当前位置:文档之家› 奥数第10讲加法原理和乘法原理综合运用例题和详解

奥数第10讲加法原理和乘法原理综合运用例题和详解

奥数第10讲加法原理和乘法原理综合运用例题和详解
奥数第10讲加法原理和乘法原理综合运用例题和详解

10 加、乘原理综合应用

趣味故事

加乘原理与干支纪年

大家都知道20XX年是乙丑年,就是我们的“干支纪年”法.那同学们知道它是怎么算出来的吗?我们把天干分成十个,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.地支共十二个:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.那年份是通过怎样的排列得到的呢?下面就是排列的方法:甲子、乙丑、丙寅、丁卯、戊辰、己巳、庚午、辛未、壬申、癸酉;甲戌、乙亥……

从“甲子”重新开始,直到“癸亥”结束.以

此纪年,一个循环60年.称为“六十甲子”,

或者“六十花甲”.根据这种推算,我们可以

算出任意一年是什么组合喽,读完这个故事,

讲给你的父母听,告诉他们我们祖辈的纪年其

实是利用了奥数知识啊.

能力培养

思维/能力 例1

例2

例3

例4

例5

例6

例7

例8

例9

思维

? ? ? ? ? ? ? ? ? 能 力

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

教学目标

本讲的两个教学要点:

1.复习乘法原理和加法原理;

2.培养学生综合运用加法原理和乘法原理的能力;

在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理的常见题型:数论类问题、染色问题、图形组合.

经典精讲

生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.

还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.

应用加法原理和乘法原理时要注意下面几点:

⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.

⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.

⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.

【分析】 (一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类

第一类,一种颜色:都是蓝色的或者都是白色的,2种可能; 第二类,两种颜色:(43)336??=

第三类,三种颜色:43224??=

所以,根据加法原理,一共可以表示2362462++=种不同的信号.

(二)白棋打头的信号,后两面旗有4416?=种情况.所以白棋不打头的信号有621646-=种.

[铺垫]某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂

一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多少种不同的信号? [分析] 由于每次可挂一面、二面或三面旗子,我们可以根据旗杆上旗子的面数分三类考虑:

第二类

第一类

第一类,可以从四种颜色中任选一种,有4种表示法;

第二类,要分两步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,

第二面旗子可从剩下的三种中选一种,有3种选法.根据乘法原理,共有4312?=种表示法;

第三类,要分三步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,

第二面旗子可从剩下的三种中选一种,有3种选法;第三步,第三面旗子可从剩下的两种颜色中选一种,有2种选法.根据乘法原理,共有43224??=种表示法.

根据加法原理,一共可以表示出4122440++=种不同的信号.

红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种? 简单加乘原理综合运用

1

【分析】 因为要求“填在黑格里的数比它旁边的两个数都大”,所以填入黑格中的数不能够太小,否则就

不满足条件.通过枚举法可知填入黑格里的数只有两类:第一类,填在黑格里的数是5和4;第二类,填在黑格里的数是5和3.接下来就根据这两类进行计数:

第一类,填在黑格里的数是5和4时,分为以下几步:第一步,第一个黑格可从5和4中任选一个,有2种选法;第二步,第二个黑格可从5和4中剩下的一个数选择,只有1种选法;第三步,第一个白格可从1,2,3中任意选一个,有3种选法.第四步,第二个白格从1,2,3剩下的两个数中任选一个,有2种选法;第五步,最后一个白格只有1种选法.根据乘法原理,一共有(21)(321)12????=种.

第二类,填在黑格里的数是5和3时,黑格中有两种填法,此时白格也有两种填法,根据乘法原理,不同的填法有224?=种.

所以,根据加法原理,不同的填法共有12416+=种.

(走进美妙数学花园少年数学邀请赛)

如图,将1,2,3,4,5分别填入图中15?的格子中,要求填在黑格里的数比它旁边的

两个数都大.共有 种不同的填法.

加乘原理与数论

用0~9这十个数字可组成多少个无重复数字的四位数?

3

2

【分析】无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.

方法一:分两步完成:

第一步:从1~9这九个数中任选一个占据千位,有9种方法.

第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.

由乘法原理,共有满足条件的四位数99874536

???=个.

方法二:组成的四位数分为两类:

第一类:不含0的四位数有98763024

???=个.

第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、

十、个位上,所以有3种)第二步让其余9个数占位有987

??种占法.所以含0的四位数有???=个.

39871512

由加法原理,共有满足条件的四位数302415124536

+=个.

方法三:从0~9十个数中任取4个数的排列总数为10987

??

???,其中0在千位的排列数有987个,所以共有满足条件的四位数:10987987987(101) 4536

???-??=???-=个.

[拓展]用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?

[分析]分为两类:个位数字为0的有326

?=个,由加法原理,一共有:

?=个,个位数字为2的有 224

+=个没有重复数字的四位偶数.

6410

[拓展]用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?

[分析]分为三类,一位数时,0和一位数共有5个;二位数时,为4416

?=个,三位数时,为:44348

??=个,由加法原理,一共可以组成5164869

++=个小于1000的没有重复数字的自然数.

