当前位置:文档之家› 石英晶体元件性能参数简介

石英晶体元件性能参数简介

石英晶体元件性能参数简介
石英晶体元件性能参数简介

石英晶体元件性能参数简介

术语简介:

1、石英晶体元件的等效电路

其等效电路是一个晶体元件在谐振频率附近具有与晶体元件相同阻抗特性的电路,通常用L1、R1、C1相串联后再与C0并联表示。见下图。

2、石英晶体元件的等效参数(包括静态参数和动态参数):

C0-静电容

L1-等效电感

C1-等效电容

R1-等效电阻

2.1 等效电阻R1

石英晶体的等效电阻是其工作时能量损耗的量度,它包括晶片的内摩擦、支架应力损耗、空气阻尼、电极膜与晶片之间的内摩擦等,其影响大小不等,难以计算。

2.1.1、串联谐振电阻R1

在规定条件下,晶体元件在串联谐振频率f时呈现的等效电阻,又

称谐振电阻,即不加负载电容时测得的电阻。

2.1.2、负载谐振电阻R L

在规定条件下晶体元件在与规定的负载电容C L相串联后工作在负

载谐振频率f L时所呈现的电阻。

R L与R1的关系为:R L=R1[1+( C0 /C L)]2

2.1.3、影响谐振电阻的因素

影响谐振电阻的因素很多,例如原材料质量情况、晶体设计是否合

适、生产工艺水平、清洁程度高低、晶体使用是否恰当、激励电平

的高低等。一般情况下,晶体的泛音电阻要比其基频的电阻大,但

是采取特殊措施也可以使泛音电阻比其基频的电阻小。

2.2、等效电容C1

等效电容C1:等效电路中串联臂中的电容,也称动态电容。

2.2.1、C1的表达式

C1=1/ L1 (2∏f)2

C1值用仪器直接测量时是用下式计算出来的:

C1=2(f L-f r)(C0+C L)/ f r =2Δf(C0+C L) / f r 或者

C1=2(f L1-f r) (f L2-f r)(C L2-C L1)/ f r (f L1-f L2)=2Δf L1Δf L2 C L/ f rΔf L

f L-加负载电容C L后的频率

f r-不加负载电容时的串联谐振频率

C L1、C L2-一大一小的两个负载电容

f L1、f L2-加C L1、C L2时的频率

Δf=f L-f r

Δf L1=f L1-f r

Δf L2=f L2-f r

Δf L=f L1-f L2

ΔC L=C L2-C L1

2.2.2、C1的用途

有的客户提出C1大于某一数值是为了获得比较大的负载谐振频率偏值,即要求Δf L=f L1-f L2较大,以便改变C L后能够获得较大的频率变化量。有的客户则提出频率牵引灵敏度大于某一数值,以便通过调整C L很容易的将晶体的频率调整到要求值。

2.3、等效电感

等效电感又称动态电感,其定义为:等效电路中串联的电感,在客户的技术要求中不出现,它和晶体的Q值成正比,从机械振动理论讲,等效电感表示了在晶片振动时所储存动能的量度。

2.4、并电容C0

并电容:等效电路中与串联臂并接的电容,简称值。它是把晶体元件当做一个平行板电容器在晶体元件非工作状态测量出来的一个电容值,它与泛音次数无关,是一个静态参数,所以又称静电容。

3、石英晶体的品质因数

3.1、品质因数Q

石英晶体元件的品质因数又称Q值,是石英晶体元件质量的量度,其基本定义为:每个振动周期内储存的能量和每个振动周期消耗的能量之比。表达式为:

Q= (2∏f L1)/ R1

它反映谐振器工作时克服摩擦阻尼而消耗能量的大小

3.2、Q值和晶体元件的频率稳定性的关系

晶体元件的频率稳定性与其Q值有密切关系,Q值越高则晶体元件的频率稳定性越好,当Q=180万时日老化率为5*10-11/天,对于一只频率为4.194304MHZ的石英钟晶体每天变化0.00021HZ,相当于13年变化1秒。长期频率稳定度取决于晶体的老化率。

3.3、Q值和晶体元件的起振特性的关系

Q值越高则晶体元件的起振特性越好,越容易起振,因为Q值越高每个振动周期消耗的能量越少。

4、负载电容C L

4.1、为什么要加C L?

