当前位置:文档之家› 集成运放的发展历史及现状

集成运放的发展历史及现状

集成运放的发展历史及现状
集成运放的发展历史及现状

集成运放的发展历史及现状

1934年的某天,哈里·布莱克(Harry·Black)搭渡从他家所在的纽约到贝尔实验室所在的新泽西去上班。渡船舒缓了他那紧张的神经,使得他可以做一些概念性的思考。哈里有个难题要解决:当电话线延伸得很长时,信号需要放大。但放大器是如此的不可靠,使得服务质量受到严重制约。首先,初始增益误差很大,但这个问题很快就通过使用一个调节器解决了。第二,即使放大器在出厂时调节好了,但是在现场应用的时候,增益的大范围漂移使得音量太低或者输入的语音失真。

为了制造一个稳定的放大器,很多的方法都尝试过了,但是变化的温度和极差的电话线供电状况所导致的增益漂移,一直难以克服。被动元件比主动元件有更好的漂移特性,如果放大器的增益取决于被动元件的话,问题不就解决了吗?在这次搭渡途中,哈里构思了这样一个新奇的解决方法,并记录了下来。

这个方法首先需要制造一个增益比实际应用所需增益要大的放大器,然后将部分的输出信号反馈到输入端,使得电路(包括放大器和反馈元件)增益取决于反馈回路而不是放大器本身。这样,电路增益也就取决于被动的反馈元件而不是主动的放大器,这叫做负反馈,是现代运算放大器的工作原理。哈里在渡船上记录了史上第一个有意设计的反馈电路,但是我们可以肯定在这之前,有人曾无意构建过反馈电路,只不过忽视了它的效果而已。

起初,管理层和放大器设计者有很大的抱怨:“设计一个30-KHz增益带宽积(GBW)的放大器已经够难的了,现在这个傻瓜想要我们设计成3-MHz的增益带宽积,但他却只是用来搭建一个30-KHz增益带宽积的电路!”然而,时间证明哈里是对的。但是哈里没有深入探讨这带来的一个次要问题——振荡。当使用大开环增益的放大器来构建闭环电路时,有时会振荡。直至40年代人们才弄懂了个中原因,但是要解决这个问题需要经过冗长繁琐的计算,多年过去了也没有人能想出简单易懂的方法来。

1945年,H.W.Bode提出了图形化方式分析反馈系统稳定性的方法。此前反馈的分析是通过乘除法来完成的,传函的计算十分费时费力,需要知道的是,直至70年代前工程师是没有计算器和计算机的。波特使用了对数的方法将复杂的数学计算转变成简单直观的图形分析,虽然设计反馈系统仍然很复杂,但不再是只被“暗室”里的少数电子工程师所掌握的“艺术”了。任何电子工程师都可以使用波特图去寻找反馈电路的稳定性,反馈的应用也得以迅速增长。

世界上第一台计算机是模拟计算机!它使用预先编排的方程和输入数据来计算输出,因为这种“编程”是硬件连线的——搭建一系列的电路,这种局限性最终导致了模拟计算机没能大面积应用开来。模拟计算机的心脏是一个叫做运算放大器(operational amplifier)的东西,因为它能配置成对输入信号执行各种数学运算,如加、减、乘、除、积分和微分等,我们简称它为运放(op amp)。运放是一个有很大开环增益的放大器,当接上外部的被动元件形成闭环后,运放就可以执行各种数学运算了。当时它们是由电子管制造的,体积庞大,而且需要很高的供电电压,只有对于某些商业应用,这样的代价才是可以接受的。早期的运放是专门为模拟计算机设计的,但是人们很快就发现运放还有其他应用,而且非常的便利。

当时,对于大学和一些大公司来说,模拟计算机是他们做研究的必备工具,除此之外,信号处理电路也用到了运放。后来,信号处理应用越来越广泛,对运放的需求超过了模拟计算机。当模拟计算机逐渐失宠,最终被数字计算机所取代后,运放依然流传了下来,因为它对模拟设计是如此的重要,并随着测量传感等应用的增长而增长。