【分析】 从1到500的所有自然数可分为三大类,即一位数,两位数,三位数. 一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;

两位数中,不含4的可以这样考虑:十位上,不含4的有l 、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.

三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有399243??=个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3991244??+=个.

所以一共有8893991324+?+??+=个不含4的自然数.

[巩固]从1到100的所有自然数中,不含有数字4的自然数有多少个? [分析] 从1到100的所有自然数可分为三大类,即一位数,两位数,三位数. 一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;

两位数中,不含4的可以这样考虑:十位上,不含4的有l 、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8972?=个数不含4. 三位数只有100.

所以一共有889181+?+=个不含4的自然数.

从1到500的所有自然数中,不含有数字4的自然数有多少个?

4

【分析】 将1~100按照除以3的余数分为3类:第一类,余数为1的有1,4,7,…100,一共有34个;

第二类,余数为2的一共有33个;第三类,可以被3整除的一共有33个.取出两个不同的数其和是3的倍数只有两种情况:第一种,从第一、二类中各取一个数,有34331122?=种取法;第二种,从第三类中取两个数,有33322528?÷=种取法.根据加法原理,不同取法共有:

11225281650+=种.

[铺垫]在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的

取法? [分析] 两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除

以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3412?=种取法.根据加法原理,共有取法:31215+=种.

[拓展]在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有多少种不同的取法? [分析] 三个不同的数和为3的倍数有四种情况:三个数同余1,三个数同余2,三个数都被3整除,余1

余2余0的数各有1个,四类情况分别有4种、1种、1种、43336??=种,所以一共有

4113642+++=种.

【分析】 方法一:要使两个骰子的点数之和为偶数,只要这两个点数的奇偶性相同,可以分为两步:第一

有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,

向上一面点数之和为偶数的情形有多少种?

在1~100的自然数中取出两个不同的数相加,其和是3的倍数的共有多少种不同的取法?

5

6

步第一个骰子随意掷有6种可能的点数;第二步当第一个骰子的点数确定了以后,第二

个骰子的点数只能是与第一个骰子的点数相同奇偶性的3种可能的点数.

根据乘法原理,向上一面的点数之和为偶数的情形有6318

?=(种).方法二:要使两个骰子点数之和为偶数,只要这两个点数的奇偶性相同,所以,可以分为两类:第一类:两个数字同为奇数.有339

?=(种)不同的情形.

第二类:两个数字同为偶数.类似第一类,也有339

?=(种)不同的情形.

根据加法原理,向上一面点数之和为偶数的情形共有9918

+=(种).方法三:随意掷两个骰子,总共有6636

?=(种)不同的情形.因为两个骰子点数之和为奇数与偶数的可能性是一样的,所以,点数之和为偶数的情形有36218

÷=(种).

[拓展]有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?

[分析]方法一:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.可以分为三步:第一步,第一个骰子随意掷有6种可能的点数;第二

步,当第一个骰子的点数确定了以后,第二个骰子的点数还是奇数偶数都有可能所有也

有6种可能的点数;第三步,当前两个骰子的点数即奇偶性都确定了之后第三个骰子点

数的奇偶性就确定了所以只有3种可能的点数.

根据乘法原理,向上一面的点数之和为偶数的情形有663108

??=(种).方法二:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.所以,要分两大类来考虑:

第一类:三个点数同为偶数.由于掷骰子可认为是一个一个地掷.每掷一个骰子出现偶

数点数都有3种可能.由乘法原理,这类共有33327

??=(种)不同的情形.第二类:一个点数为偶数另外两个点数为奇数.先选一个骰子作为偶数点数的骰子有3

种选法,然后类似第一类的讨论方法,共有333381???=()(种)不同情形.

根据加法原理,三个骰子向上一面点数之和为偶数的情形共有3333333108??+???=(种).

学奥

而思

【分析】 第一步给“而”上色,有4种选择; 然后对“学”染色,“学”有3种颜色可选;

当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212??=种;

当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116???=种.

所以,根据加法原理,共有43(222)72???+=种不同的涂法

[铺垫]地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国

家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?

D

C

B A

加乘原理与图论

用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色

都必须要用.问:共有多少种不同的染色方法?

7

[分析]A有3种颜色可选;

当B,C取相同的颜色时,有2种颜色可选,此时D也有2种颜色可选.根据乘法原理,不同的涂法有32212

??=种;

当B,C取不同的颜色时,B有2种颜色可选,C仅剩1种颜色可选,此时D也只有1种颜色可选(与A相同).根据乘法原理,不同的涂法有32116

???=种.

综上,根据加法原理,共有12618

+=种不同的涂法.

[注意]给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.

[拓展]将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?

D C

B

A

[分析]如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.

按---

A B D C的顺序涂颜色:

A有3种颜色可选;

当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212

??=种;

当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116

???=(种).

所以,根据加法原理,共有12618+=种不同的涂法.