首先是为了调整晶体元件的频率,使其更精确的地达到要求值,所以一般C L是一个可变电容,但是许多客户已不再调整频率,C L是一个固定值电容,其次在晶体振荡电路中实际存在的一些电容也对晶体的频率产生影响,所以在生产晶体时也必须将这些电容等效地加在晶体上,否则晶体频率和使用频率将会不一致,有时因客户提供的C L不准确也会使晶体在客户的电路板上产生很大频差。

5、激励电平P

激励电平:石英晶体元件工作所消耗的功率的表征值常用P表示。

在激励电平较大或很小时,晶体元件的频率和电阻都在一定程度上随激励电平的变化而变化,因此规定的激励电平值应为设备中实际使用的激励电平值,而且这个值应该是合适的,即不能太高,也不能太低。

5.1、激励电平太高是会导致以下结果:

5.1.1、容易出现寄生振荡,使频率温度特性和电阻温度特性产生畸变,如:

跳频、活力下降、死点等。

5.1.2、由于晶体过热和过应力造成的频率漂移,此漂移一般是不可逆的、5.1.3、电阻突然变化,可用此原理来进行电清洗,经强激励后电阻一般均下

降,一般不可逆。

9.2、激励电平太低会使晶体电阻增大,以至于不能起振。在额定激励电平

下其电阻值就可能相差很大,起振特性不好,甚至停振。因此现在许多客户提出了DLD(激励电平相关性)的要求,由于集成电路的广泛运用,客户希望P尽量小。

6、老化

老化:石英晶体元件频率和谐振电阻随时间的变化关系。在大多数的应用中主要是频率随时间的变化,其变化是长时间的不可逆返的。虽然

石英晶体元件的频率稳定性非常优良,但仍然会随存放时间、工作时

间的延长及激励功率和工作温度变化而变化。

6.1、因自然存放时间而引起的频率相对变化称为自然老化;

因工作时间引起的频率相对变化称为负荷老化,总称为老化频差,简称老化。

6.2、老化原因

老化的原因主要是由于晶片经过研磨、腐蚀后打破了晶体内部结构的平衡;晶片表面杂质、污物及电极膜也参与了振动,改变了晶体的密度,增加了其应力,由于质量负荷效应和应力驰预效应而导致频率变化。

6.3、由于老化是一个长时间的缓慢变化的过程,通常用年老化率表示,一

般要求为5PPM/年。如果采用优质原料和精密设计和加工,年老化率可优于0.5PPM。

6.4、影响老化的因素

影响老化的因素很多,是晶体生产厂工艺水平的集中表现。老化的机理很复杂,许多人已进行了广泛深入的试验研究,普遍认为,它不但

与水晶原料质量、晶片切型有关,而且受石英片加工和晶体装配工艺影响很大,例如:研磨对晶片造成的应力、晶片表面附着物的增减、电极膜和晶片之间的应力、上架过程和晶片之间形成的应力的变化、晶体盒漏气、振子污染、过激励、过度的冲击、及较高的温度等都会产生影响。同样条件下,外壳密封性越好,则老化相应小一些,如玻璃壳封装、电阻焊封装、冷压焊封装等。它们要比焊锡封装要好。

为了减少老化,针对有关因素常常采取的相应措施有:

A、保证晶片表面和边缘的光洁度

B、足够的腐蚀量,确保全部去除破坏层。

C、确保晶片、电极膜、支架、绝缘衬套、外壳内部的清洁度。

D、电极膜不能太厚,保证镀膜公差,尽量减少微调量。

E、要保证镀膜和微调是的真空度,镀膜前进行离子轰击清洗,镀膜中保

持适当的蒸发速度。

F、镀膜前后、微调后在充氮烤箱中烘烤消除应力。

G、烤胶后清洗掉导电胶的挥发物。

H、晶体壳内充高纯氮气(99.99%)。

I、封焊后密封性能良好。

J、尽量减少从晶片清洗到谐振件封装前在空气中的存放时间,减少污染。

此外,人们常用高温(85℃或125℃)常时间(30天)烘烤,加速老化的方法快速降低质量负荷效应和应力驰预效应,提前剔除老化性能差的产品。有人通过试验发现,应力起主导作用时烘烤后频率向正方向变化,而质量负荷起主导作用时则向负方向变化。因为老化原因及其变化过程很复杂,很难预测每只晶体的变化方向。