在晶体管时代之前,运放是由电子管制成的,体积庞大。在50年代,人们发明了低压电子管使得其体积缩小到了砖头大小(也就是运放的昵称——brick的由来)。到了60年代,晶体管的发明使得体积进一步缩减到了数立方英寸。(brick的昵称虽然被保留了下来,但主要是指那些非集成电路(Integrated Circuit)封装的了。)因为早期的运放的应用针对性很强,不是通用器件,同时每个厂家都有自己的规格和封装,所以,他们之间很难找到替代品。

集成电路(IC)是在50末到60年代初发明出来的,世界上第一个商业应用成功的集成运放是快捷(Fairchild)公司在60年代中期推出的uA709,设计者是Robert J. Widler。uA709虽然存在一些问题,但并无大碍,所以它还是得到了广泛应用。其主要缺点是不稳定:需要外部补偿;需要工程师有足够的应用能力;非常敏感,在某些不利条件下容易损坏,有个军用设备制造商为此还发表了一篇文章,题为《uA709的12个珍珠港条件》。uA709的下一代产品是uA741,它有内部补偿,如果工作在手册规定范围内的话,不需要外部补偿电路,而且它没有uA709那么敏感。从此以后,一系列的运放源源不断的被开发出来,性能和可靠性不断地得到改善。如今,任何工程师都可以方便的使用运放来设计他们的模拟电路了。

作为一个基础元器件,运放继续是模拟设计的关键。现在,每一代的电子设备在晶片上集成越来越多的功能,集成越来越多的模拟电路。但不用担心,随着数字应用的增加,模拟应用也会相应增加的,因为它是连接真实世界的桥梁,承担数据转换和接口的功能。现实世界是模拟的,每一代新电子设备的产生都对模拟电路提出了新的要求,因此,需要新一代的运放来满足它。模拟电路的设计,运放电路的设计,在将来也是工程师必备的基本技能。

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运放线性应用

实训九 集成运放的线性应用 内容一 集成运放的反相、同相比例运算电路 一、实训目的 1.掌握集成运算放大器的使用方法。 2.了解集成运放构成反相比例、同相比例运算电路的工作原理。 3.掌握集成运放反相比例、同相比例运算电路的测试方法。 二、实训测试原理 1. 反相放大电路 电路如图(1)所示。输入信号U i 通过电阻R 1加到集成运放的反相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压并联负反馈。 根据“虚断”概念,即i N =i p ,由于R 2接地, 所以同相端电位U p =0。又根据“虚短”概念可知,U N =U p ,则U N =U p =0,反相端电位也为零。但反相端又不是接地点,所以N 点又称“虚地”。则有 f 1i i =,1i = 1i R U ,f i =-f 0R U 则0U =-1 f R R i U 。 运放的同相输入端经电阻R 2接地,R 2叫平衡电阻,其大小为R 2=R 1∥R f 。 图(1) 反相放大电路 图(2) 同相放大电路 图(3) 电压跟随器 2. 同相放大电路 电路如图(2)所示。输入信号U i 通过平衡电阻R 2加到集成运放的同相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压串联负反馈。根据“虚断”与“虚短”的概念,有N P i U U U ==,i N =i P =0;则得i 1f 0)1(U R U +=若1R =∞,0f =R ,则i 0U U =即为电压跟随器,如图(3)。

三、实训仪器设备 1.直流稳压电源 2.万用表 3.示波器 四、实训器材 1. 集成块μA741(HA17741) 2. 电阻10KΩ×2 100KΩ×2 2 KΩ×2 3. 电位器1KΩ×1 五、实训电路 图(3)反相比例运算实训电路 图(4)同相比例运算实训电路 六、测试步骤及内容 1. 反相比例运算实训