F E D

C

B

A

【分析】 先按A ,B ,D ,C ,E 的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E 与D 的

颜色搭配有339?=(种),其中有3种E 和D 同色,有6种E 和D 异色.最后染F ,当E 与D 同色时有3种颜色可选,当E 与D 异色时有 2种颜色可选,所以共有542(3362)840????+?=种染法.

【分析】 由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取3个点,就可以

画出一个三角形,如果这三个点其中两点构成的线段小于直径,并且第三个点在被其余两点分割的较小的圆周上,则这三个点构成钝角三角形, 这样所有的钝角三角形可分为三类,第一类是长边端点之间仅相隔一个点,这样的三角形有10110?=个,第二类是长边端点之间相隔两个点,这样的三角形有10220?=个,第三类是长边端点之间相隔三个点,这样的三角形有10330?=个,

分别用五种颜色中的某一种对下图的A ,B ,C ,D ,E ,F 六个区域染色,要求相

邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?

在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?

(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).

9

8

所以一共可以画出10203060++=个钝角三角形.

[铺垫]在一个圆周上均匀分布10个点,以这些点再加上圆心一共11个点为端点,可以画出多少长度小

于直径的线段.

[分析] 由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以

画出一条线段一共有45种方法,其中包括5条直径,应当舍去,其余线段的长都小于直径,一共有40种方法 .以圆心为端点的线段一共有10条,所以一共可以画出401050+=条线段.

[铺垫]一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?

[分析] 第一类:三角形三个顶点都在圆周上,这样的三角形一共有76532135??÷

??=()种; 第二类:三角形两个顶点在圆周上,这样的三角形一共有76215105?÷

??=()种; 第三类:三角形一个顶点在圆周上,这样的三角形一共有7542170??÷

?=()种; 根据加法原理,一共可以画出3510570210++=种.

附加题

【分析】 ⑴容易验证在1、2、10、11、12月内没有“十全时”. ⑵3月里只有形式032 1 □ □ 符合条件.

其中两个方格中可以填4或5,四条横线上可以填6或7或8或9,于是共有2(4321)48

????=个“十全时”.

同理4、5月内也分别各有48个“十全时”.

⑶6月里有两种形式:061 23□ □ ①或062 1□ □ ②符合条件. 对于形式①两个方格中可以填4或5;三条横线上可以填7或8或9, 于是共有2(321)12???=个“十全时”.

②两个方格中可以填3或4,或5中的任意两个数,三条横线上可以填7或8或9及3、4、5

中余下的某一个数.

于是共有(32)(4321)144?????=个“十全时”. 所以6月里共有“十全时”12144156+=个. 同理7、8、9月内也分别各有156个“十全时”.

综上所述,20XX 年一共有4831564768?+?=个“十全时”.

【分析】 我们来看正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针

和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).

用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式? 假如电子计时器所显示的十个数字是“0126093028”这样一串数,它表示的是1月26日9时30分28秒.在这串数里,“0”出现了3次,“2”出现了2次,“1”、“3”、“6”、“8”、“9”各出现1次,而“4”、“5”、“7”没有出现.如果在电子计时器所显示的这串数里,“0”、“1”、“2”、“3”、“4”、“5”、“6”、“7”、“8”、“9”这十个数字都只能出现一次,称它所表示的时刻为“十全时”,那么20XX 年一共有多少个这样的“十全时”?

1

2

按使用了的颜色种数分类:

第一类:用了4种颜色.第一步,选4种颜色,相当于选1种不用,有5种选法.第二步,如果取定4种颜色涂于4个面上,有2种方法.这一类有5210

?=(种)涂法;

第二类:用了3种颜色.第一步,选3种颜色,相当于选2种不用,有54210

?÷=(种)选法;

第二步,取定3种颜色如红、橙、黄3色,涂于4个面上,有6种方法,如下图①②③

(图中用数字1,2,3分别表示红、橙、黄3色).这一类有10660

?=(种)涂法;第三类:用了2种颜色.第一步,选2种颜色,有54210

?÷=(种)选法;第二步,取定2种颜色如红、橙2色,涂于4个面上,有3种方法,如下图④⑤⑥.这一类有10330

?=(种)涂法;

第四类:用了一种颜色.第一步选1种颜色有5种方法;第二步,取定1种颜色涂于4个面上,

只有1种方法.这一类有515?=(种)涂法.

根据加法原理,共有1060305105+++=(种)不同的涂色方式.

【分析】 (方法一)本题分三角形的三个顶点在两条直线上和三条直线上两种情况

⑴三个顶点在两条直线上,一共有43223222322443234355?÷?+?÷?+?÷?+?÷?++=个 ⑵三个顶点在三条直线上,由于不同直线上的任意三个点都不共线,所以一共有:24324??=个 根据加法原理,一共可以画出552479+=个三角形.

(方法二)9个点任取三个点有987(321 )84??÷??=种取法,其中三个点都在第二条直线上有4种,都在第三条直线上有1种,所以一共可以画出844179--=个三角形.