7、标称频率

晶体元件技术规范中规定的频率。即客户在订单中提出的频率。通常标识在晶体的外壳上,它与晶体元件的实际工作频率有一定的差值。

工作频率:晶体元件与其电路一起产生的振荡频率。

8、调整频差

在规定条件下基准温度时的工作频率相对于标称频率的最大偏离值。在技术规范中用相对偏差表示,其单位为PPM。

9、基准温度

为了确定晶体元件的频率准确度而规定的温度,或者测量晶体元件时指定的环境温度。因为当晶体元件所处的环境温度变化时频率也随之变化,所以为了使生产厂和用户测频时的一致性,都必须在规定的温度(基准温度)下测量。它表示:

A、晶体元件经常的工作温度

B、除恒温晶体外,一般为25℃±2℃

10、工作温度范围(简称工作温度)-技术条件(如订单)中规定的一种环

境温度范围,在该温度范围内晶体元件性能指标能符合规定的技术要求。

11、温度频差-在规定条件下,晶体元件在工作温度范围内的工作频率相对

于其基准温度时工作频率的允许偏差称为温度频差。也就是只是因为温度的变化而引起的频率变化,它不包含调整频差。温度频差的大小决定

了晶体元件频率温度特性的好坏,同样也用相对频差表示,单位为PPM.

12、石英谐振器的用途

石英谐振器又称石英晶体组件,简称石英晶体或晶体,它是一种电子元件,因为其最主要的特性就是在工作时能够产生一个非常稳定的频率,在需要进行频率控制和选择的各类电子产品中起稳频和选频的作用。因此,在国际电工委员会(IEC)标准中它的全称为《频率控制和选择石英晶体元件》。它被广泛应用于国防、军事、工业及民用电子设备设备中,原国家科委主任、工程院院士宋建曾强调指出:“石英晶体元件是特种关键元件,航天导弹卫星和运载火箭每个型号都要用,一旦用上了就是整机的心脏”。对于石英晶体在工业和民用领域中的作用,日本科学家曾作过这样的精辟的评价:“石英晶体产品已经在今天这场使工作生产更有效以及家庭生活更舒适的电子革命中担任了主要的支柱的角色,它是其它元件很难相比和不能取代的”。

以下是主要用途简单介绍:

一、在航天和军事上的应用

如:卫星转发器、军用电台、遥控、遥测等,我国第一颗人造地球卫星就使用了原六○七研制的石英晶体元件。

二、在通讯系统中的应用

在移动通讯蓬勃发展的今天,石英晶体在通讯系统中的重要地位越来越突出。如:程控交换机、寻呼机、时钟、模拟及数字电路移动电话、无绳电话、手机等。

三、在民用电子设备中的应用更加广泛

由于石英晶体元件的主要原材料-人造石英晶体(又称人造水晶)的大力发展,产量猛增,石英晶体元件生产设备,生产工艺的不断更新改造,成本逐步下降,因而晶体元件在民用工业领域的用途不断扩大,如:彩色电视机、石英钟表、程控电话、无绳电话、汽车电话、录像机、VCD、空调、电子玩具、各种遥控器等。

A.彩色电视机,石英晶体是在色彩频率振荡器上用来激励色彩信道同道解

调器,PAL制式4.433619MHz,NTS为3.579545MHz。

B.电视差转机(75MHz以上)。

C.手机、传呼机。

D.微处理机,由于数字化智能化的普及使微处理机在各方面得到广泛应

用,如:工业、个人用电脑,由晶体提供一个频率非常稳定的时基。E.无绳电话机(子母机,发射系统用15MHz、16MHz的晶体振荡器,接

受部分用10.7MHz晶体滤波器)、汽车电话。

F.石英钟-数字式、指针式,原来用4.194304MHz,现在用32.768MHz。

G.立体声音响

H.磁带录像机(VTR)