集成电路发展简史

集成电路发展简史 学生:吴世雄学号2010013080007 摘要:随着我们的社会进入数字化时代,对数据的存储与处理变得越来越重要,而这些都需要集成电路的参与。可以说集成电路已经深入我们生活的每一个角落。本文尝试用简短的语言介绍集成电路的诞生、发展及现状。本文也简要介绍了集成电路的生产工艺以及将要面对的困难。 关键词:集成电路;历史;IC工业;微电子学;制造工艺;摩尔定律 A Brief History Of IC Abstract:As our society into the digital age, data storage and processing is becoming increasingly important and these require the participation of the integrated circuit。Can be said that the IC has been to every corner of the depth of our lives。This paper attempts a brief language to introduce the birth, development and current situation of the IC。This article also briefly describes the IC production process and the difficulties the IC production will have to face。 Key Word:Integrated circuits; history; IC industry; microelectronics; manufacturing process; Moore's Law 前言 众所周知,二十世纪最伟大的成就莫过于计算机的诞生。计算机大大改变了我们的生活方式,提高了社会的生产力。计算机的构造是怎样的呢?它的功能是哪些呢?计算机的两大功能——存储和处理数据——都离不开集成电路。我们不禁会想为什么集成电路会在计算机中占有这么重要的作用呢?这一切都要从头讲起。 一、什么是集成电路? 所谓集成电路,是之采用半导体(主要是硅)工艺,吧一个电路所需的晶体管、二极管、电阻、电容和电感等元件连同它们之间的连线在一块或几块很小的半导体晶片或介质基片上一同制作出来,形成完整电路,然后封装在一个管壳内,成为具有特定电路功能的微型结构。 集成电路因体积小、重量轻、引出线和焊接点少、寿命长、可靠性高、性能好以及成本低、便于大规模生产等优点,一经出现便得到迅速发展。现在人们的工作、生活、学习和娱乐都要用到集成电路芯片。小到手机、大到航天飞机,它们的核心部件都有集成电路。 从全世界看,以集成电路为核心的电子信息产业已经发展为第一大产业,超过了以汽车、石油、钢铁为代表的传统产业,成为拉动世界经济增长的强大引擎

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

集成电路论文

我国集成电路发展状况 摘要 集成电路产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步门新月异。虽然目前中国集成电路产业无论从质还是从量来说都不算发达,但伴随着全球产业东移的大潮,中国的经济稳定增长,巨大的内需市场,以及充裕的各类人才和丰富的自然资源,可以说中国集成电路产业的发展尽得天时、地利、人和之势,将会崛起成为新的世界集成电路制造中心。 首先,本文介绍了集成电路产业的相关概念,并对集成电路产业的重要特点进行了分析。其次,在介绍世界集成电路产业发展趋势的基础上本文对我国集成电路产业发展的现状进行了分析和论述, 并给出了发展我国集成电路的策略。 集成电路产业是信息产业和现代制造业的核心战略产业,其已成为一些国家信息产业发展中的重中之重。相比于其它地区,中国是集成电路产业的后来者,但新世纪集成电路产业的变迁为中国集成电路产业的蚓起带来了机遇,如果我们能抓住这一有利时机,中国不仅能成为集成电路产业的新兴地区,更能成为世界集成电路产业强国。 关键词:集成电路产业;发展现状;发展趋势 ABSTRACT

Integrated circuit(IC) industry is of a knowledge,technology and capital concentrated nature. IC industry in the world develops extremely fast and the technology improves everyday.Although currently China’s IC industry is not fully developed,taking into consideration of either quality or quantity of the products.with the shifting of the global industry centre to the east and with the stable economic growth,enormous market demands and abundant human and nature resources available in China,the development of China’s IC industry has favourable conditions in all aspects.and it is expected that in the near future China will become tire new IC manufacturing centre in the world. Firstly, this paper introduce the concept of IC , and analysis the important points of it. Secondly, this paper introduces the developments of IC in the word especially in China. In the end, this paper gives some advices of the developments of IC in our country. The IC is the core of information industry and modern manufacturing strategic industries. IT has become some national top priority in the development of information industry. Compared with other regions, the latter of the China's integrated circuit industry, but the changes of the IC industry in the new century for China's integrated circuit industry vermis creates opportunity, if we can seize the favorable opportunity, China can not only a new region of the integrated circuit industry, more can become the integrated circuit industry in the world powers. Key words: IC current situations tendency 前言