三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形? 3

魔幻数学——页码中的数学

小空最近迷上了小说,每天除了护送师傅,空闲时都要捧着一本挺厚的书读.一天,猪坚强看到正在看书的小空就走过去问道:“你看的这本书好像很长啊,有多少页?”

“一共是186页呢!”小空的回答里都带着自豪,“是很长,不过我每天都读,肯定能读完的!”

“就怕你这只猴子没耐心啊……”猪坚强想着.

“对了,最近怎么没见你和师傅讨论奥数题呢?”

“说到奥数题,我今天就给你出一道,就以你看的这本书出题.”猪坚强回应道,“你刚才说这本书一共有186页,那么我的问题是,所有这些页码的各位数字里面,一共有多少个1、3、5、7、9呢?”

那么,同学们也一起来帮小空算算吧!这也是对我们刚学会的加乘原理的综合应用哦.

答案:

把页码看成000到186,也就是说在不足三位的页码前面补上0,直到补足三位.在000到199中,偶数和奇数出现的次数是一样的,所以1、3、5、7、9出现的次数总共是20032300

?÷=(次).而1、3、5、7、9在187到189中出现5次,从190到199出现25次.因此,1、3、5、7、9在所有页码中一共出现300525270

--=(次).

我与竞赛零距离

家庭作业

丁丙

【分析】 从甲地到丙地有两种方法:第一类,从甲地经过乙地到丙地,根据乘法原理,走法一共有428

?=种方法,;第二类,从甲地经过丁地到丙地,一共有339?=种方法.根据加法原理,一共有8917+=种走法.

* 练习1 *

如右图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?

(20XX 年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)

由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在第 个.

【分析】比2008小的4位数有2000和2002,比2008小的3位数有23318??=(种),比2008小

的2位数有236?=(种),比2008小的1位数有2(种),所以2008排在第 21862129++++=(个)

【分析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种

有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法. ⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326?=种方法.

【分析】 小于1000的自然数有三类.

第一类是0和一位数,有5个;

第二类是两位数,十位数有4种选法,个位数有5种选法,根据乘法原理,可组成有4520?=个;第三类是三位数,百位数有4种选法,十位数有5种选法,个位数有5种选法,根据乘法原理,可组成455100??=个自然数.

根据加法原理,共可以组成520100125++=个满足条件的自然数.

* 练习3 *

用数字0,1,2,3,4,可以组成多少个小于1000的自然数?

商店里有2种巧克力糖:牛奶味、榛仁味;有3种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.

⑴如果小明只买一种糖,他有几种选法?

⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?

【分析】 分3种情况:

⑴取出一面,有5种信号;

⑵取出两面:可以表示5420?=种信号; ⑶取出三面:可以表示:54360??=种信号; 由加法原理,一共可以表示:5206085++=种信号.

D

C

B A

【分析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,

有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326?=种方法,D 剩下2种方法,对该图的染色方法一共有43332284??+??=()种方法.

* 练习6 *

直线a ,b 上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?

* 练习5 *

如果有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?

五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?

a

b

【分析】画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:

⑴在a线上找一个点,有4种选取法,在b线上找两个点,有1种,根据乘法原理,一共有:414

?=个三角形;

⑵在b线上找一个点,有2种选取法,在a线上找两个点,有4326

?÷=种,根据乘法原理,一共有:2612

?=个三角形;

根据加法原理,一共可以画出:41216

+=个三角形.

轻松一刻

记性

真差

巴尔扎克喜欢根据一个

人的字迹来断定他的性格.他

常常获得成功,对这件事他一直

得意洋洋.有一天,来了一个老

太太,将一本学生的作业本交给他,

请他讲讲这个男孩的性格.巴尔

扎克拿起作业本一看,说:“这个孩子既懒惰,又任性,他一辈子也不会有出息.”

小学奥数——乘法原理与加法原理

乘法原理与加法原理 在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决. 例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法? 分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即: 第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法: 3×1=3. 如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种

不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有 种不同的方法. 这就是乘法原理. 例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形? 例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.

(完整)六年级奥数乘法和加法原理答案

第二十六周乘法和加法原理 例题1: 由数字0,1,2,3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。 ①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。 ②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。 练习1: 1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数? 2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式? 3、由数字1,2,3,4,5,6,7,8,可组成多少个: ①三位数; ②三位偶数; ③没有重复数字的三位偶数; ④百位是8的没有重复数字的三位数; ⑤百位是8的没有重复数字的三位偶数。 例题2: 有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形? 要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑: 两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。 练习2: 1、在1—1000的自然数中,一共有多少个数字1?