I.摄像机

J.空调机、电视机和电子玩具等用的各种遥控器。

K.其它如:在测量方面用途也很广泛,利用石英晶体对温度、压力、负荷的敏感性,制成石英温度计,测量精度可达0.001℃。其它还有石英压

力计、微量天平、超声波换能器等。

常用元器件介绍

常用元器件介绍

1.1电阻 1.1.1功能:电阻器是电路元件中应用最广泛的一种,在电子设备中约占元件总数的30%以上,其质量的好坏对电路工作的稳定性有极大影响。它的主要用途是稳定和调节电路中的电流和电压,其次还作为分流器分压器和负载使用,见图1.1 1.1.2符号: 图1.1 1.1.3分类: 1)从材料分:碳膜电阻(用RT表示),金属膜电阻(RJ表示),氧化膜电阻(用RY表示),线绕电阻(用RX表示),水泥电阻(用RS表示)等。见图1.2 图1.2 2)从功率分:1/6W,1/4W,1/2W,1W,2W等,大功率电阻一般水泥材料,用作负载。 3)从精密度分:常用的精度为±0.5%、±1%、±2%,±5%等,下面误差等级的分类:见表1.1 允许误差±0.5%±1% ±2%±5%±10%±20% 级别005 01 02 ⅠⅡⅢ 表1.1 4)从功能分:有纯电阻、压敏电阻、热敏电阻(NTC 电阻,PTC电阻)、光敏电阻等 1.1.4色环阻值表示法:碳质电阻和一些1/8瓦碳膜电阻的阻值和误差用色环表示。在电阻上有三道或者四道色环。靠近电阻端的是第一道色环,其余顺次是二、

三、四道色环,第一道色环表示阻值的最大一位数字,第二道色环表示第二位数字,第三道色环表示阻值未应该有几个零。第四道色环表示阻值的误差。色环颜色所代表的数字或者意义见下表1.2: 色 别第一色环最大一位数字 第二色环第二位数字 第三色环应乘的数 第四色环误差 棕 1 1 10 红 2 2 100 橙 3 3 1000 黄 4 4 10000 绿 5 5 100000 蓝 6 6 1000000 紫 7 7 10000000 灰 8 8 100000000 白 9 9 1000000000 黑 0 0 1 金 0.1 ±5% 银 0.01 ±10% 无色 ±20% 表1.2 示例: 1)在电阻体的一端标以彩色环,电阻的色标是由左向右排列的,图1的电阻为27000Ω±0.5%。 2)精密度电阻器的色环标志用五个色环表示。第一至第3色环表示电阻的有效数字,第4色环表示倍乘数,第5色环表示容许偏差,图1.3的电阻为17.5Ω±1% 表示27000Ω±5% 表示17.5Ω±1% 图1.3

常用电子元器件简介

1.常用电子元器件简介 (1)名称·电路符号·文字符号 (2)555时基集成电路 555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。 555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。它们的内部结构和管脚序号都相同,因此,可以直接互相代换。但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV 555、AD555和AHD555等都不是时基集成电路。 常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

(图5-36) 555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。 555时基集成电路的主要参数为(以NE555为例)电源电压4.5~16V。 输出驱动电流为200毫安。 作定时器使用时,定时精度为1%。 作振荡使用时,输出的脉冲的最高频率可达500千赫。 使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。 (3)音乐片集成电路 它同模仿动物叫声和人语言集成电路都是模拟集成电路,采用软包装,即将硅芯片用黑的环氧树脂封装在一块小的印刷电路板上。

电机的性能参数指标

一、旋转电机有哪些性能参数指标? 1.异步电动机主要数据 1)、相数 2)、额定频率(Hz) 3)、额定功率kW 4)、额定电压V 5)、额定电流A 6)、绝缘等级 7)、额定转速(极数)r/min 8)、防护性能 9)、冷却式 2.异步电机主要技术指标 a)效率η:电动机输出机械功率与输入电功率之比,通常用百分比表示。 b)功率因数COSφ:电动机输入有效功率与视在功率之比。 c)堵转电流IA:电动机在额定电压、额定频率和转子堵住时从供电回路输入的 稳态电流有效值。 d)堵转转矩TK:电动机在额定电压、额定频率和转子堵住时所产生转矩的 最小测得值。 e)最大转矩TMAX:电动机在额定电压、额定频率和运行温度下,转速不 发生突降时所产生的最大转矩。 f)噪声:电动机在空载稳态运行时A计权声功率级dB(A)最大值。 g)振动:电动机在空载稳态运行时振动速度有效值(mm/s)。