集成运放的基本组成部分

集成运放的基本组成部分 偏置电路 偏置电路的作用是向各放大级提供合适的偏置电流,确定各级静态工作点。各个放大级对偏置电流的要求各不相同。对于输入级,通常要求提供一个比较小(一般为微安级)的偏置电流,而且应该非常稳定,以便提高集成运放的输入电阻,降低输入偏置电流、输入失调 电流及其温漂等等。 在集成运放中,常用的偏置电路有以下几种: 镜像电流源也称为电流镜(Current Mirror),在集成运放中应用十分广泛,它的电路如下图所示。 电源VCC通过电阻R和VT1,产生一个基准电流IREF,由图可 得 然后在VT2的集电极得到相应的IC2,作为提供给某个放大级的偏置电流。由于UBE1=UBE2,而VT1和VT2是做在同一硅片上两个相邻的三极管,它们的工艺、结构和参数都比较一致,因此可以认 为 由于输出恒流IC2和基准电流IREF相等,它们之间如同是镜像的关系,所以这种恒流源电路称为镜像电流源。

镜像电流源的优点是结构简单,而且具有一定的温度补偿作用。 二、比例电流源 在镜像电流源的基础上,在VT1、VT2的发射极分别入两个电阻R1和R2,即可组成比例电流源,如下图所示。 由于VT1、VT2是做在同一硅片上的两个相邻的三极管,因此可 以认为UBE1≈IE2R2,则 IE1R1≈IE2R2 如果两管的基极电流可以忽略,由上式可得可见两个三极管的集电极电流之比近似与发射极电阻的阻值成 反比,故称为比例电流源。 以上两种电流源的共同缺点是,当直流电源VCC变化时,输出电流IC2几乎按同样的规律活动,因此不适用于直流电源在大范围内变化的集成运放。此外,若输入级要求微安级的偏置电流,则所有电阻将达兆欧级,在集成电路中无法实现。 差分放大输入级 集成运放的输入对于它的许多指标诸如电阻、共模输入电压、差模输入电压和共模抑制比等等,起着决定性的作用,因此是提高集成 运放质量的关键。

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

集成电路发展历史

世界集成电路发展历史 1947年:美国贝尔实验室的约翰·巴丁、布拉顿、肖克莱三人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生 1950年:R Ohl和肖克莱发明了离子注入工艺 1951年:场效应晶体管发明 1956年:C S Fuller发明了扩散工艺 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺 1962年:美国RCA公司研制出MOS场效应晶体管 1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门),为现如今的大规模集成电路发展奠定了坚实基础,具有里程碑意义 1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司 1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现 1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明 1974年:RCA公司推出第一个CMOS微处理器1802 1976年:16kb DRAM和4kb SRAM问世 1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临 1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC

集成电路设计方法的发展历史

集成电路设计方法的发展历史 、发展现状、及未来主流设 计方法报告 集成电路是一种微型电子器件或部件,为杰克·基尔比发明,它采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 一、集成电路的发展历史: 1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951

年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺;1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:和首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列; 1967年:应用材料公司成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器,标志着大规模集成电路出现; 1971年:全球第一个微处理器4004Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路时

第7章 集成运放组成的运算电路 习题解答

第7章集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1.集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放

代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I (2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

集成电路发展史

集成电路发展史 香港浸会大学物理系 谢国伟博士 早期发展 早在1830年,科学家已于实验室展开对半导体的研究。他们最初的研究对象是一些在加热后电阻值会增加的元素和化合物。这些物质有一共同点,当它们被光线照射时,会容许电流单向通过,我们可藉此控制电流的方向,称为光电导效应。在无线电接收器中,负责侦测讯息的整流器,就是一种半导体电子仪器的例子。德国的Ferdinand Braun利用了半导体方铅矿,一种硫化铅化合物的整流特性,创制世上第一台整流侦测器,后世俗称为猫胡子的侦测器。基于半导体的整流特性,我们能在整流侦测器内的金属接触面和半导体间建立起一电势差,令电子在某一方向流动时为“顺流而下”,反之则“逆流而上”。至此,半导体电子仪器起始面世。 (晶体管) 到了1874年,电报机、电话和无线电相继发明,使电力在日常生活中所扮演的角色,不再单单是能源的一种,而是开始步入了信息传播的领域,成为传播讯息的一种媒介。而电报机、电话以及无线电等早期电子仪器亦造就了一项新兴的工业──电子业的诞生。