奥数:加法、乘法原理(小学4-6年级专用)

小学奥数:加法原理 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从到上海,因此,一天中从到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。即N = m1 + m2 + …+ m n (N代表完成一件工作的方法的总和,m1,m2, …m n 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。 例题与方法: 例1书架上有10本故事书,3本历史书,12本科普读物。志远

任意从书架上取一本书,有多少种不同的取法? 例2一列火车从上上海到,中途要经过6个站,这列火车要准备多少中不同的车票? 例3、4 x 4的方格图中(如下图),共有多少个形? 例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法? 练习与思考: 1.从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火车有4班,甲城到乙城共有()种不同的走法。

四年级奥数乘法原理讲义(专业奥数)

乘法原理 一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有:N=m1×m2×…×mn种不同的方法.这就是乘法原理. 特别提示: 1、做一件事分几步完成 2、每一步都有多种选择 3、步步相乘4、步步相关例1、某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有多少种走法呢? 例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

例5 由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数? 例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法? 例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数? 习题一 1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法? 2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个

《排列组合问题之—加法原理和乘法原理》

排列组合问题之—加法原理和乘法原理 华图教育梁维维 加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。 1.加法原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。 例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成 ⑴多少个数字不重复的三位数? ⑵多少个数字不重复的三位偶数? 【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。 【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。 在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。例如如下的两道题: 【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( ) A.7种 B.12种 C.15种 D.21种 【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。所以每个同学有4+6+4+1=15种订报方式。

奥数加法原理乘法原理

海豚教育个性化简案海豚教育个性化教案

奥数讲解八 题型一:乘法原理 【知识要点】 1. 乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有mn种方法,那么按照这样的步骤完成这件任务共有 N=m1×m2×…×mn 种不同的方法。 2. 从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。 【典型例题】 例1:马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 例2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 例3:用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)? 例4:如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法? 例5:有10块糖,每天至少吃一块,吃完为止。问:共有多少种不同的吃法? 【同步训练】 1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束? 2. 四角号码字典,用4个数码表示一个汉字。小王自编一个“密码本”,用3个数码(可取重复数字)表示一个汉字,例如,用“011”代表汉字“车”。问:小王的“密码本”上最多能表示多少个不同的汉字?

3. “IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”? 4. 用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法? 题型二:加法原理(一) 加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有mn种不同方法,那么完成这件任务共有 N=m1+m2+…+mn种不同的方法。 【典型例题】 例1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法? 例2:旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号? 例3:两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种? 例4:用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个? 例5:用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法? 【同步训练】 1. 南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?

四年级奥数乘法原理

四年级奥数乘法原理 1、三位小朋友每两人通一次,一共通了多少次? 2、在一次聚会上,小刚遇见了他的5位朋友,他们彼此握了一次手,他们一共握了多少次手? 3、校运动会上,四年级有5人参加乒乓球单打比赛,每人都要和另外4人比赛一场,一共要比赛多少场 4、小红和她的爸爸,妈妈,弟弟去公园玩,每次选2人进行合影留念,有多少种不同的选法? 5、某旅行社推出"五一"黄金周的旅游景点为:,花果山,周庄,园林,陵.小红家想选择其中的两个景点游玩,他们家一共有多少种不同的选择方案? 6、有5位同学,如果每两人互赠一件礼物,共需多少件礼物? 7、某小姐有三件裙子,四件上衣,两双鞋子,问总共有几种不同的搭配方法? 8、设一室有五个门,甲分由不同之门进出此室各一次,但不得由同一门进出,则其方法有几种?

9、图书馆中有五本不同的三义书和八本不同的数学书,一学生欲选一本书的方法有几种若三义和数学各选一本,共有多少种选法? 10、某篮球校队是由二位高一学生,四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会,问总共有多少种选法? 11、甲班有40位同学,乙班有45位同学, 丙班有50位同学,若各班推选一人筹办文艺展览会,共有几种选派法? 12、用0,1,2,3,4,5,6组成四位数的密码共有几种? 13、用0,1,2,3,4五个数字排成的三位数有几个其中数字相异的三位数有几个? 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 14.在小于10000的自然数中,含有数字1的数有多少个? 15.马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 16.从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?

第一讲 加法原理和乘法原理 (练习题)

第一讲加法原理和乘法原理(练习题) 1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。那么一天从武汉到上海,一共有多少种不同的走法? 2. 商店有铅笔5种,钢笔6种,圆珠笔3种。小红要从中任选一种,一共有多少种不同的选法? 3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法? 4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数? 5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票? 6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 7. 在5×5的方格中(如右图),共有多少个正方形?

8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法? 9. 服装店里有5件不同的儿童上衣、4条不同的裙子。妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法? 10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 11.用1、2、3、4这四个数字可以组成多少个不同的三位数? 12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法? 13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法? 14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?