3.电动机主要性能中分为:一是起动性能;二是运行性能: 起动性能有:起动转矩、起动电流。一般起动转矩越大越好,而起动时的电流越小越好,在实际常以起动转矩倍数(起动转矩与额定转矩之比Tst/Tn)和起动电流倍数(起动电流与额定电流之比Ist/In)进行考核。电机在静止状态时,一定电流值时所能提供的转矩与额定转矩的比值,表征电机的起动性能。 运行性能有: 效率、功率因数、绕组温升(绝缘等级)、最大转矩倍数Tmax/Tn、振动、噪声等。 效率、功率因数、最大转矩倍数越大越好,而绕组温升、振动和噪声则是越小越好。 起动转矩、起动电流、效率、功率因数和绕组温升合称电机的五大性能指标。 二、电动机计算常用的公式 1、电动机定子磁极转速n=(60×频率f)÷极对数p 2、电动机额定功率P=1.732×线电压U×电流I×效率η功率因数COSΦ 3、电动机额定力矩T=9550×额定功率P÷额定转速n 三、防护型式IPXX (GB/T 4208 外壳防护分级(IP代码)) 防护标志由字母IP和两个表示防护等级的表征数字组成。第一位数字表示:防止人体触及或接近壳带电部分和触及壳转动部件(光滑的旋转轴和类似部件除外),以及防止固体异物进入电机(表示防尘等级)。第二位数字表示:防止由于电机进水而引起的有害影响(表示防水等级)。 对特殊应用和适用于规定气候条件的电机,其外壳防护等级的表示法由表征字母、两位表征数字和补充字母三部分组成。 IP 4 4 □ 补充字母 第二位表征数字 第一位表征数字 表征字母 1、第一位表征数字表示外壳对人和壳部件提供的防护等级。

石英晶体基础知识

深圳市锐晶星电子科技有限公司 石英晶體諧振器基礎知識 培训教材 (共8页) 2007年7月1日 第一章石英晶体的基本特性

第一节石英晶体的压电特性 图1-1示出了石英晶体具有压电效应的两种现象。图1-1a当沿Y 轴加压缩力时,则在X轴正端垂直面上,出现正电荷(晶体的伸缩弯曲振动就是按此激起的)。图1-1b中当对晶体施加正切应力时,则在垂直Y 上述现象表明石英晶体是一种各向异性的结晶体,它具有压电效应。当沿某一机械轴或电轴施以压力或拉力,则在垂直于这些轴的两个表面上产生异号电荷±q。其值与机械压力所产生的机械形变(位移)X成正比。即:q=k 1x ﹎﹍(1-1) 式(1-1)所表征的效应称为正压电效应,正压电效应是以机械能为因,电能为果的效应。 石英晶体还具有逆压电效应。如果在石英晶体片两面之间加一电场E,则视电场的方向不同,晶体将沿电轴或机械轴延伸或压缩,延伸或压缩量X与电场强度E成正比,即:X=K2E ﹍(1-2) 式(1-2)所表征的效应称压电逆效应。是以电能为因,机械能为果的效应。 由上面的讨论可以看出,正、逆压电效应互因果关系。如果将石英晶体片置于交变电场中,则在电场的作用下,晶体片的体积将起压缩和伸张的变化,由此形成机械振动,晶体的振动属体波振动,当晶体片振动时,逆压电效应使得晶体片具有导电性,这种压电性叫做压电导电性。石英片固有的振动频率取决于晶体片的几何尺寸、密度、弹性和泛音次数。当晶体片的固有振动频率与加于其上的电场频率相同时,则晶体片将发生谐振。此时振动的幅度最大,压电效应在晶体片表面产生的电数值和压电导电性也达最大。因此,外电路中的交变电流也就最大。这是用以稳定频率的理论基础。 第二节石英晶体在不同温度下的各种变体 在正常的压力下,石英晶体随着温度的不同共有五种不同性质的变体,即: (1)α石英,其温度低于573℃时为稳态,就是我们通常用的压电石英晶体。 (2)β石英,对α石英加温超过573℃时,即转变为β石英,它在573℃~870℃之间为稳态,但此时没有压电效 应,也不能用作压电元器件了。 (3)磷石英,当对β石英加温超过870℃,β石英变为磷石英,它在870℃~1470℃之间为稳态。 (4)方石英,当对磷石英加温超过1470℃时,磷石英变为方石英,它在1470℃~1710℃之间为稳态。(5)石英玻璃,当对方石英加温超过1710℃时及以后即开始溶化,熔化后的石英,将温度降低也不能上述五种形态可用下式开示: 573℃ 870℃ 1470℃ 1710℃ α石英β石英磷石英方石英石英玻璃 由此看出,我们常用的α石英,其临界温度为573℃。若超过这一温度,它将失去压电效应,这是我们在加工过程中必须十分注意的问题。 第三节石英晶体的物理特性 各向异性是石英晶体典型的物理特性,它具有以下物理常数。即: ⑴、密度率:2.649克/立方百米; ⑵、折射率:1.553(或1.5574),有旋光性;

