告11

《数学建模实验》实验报告 学号:______ 姓名: 实验十一:微分方程建模2 一只小船渡过宽为d的河流,目标是起点A 正对着的另一岸B点,已知河水流速w 与船在静水中的速度V2之比为k. 1?建立小船航线的方程,求其解析解; 2. 设d=100m,v i=1m/s,v2=2m/s,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较。 一、问题重述 我们建立数学模型的任务有: 1. 由已给定的船速、水速以及河宽求出渡河的轨迹方程; 2. 已知船速、水速、河宽,求在任意时刻船的位置以及渡船所需要的时间。 二、问题分析 此题是一道小船渡河物理应用题,为典型的常微分方程模型,问题中船速、水速、河宽已经给定,由速度、时间、位移的关系,我们容易得到小船的轨迹方程,同时小船的起点和终点已经确定,给我们的常微分方程模型提供了初始条件。 三、模型假设 1?假设小船与河水的速度恒为定值v「V2 ,不考虑人为因素及各种自然原因; 2. 小船行驶的路线为连续曲线,起点为A,终点为B ; 3. 船在行驶过程中始终向着B点前进,即船速v2始终指向B ; 4. 该段河流为理想直段,水速w与河岸始终保持平行。 四、模型建立 y | B A 兀、 % \ * r v A X 如图,以A为原点,以沿河岸向右方向为x轴正向,以垂直河岸到B端方向为y轴正向建立平面直角坐标系。其中河水流速为v i,小船速度为V2,且w:v2 k,合速度为v,河宽为d,为72与直线AB的夹角。

V x V y 在t 时刻, 船 dx dt V i 小船在x 轴方向的位移为 x v 2 sin v 2 cos V i V 2 0,x(0) 0, y(0) ;(d y) 0. \ (d y) d y ______ 2 2 ' x dy v 2 cos 由(2)/(1)得到dx y(0) v-1 v 2 sin 0. dx In (2) (i )题 dx 对上式求倒数得 dx dy x ,在y 轴方向上的位移为y ,则t 时刻, 方向 的速度 模型求解 v 2 sin V 1 v 2 co s —, 则上式可化为 dx d y dy d ?dp pdy ydp ,代入上式, k J p 2 整理,得 P 2 | ln| d Cy | 也就是 x 2 (d y )2 y P (d y ) dp P 2 kdy ,积分可得 y C k ( ------- )k ,代入 d y x d y d y 2 0, y 0 d k (d y )k (d y )k d k (见附 录) ,对该情况下的微分方程的数值解进行分 60.0000 6.5451 98.2803 60.1000 6.4519 98.3319 60.2000 6.3585 98.3827 60.3000 6.2649 98.4327 60.4000 6.1711 98.4819 60.5000 6.0771 98.5304 60.6000 5.9829 98.5782 60.7000 5.8886 98.6251 60.8000 5.7940 98.6713 60.9000 5.6993 98.7168 61.0000 5.6043 98.7615 61.1000 5.5092 98.8054 题 由初始条件,设计程序 析,结果如下(省略了前60s 的数据):

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

相关主题
文本预览
相关文档 最新文档