小学奥数- 加乘原理之数字问题(一)

7-3-2.加乘原理之数字问题(一) 教学目标 1.复习乘法原理和加法原理; 2.培养学生综合运用加法原理和乘法原理的能力. 3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合. 知识要点 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决. 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决. 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响 ... ....的独立步骤 ....来完成,这几步是完成这件任务缺一不 可的 ..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 例题精讲 【例1】由数字1,2,3可以组成多少个没有重复数字的数? 【例2】用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是。 【巩固】由数字0,3,6组成的所有三位数的和是__________。

三年级下册数学试题-奥数精练:加法原理和乘法原理(无答案) 全国通用

加法原理和乘法原理 (★★)

现在餐桌上有不同的食谱,中餐类的有150本,西餐类的有200本,那么,从中拿一本食谱可以有多少种不同的选法? (★★★) (迎春杯试题改编) 桌上有3本红色封皮的,4本黄色封皮的和5本白色封皮的食谱,现闭上眼睛从中任意拿出6本,有多少种可能?(只考虑颜色,相同颜色封皮的书没有区别) (★★★) 食谱中有三种类型的菜系,每类菜系中都有不同数量的菜肴,数量分别为5道、8道和13道,现要从三种类型的菜系中各取一道组成一桌宴席,可组成多少种不同的宴席? (★★★) 有6种不同颜色的酱料,来写“厨神大海很帅”这六个字, ⑴要求每个字的颜色都不相同,有多少种不同的方法? ⑵要求相邻字的颜色不能相同,有多少种不同的方法? (★★★★) 5本不同的食谱放在桌子上排成一排

⑴有多少种不同的排列方式? ⑵如果一本食谱必须在中间,有多少不同的排列方式? ⑶如果这本食谱不在中间,有多少不同的排列方式? (★★★★)(走美杯试题) 一种电子表在8时31分25秒时显示为8:3125,那么从7时到8时这段时间里,此表的5个数字都不相同的时刻一共有______个。 (★★★★★) 1到1999的自然数中,有多少个与5678相加时,至少发生一次进位?

(★★★★★) 有______个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 例1测 (★★)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有12班,汽车有40班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法? A.120B.54C.42D.80 例2测 (★★★)袋子里面三种颜色的球分别为红、白、黑,其中红色球有6个,白色球有2个,黑色球有4个,现在闭上眼睛从中任意拿出4个,有多少种可能?

四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理 知识导航 加法原理:做一件事情,完成 ..它有n类办法,在第一类办法中有M1种不 同的方法,在第二类办法中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事情共有m 1+m 2 +……+m n 种不同的方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完 成第二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件 工作共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 精典例题 例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法?

思路点拨 ①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。 ②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。 模仿练习 孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。问: (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 思路点拨 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。

(完整版)小学奥数加乘法原理

加乘法原理 加法原理: 完成一件事情,如果有n类办法,在第一类办法中有a种不同做法,第二类有b 种不同做法,第三类中有c中不同的做法。。。那么完成这件事就有N=a+b+c+d+。。。种不同的做法。 例1:小龙和小虎是亲戚,暑假小龙邀请小虎去另一城市玩,小虎所在城市每天有三趟火车、 两班轮船、四班汽车去小龙的城市,请问小虎去的话有多少种选择方式? 乘法原理:做一件事情需要分n步骤,做第一步有a种不同方法,做第二步有b 种不同方法,第三步有c种不同方法。。。那么完成这件事就有N=a×b×c×。。。种不同方法。 例2:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,试问从甲地经乙地到丙地 共有多少种不同的走法? 练习: 1、小东到新华书店买书,他喜欢的书有5种数学书,3种科幻书,6种古典小说。他带的 钱只能买其中的一种,他有多少种不同的选择方法? 2、一条直线上标有ABCDE共5个点,问:用这5个点中的任意两点为端点,能数出多少 条不同的线段? 3、从1~9这九个数中,每次取2个数的和大于10,能有几种取法?

4、某人有一个5分硬币,四个2分硬币,八个1分硬币,现在要拿出8分,有几种不同的拿法? 5、运行于杭州、上海之间的快车,中途要停靠六个站,这列快车要准备多少种不同的车票? 6、一只甲虫从A点出发沿着线段爬到B点,要求任何点和线段都不重复经过,有多少种不 同的走法? A B 7、小东到新华书店买书,他喜欢的书有5种数学书,3种科幻书,6种古典小说。他各买 一本有多少种不同的选择方法? 8、某市电话号码为8位,其中首位是8,这个市的电话号码最多有几个? 9、正方形有16个方格,要把ABCD四个不同的棋子放在方格里,并使每行每列只能出现 一个棋子,问共有多少种不同的放法? 10、由0、3、5、8组成三位数,(1)可以组成几个不相等的三位数,(2)可以组成几个没有重复数字的三位数

加法原理例题讲解一

第20讲加法原理(一) 例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法 分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。 例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号 分析与解:根据挂信号旗的面数可以将信号分为两类。第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。所以一共可以表示出不同的信号 3+6=9(种)。 以上两例利用的数学思想就是加法原理。 加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有m n种不同方法,那么完成这件任务共有 N=m1+m2+…+m n 种不同的方法。 乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。 例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种 分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。 因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。 例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法

五年级奥数:加法、乘法原理

加法原理 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总 和。即N = m 1 + m 2 + … + m n (N代表完成一件工作的方法的总和,m1,m2, … m n 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。 例题与方法: 例1 书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?