常用电子元器件介绍

常用电子元器件介绍 电子元件知识——电阻器 电阻:导电体对电流的阻碍作用称为电阻,用符号R 表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。 电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻) ①主称②材料③分类④序号 电阻器的分类: ①线绕电阻器 ②薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器 ③实心电阻器 ④敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 ※电阻器阻值标示方法: 1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20% 。 2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称 阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。表示允许误差的文字符

号文字符号:DFGJKM 允许偏差分别为: ±0.5%±1%±2%±5%±10%±20% 3、数码法:在电阻器上用三位数码表示标称值的标志方法。数码从左到 右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。偏差通 常采用文字符号表示。 4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。 国外电阻大部分采用色标法。 黑-0、棕-1、红-2、橙-3、黄-4 、绿-5 、蓝-6 、紫-7、灰-8、白-9、金- ±5%、银- ±10% 、无色-±20% 当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。 当电阻为五环时,最後一环与前面四环距离较大。前三位为有效数字,第四位为乘方数,第五位为偏差

动力电池性能参数

动力电池性能参数 一、电性能 (1) 电动势 电池的电动势,又称电池标准电压或理论电压,为电池断路时正负两极间的电位差。电池的电动势可以从电池体系热力学函数自由能的变化计算而得。 (2) 额定电压 额定电压(或公称电压),系指该电化学体系的电池工作时公认的标准电压。例如,锌锰干电池为 1.5V ,镍镉电池为1.2V ,铅酸蓄电池为2V ,锂离子电池为 (3) 开路电压 电池的开路电压是无负荷情况下的电池电压。开路电压不等于电池的电动势。必须指出,电池的电动势是从热力学函数计算而得到的,而电池的开路电压则是实际测量出来的。 (4) 工作电压 系指电池在某负载下实际的放电电压,通常是指一个电压范围。例如,铅酸蓄电池的工作电压在2V ?1.8V ;镍氢电池的工作电压在 1.5V?1.1V ;锂离子电池的工作电压在 3.6V?2.75V。 (5) 终止电压 系指放电终止时的电压值,视负载和使用要求不同而异。以铅酸蓄电池为例:电动势为2.1V,额定电压为2V,开路电压接近2.15V,工作电压为2V?1.8V,放电终止电压为1.8V?1.5V( 放电终止电压根据放电率的不同,其终止电压也不同)。 (6) 充电电压