(整流器) (电容) 在二十世纪的前半段,电子业的发展一直受到真空管技术的掣肘。真空管顾名思义是抽走了空气的玻璃管,内有阴、阳两极,电子会由阴极流向阳极。为了增加电子的流动,我们将阴极管加热至高温(摄氏数百度计),令电子在阴极受热“跳”出。再加上另外一枝电势比阴极还要略低的电极──控制栅极。我们能借着调整其电势来控制电子流动,以达到控制电流的目标。真空管本身有很多缺点:脆、易碎、体积庞大、不可靠、耗电量大、效率低以及运作时释出大量热能。这些问题,直到1947年贝尔实验室发明了晶体管后才得到解决。晶体管就像固态的真空管,电子由阴极流向阳极(在晶体管中称为电子泉和汲极),电子的流动则由一类似真空管中控制栅极的闸门控制。与真空管相比,晶体管体积细小、可靠、耐用、耗电量少而且效率高。晶体管的出现,令工程师能设计出更多更复杂的电路,这些电路包括了成千上万件不同的组件:晶体管、二极管、整流器和电容。可是,体积细小的电子零件却带来另一个问题:就是需要花费大量时间和金钱以人手焊接把这些组件接驳起,但人手焊接始终不是绝对可靠,令电路中成千上万的焊接点都有机会出现问题。因此,电子业接下来所面对的问题,就是要找出一种既可靠又合乎成本效益的方法以生产和焊接电子零件。

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317 实现电路电压检测,并通过 三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1. 集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3 所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图3.4 所示。 图3.4 集成运放的图形和文字符号 其中“ -”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而 “+”称为同相输入端,输出相位与输入信号相位相同。 2. 集成运放的基本技术指标集成运放的基本技术指标如下。 ⑴输入失调电压U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃ )及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS,U OS 越小越好,一般约为0.5~5mV 。 ⑵开环差模电压放大倍数A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od。它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可 达140dB(即开环电压放大倍数达107)。 ⑶共模抑制比K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即K CMRR = A A od,其含义与差 动放大器中所定义的K CMRR 相同,高质量的运放K CMRR 可达160dB 。 ⑷差模输入电阻r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运放绝大部分接近理想运放。对于理想运放,A od、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能 力越强。理想集成运放r o趋于零。 其他参数包括输入失调电流I OS、输入偏置电流I B、输入失调电压温漂d UOS/d T 和输入失 调电流温漂d IOS/ d T、最大共模输入电压U Icmax、最大差模输入电压U Idmax 等,可通过器件

集成电路工艺流程

集成电路中双极性和CMOS工艺流程 摘要:本文首先介绍了集成电路的发展,对集成电路制作过程中的主要操作进行了简要讲述。双极性电路和MOS电路时集成电路发展的基础,双极型集成电路器件具有速度高、驱动能力强、模拟精度高的特点,但是随着集成电路发展到系统级的集成,其规模越来越大,却要求电路的功耗减少,而双极型器件在功耗和集成度方面无法满足这些方面的要求。CMOS电路具有功耗低、集成度高和抗干扰能力强的特点。文章主要介绍了双极性电路和CMOS电路的主要工艺流程,最后对集成电路发展过程中出现的新技术新工艺以及一些阻 碍集成电路发展的因素做了阐述。 关键词:集成电路,双极性工艺,CMOS工艺 ABSTRACT This paper first introduces the development of integrated circuits,mainly operating in the process of production for integrated circuits were briefly reviewed.Bipolar and MOS circuit Sas the basis for the development of integrated circuit.Bipolar integrated circuits with high speed, driving ability,simulated the characteristics of high precision,but with the development of integrated circuit to the system level integration,its scale is more and more big.So,reducing the power consumption of the circuit is in need,but bipolar devices in power consumption and integration can't meet these requirements.CMOS circuit with low power consumption,high integration and the characteristics of strong anti-interference ability.This paper mainly introduces the bipolar circuit and CMOS circuit the main technological process.finally,the integrated circuit appeared in the process of development of new technology and new technology as well as some factors hindering the development of the integrated circuit are done in this paper. KEY WORDS integrated circuit,Bipolar process,CMOS process

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

相关主题
文本预览
相关文档 最新文档