例3、4 x 4的方格图中(如下图),共有多少个正方形? 例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法? 练习与思考: 从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火1. 车有4班,甲城到乙城共有()种不同的走法。 一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2. 备____种不同的车票。 3.下面图形中共有____个正方形。 4.图中共有_____个角。 5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。如果从书架上任取一本书,有____种不同的取法。 6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。

四年级奥数详解答案乘法原理

四年级奥数详解答案 第九讲乘法原理 一、知识概要 如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。这就是乘法原理。 乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。 二、典型例题精讲 1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙 地共有多少种不同的走法? 分析:如图,很明显,这是个乘法原理的题目。要完成“从甲到丙的行走任务”必须分两步完成。第一步:甲分别通过乙的三条路线到达丙,故有3种走法。第二步: 甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。这两种 走法相类似,共同完成“从甲到丙”的任务。 解:3×2=6(种) 答:共有6种不同的走法。 2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、 每列只能出现一个棋子,共有多少种不同的放法? 分析:(如图二)摆放四个棋子分四步来完成。第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9 种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格 可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。

解:16×9×4×1=576(种) 答:共有576种不同的放法。 3. 有五张卡片,分别写有数字1,2,4,5,8。现从中取出3张片排在一起,组成一个 三位数,如□1□5□2,可以组成个不同的偶数。 分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位 共放了两张,所以还有3张可选放,有3种放法。 解:3×4×3=36(个) 4. 兴趣小组有7名男生,5名女生,现要从这些同学选出4名参加数学竞赛,其中至少 要有2名女生,共有种不同的选法。 分析:分三类选出(加法原理):第一类:2名学生,先从5名女生中选2名,有5×4÷2=10(种)选法,再从7名男生中选2名有7×6÷2=21(种),共有10× 21=210(种);第二类:3名女生,先从5名女生中选3名,(其实等于选出2名 不比赛)有10种选法;再从男生中选1人,有7种选法。共有10×7=70(种)选 法。第三类:4名学生,即从5名选1人不比赛,有5种方法。 解:10×21+10×7+5=285(种) 5. 有4名男生,2名女生,排成一行录像,要求2名不站在两边,且2名女生站在相邻 位置,共有多少种不同的排法? 分析:分两步考虑,第一步,先确定女生排法,2名女生不站两边,有6种站法。第二步,确定男生的站法,4名男生4个位置可选择,故有4×3×2×1=24(种)站法。 解:6×24=144(种) 答:共有144种不同的排法。 6. 地图上a、b、c、d四个国家(如下图),现有红、黄、绿、蓝四种颜色给地图染色,使相邻国家的颜色不同。有种不同的染色方法。 分析:着色分四步,在图A中,第一步给a着色,有四种方法;第二步给b着色,因a:b相邻,故有3种色选着,方法有3种;第三步给c着色,有2种着法;第四步, 给d着色,有2种着法。在图B中,a着色后可将b、d的着色分为相同与不同 两类去考虑,染色的顺序为a、b、d、c.

加法原理与乘法原理练习题49410

加法原理与乘法原理 1.一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A.8种B.12种C.16种D.24种 2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( ) A.48 B.59 C.60 D.100 3.某电话局的电话号码为168~×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有( ) A.20个B.25个C.32个D.60个 4.在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为( ) A.20 B.10 C.5 D.24 5.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( ) A.8种B.15种C.125种D.243种 6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种B.18种C.12种D.6种 7.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( ) A.40 B.13 C.10 D.16 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )

A.336种B.120种C.24种D.18种 9.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A.10种B.20种C.25种D.32种 10.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( ) A.14 B.23 C.48 D.120 11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ) A.6种B.12种C.24种D.30种 12.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.13.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法. 14.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种? 15.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色. (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法? 16.用0,1,…,9这十个数字,可以组成多少个.Array (1)三位整数? (2)无重复数字的三位整数? (3)小于500的无重复数字的三位整数? (4)小于500,且末位数字是8或9的无重复数字的三位整数? (5)小于100的无重复数字的自然数?

小学奥数乘法原理

学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思 维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。 学科培优数学 “乘法原理” 学生姓名授课日期 教师姓名授课时长 知识定位 我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算 一共有多少种完成方法时就要用到乘法原理. 知识梳理 一乘法原理 完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔, 必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二 是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,。。。。。。, 第n步有N种不同的方法。那么完成这件事情一共有A×B×.....×N种不同的 方法。 二乘法原理的考题类型:

1、路线种类问题——比如说老师举的这个例子就是个路线种类问题。 2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法 3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法。 4、排队问题——比如说6个同学,排成一个队伍,有多少种排法。 5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法。 三解题关键: 1、分清有几个必要的步骤 2. 分请每个步骤有多少种选择情况,有的时候要考虑前面几个步骤的选择结果,再考虑本步骤有多少个选择情况。 例题精讲 【试题来源】 【题目】邮递员投递邮件由A村去B村的道理有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法? 【答案】6 【解析】A经过B到C,肯定是要先到B,再到C。那么这个过程可分成两个必不可少的过程,第一步是A——B;第二步是B——C,然后可以根据乘法原理算出答案。 3×2=6 【知识点】乘法原理 【适用场合】当堂例题 【难度系数】1 【试题来源】 【题目】如下图,有个小蚂蚁要从A点,沿着线段爬到B点,要求任 何点不得重复经过,问:这只小蚂蚁一共有几种不同走法 【答案】9 1、【解析】首先看提问,提问可以转成——小蚂蚁一共有多少 种走法