系指外电路直流电压对电池充电的电压。般的充电电压要大于电池的开路电压,通常 在一定的范围内。例如,镍镉电池的充电压在1.45V?1.5V ;锂离子电池的充电压在4.1V?4.2V ;铅酸蓄电池的充电压在2.25V?2.5V。 (7) 内阻 蓄电池的内阻包括:正负极板的电阻,电解液的电阻,隔板的电阻和连接体的电阻等。 a. 正负极板电阻 目前普遍使用的铅酸蓄电池正、负极板为涂膏式,由铅锑合金或铅钙合金板栅架和活性物质两部分构成。因此,极板电阻也由板栅电阻和活性物质电阻组成。板栅在活性物质内层,充放电时,不会发生化学变化,所以它的电阻是板栅的固有电阻。活性物质的电阻是随着电池充放电状态的不同而变化的。 当电池放电时,极板的活性物质转变为硫酸铅(PbSO4) ,硫酸铅含量越大,其电阻越大。而电池充电时将硫酸铅还原为铅(Pb) ,硫酸铅含量越小,其电阻越小。 b. 电解液电阻 电解液的电阻视其浓度不同而异。在规定的浓度范围内一旦选定某一浓度后,电解液电 阻将随充放电程度而变。电池充电时,在极板活性物质还原的同时电解液浓度增加,其电阻下降;电池放电时,在极板活性物质硫酸化的同时电解液浓度下降,其电阻增加。 c. 隔板电阻 隔板的电阻视其孔率而异,新电池的隔板电阻是趋于一个固定值,但随电池运行时间的延长,其电阻有所增加。因为,电池在运行过程中有些铅渣和其他沉积物在隔板上,使得隔板孔率有所下降而增加了电阻。

石英晶体元器件概述

石英晶体元器件概述 一、前言 石英晶体俗称水晶,成分是SiO2,是一种重要的压电材料,可用于制造压电元器件。例如:石英晶体谐振器、石英晶体滤波器、石英晶体振荡器、石英晶体传感器等。 二、石英晶体元器件的内容

三、晶振分类 根据晶振的不同使用要求及特点,通常分为以下几类:普通晶振、温补晶振、压控晶振、温控晶振等。 1、普通晶振(PXO或SPXO):是一种没有采取温度补偿措施的晶体振荡器,在整个温度范围内,晶振的频率稳定度取决于其内部所用晶体的性能。 特点: ●频率精度(准确度):10-5~10-4量级 ●标准频率:1~100MHZ ●频率稳定度是±100ppm。 ●用途:通常用作微处理器的时钟器件、本振源或中间信号。 ●封装尺寸: DIP14(21×14×6mm),SMD 7050、5032、3225、2520。 ●价格:是晶振中最廉价的产品, 2、温补晶振(TCXO):是在晶振内部采取了对晶体频率温度特性进行补偿,以达到在宽温温度范围内满足稳定度要求的晶体振荡器。一般模拟式温补晶振采用热敏补偿网络。 特点: ●频率精度(准确度):10-7~10-6量级 ●频率范围:1~60MHz ●频率稳定度:±1~±2.5ppm ●封装尺寸: DIP14(21×14×6mm),11.4×9.6mm,SMD 7050、5032、3225、2520 ●用途:通常用于手持电话、蜂窝电话、双向无线通信设备等。 ●由于其良好的开机特性、优越的性能价格比及功耗低、体积小、环境适应性较强等多方面 优点,因而获行了广泛应用。 3、压控晶振(VCXO):是一种可通过调整外加电压使晶振输出频率随之改变的晶体振荡器,主要用于锁相环路或频率微调。压控晶振的频率控制范围及线性度主要取决于电路所用变容二极管及晶体参数两者的组合 特点: ●频率精度(准确度):是10-6~10-5量级 ●频率范围:1~30MHz ●频率稳定度:±50ppm ●用途:通常用于锁相环路 ●封装尺寸:14×10×3mm或更小,SMD 7050、5032、3225、2520

年产15000万只SMD-G型石英晶体谐振器项目

年产15000万只SMD-G型石英晶体谐振器项目项目名称:年产15000万只SMD-G型石英晶体谐振器

目录 一、项目的背景和必要性 1、国内外现状和技术发展趋势 2、对产业发展的作用与影响 3、产业关联度分析 4、市场分析 二、项目的技术基础 1、成果的来源及知识产权情况 2、技术或工艺特点以及与现有技术或工艺比较所具有的优势 3、项目需解决的关键技术问题 4、该项技术的突破对行业技术进步的重要意义和作用 三、建设方案 1、项目建设的主要内容 2、建设规模 3、工艺技术路线 4、设备选型 5、主要经济技术指标 6、建设地点、建设工期和进度安排、建设期管理 四、项目投资 1、项目总投资