四年级 第1讲 加法原理(教师版)

第1讲 加法原理 一、学习目标 1.掌握加法原理的基本内容。 2.培养学生分类讨论问题的习惯,了解分类的主要方法和遵循的主要原则。 二、知识要点 1.加法原理的定义: 一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 2.加法原理的运用范围: 完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 3.分类基本原则: ①完成这件事的任何一种方法必须属于某一类; ①分别属于不同两类的两种方法是不同的方法. 4.解题三部曲: 1、完成一件事分N 类; 2、每类找种数(每类的一种情况必须是能完成该件事); 3、类类相加 三、例题精选 【例1】 小哈出去旅游,可以乘火车,也可以乘飞机,还可以乘轮船。一天中火 车有4班,飞机有3班,轮船有2班。问:小哈选择一种交通工具出去旅游,共有多少种不同走法? 【①①①①①】

【解析】小哈乘坐火车有4种走法,乘坐飞机有3种走法,乘坐轮船有2种走法.所以小哈出去旅游有:4+3+2=9(种)不同走法. 【巩固1】海豚小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法? 【①①①①①】 【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1 人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法 原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654 ++=种. 【例2】用若干张10元、20元、50元的硬币组成100元(不要求每种硬币都有),共有多少种不同的方法? 【①①①①①】 【解析】此题采用枚举法,具体如下: 所以共有10种情况。 【巩固2】一叠纸币全是20元和50元的,这叠一共有1000元,问这里可能有多少种不同的情况? 【①①①①①】 【解析】按50元纸币的张数对纸币情况进行分类: 如果50元纸币有有奇数张,那么无论20元纸币有多少张都不能凑成1000

加法原理和乘法原理讲座例1.试卷

一、加法原理和乘法原理讲座例题 1、从4个男生,5个女生中各选一人担任组长,有多少种 不同的选法? 2、5个文具盒,4支铅笔,3支钢笔,2把直尺,各取一件配成一套学习用具,最多能配多少套不同的学习用具? 3、一天上午要上语文、数学、体育各一节课,这半天的三节课有几种不同的排法。 4、有不同的语文书6本,数学书8本,英语书5本,音乐书4本,从中任取一本,共有多少种取法?

5、两个木箱内装有不同颜色的球,第一个木箱里装有4个,第二个木箱里装有7个。 (1)从两个木箱里任了一个球,有多少种不同的取法?(2)从两个木箱里各取一个球,有多少种不同的取法? 6、从1-9这九个数中,每次取2个数,这两个数的和必须大于10,能有多少种取法? 7、在1-100的自然数中,一共有多少个数字? 8、在1-100的自然数中,一共有多少个数字1?

9、用2、3、5、7四个数字可以组成 (1)多少个三位数 (2)多少个没有重复数字的三位数 10、用1、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数? 11、用0、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数? 12、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。可以表示多少种不同的信号?

13、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,现有红、黄、蓝色的彩旗各一面,可以表示出多少种不同的信号? 14、用数字0、1、3、5可以组成多少个两位数?可以组成多少个没有重复数字的两位数?

三、最大与最小 1、从0、1、 2、4、6、8、9这七个数中,选出5个数字组成一个能被5整除,并且尽可能大的五位数,这个五位数是多少? 2、小明看一本90页的故事书,每天看的页数不同,而且一天中最少看3次,那么看完这本收最多需要几天? 3、把自然数1、2、3、 4、。。。。39、40依次排列,划去65个数,得到的多位数最大是多少? 4、把17分成几个自然数的和,再求出这些数的积,要使得积尽可能地大,最大的积是多少?

奥数:加法原理、乘法原理

海豚教育个性化简案 学生姓名:年级:科目: 授课日期:月日上课时间:时分------ 时分合计:小时 教学目标1. 培养学生的观察能力及逻辑思维能力。. 2. 初步了解“乘法原理”,“加法原理(一)”,“加法原理(二)”。 重难点导航1. 了解掌握奥数阶梯思维. 2. 把奥数思维带入解决应用题中. 教学简案: 一、个性化教案 二、错题汇编 三、个性化作业 授课教师评价:□ 准时上课:无迟到和早退现象 (今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况 (大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字: 备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:

海豚教育个性化教案 奥数讲解八 题型一:乘法原理 【知识要点】 1. 乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有mn种方法,那么按照这样的步骤完成这件任务共有 N=m1×m2×…×mn 种不同的方法。 2. 从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。 【典型例题】 例1:马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 例2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 例3:用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)? 例4:如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法? 例5:有10块糖,每天至少吃一块,吃完为止。问:共有多少种不同的吃法? 【同步训练】 1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束?

相关主题
文本预览
相关文档 最新文档