2、投资使用方案 3、资金筹措方案 4、贷款偿还计划 五、各项建设条件落实情况 1、环境保护 2、资源综合利用 3、原材料供应及外部配套条件落实情况 六、项目财务分析、风险和效益分析 1、销售收入和销售税金及附加 2、达产年销售总成本的估算 3、项目经济分析 4、不确定性分析 5、综合经济评价

一、项目意义和必要性。 1、国内外现状和技术发展趋势 石英晶体谐振器产品是20世纪30年代开始在美国等西方国家和微电脑产业同步发展起来的一种新型电子元件。经过近10年的生产和产业大转移,到二十世纪末,产业现状发展为:美国处在高精度、高稳定性的军用产品研发前沿,日本处于民用石英晶体技术开发和制造装备开发前沿。韩国、台湾特别是中国大陆完成了通孔安装型﹝DIP﹞石英晶体谐振器的技术承接,利用廉价劳动力优势,垄断了DIP型石英晶体谐振器的生产,西方国家基本不再生产DIP型石英晶体谐振器,转为专门生产表面贴装型石英晶体谐振器。 自2000年起,世界晶体行业正在进行第二次产业转移。中国大陆、台湾直接承接了日本、美国的表面贴装﹝SMD﹞型石英晶体谐振器制造技术,成为世界石英晶体谐振器加工厂。事实上,台湾的晶体制造基地也在中国大陆,但是,日本仍控制着SMD型石英晶体谐振器的制造装备和原材料。 随着整机制造表面贴装﹝SMT﹞技术的广泛应用,石英晶体谐振器的品种正处在从通孔安装型﹝DIP﹞向表面安装型﹝SMD﹞的迅速转化阶段;传统家电类整机产品和数码新产品体积不断小型化,如U 盘、MP3、MP4、GPS、数码相机、SIM卡等,便携式产品的不断涌现,要求石英晶体谐振器产品也要随之不断小型化和微型化。而数码通讯类产品如手机、小灵通和蓝牙技术的迅速普及与应用,又对石英晶体

石英晶体的应用(DOC)

石英晶体的应用 一.石英晶体元器件的分类和相关术语 石英晶体元器件一般分为三大类,即石英晶体谐振器,石英晶体振荡器和石英晶体滤波器。 1.1 石英晶体谐振器 相关的术语 标称频率晶体元件规范指定的频率 串联谐振频率(Fs) 等效电路中串联电路的谐振频率 并联谐振频率(Fp) 等效电路中并联电路的谐振频率 负载频率(FL) 晶体带负载时的频率 负载电容(CL) 与谐振器联合决定工作频率的有效外界电容 静电容(C0) 等效电路中与串联臂并联的电容 动电容(C1) 等效电路中串联臂中的电容 动态电感(L1) 等效电路中串联臂中的电感 动态电阻(R1) 等效电路中串联臂中的电阻 频率精度工作频率与标称频率的偏差 等效电阻(ESR) 谐振器与规定的负载电容串联的总阻抗 频率温度特性频率随温度变化的特性 室温频率偏差谐振器在室温下频率的偏差 频率/负载牵引系数(Ts) 负载电容对频率影响的能力 老化率晶体频率随时间的漂移 Q值晶体的品质因数 激励功率(电平)谐振器工作时消耗的功率 激励功率依赖性(DLD) 谐振器在不同激励功率下参数的特性 温度频率偏差频率随温度变化与标称频率的偏差 工作温度范围谐振器规定的工作温度范围 泛音晶体的机械谐波 寄生响应晶体除主响应(主频率)外的其他频率的响应 1.2 石英晶体振荡器 石英晶体振荡器是目前精确度和稳定度最高的振荡器。石英晶体振荡器是由品质因素极高的谐振器(石英晶体振子)和振荡电路组成。晶体的品质、切割取向、晶体振子结构及电路形式等因素共同决定了振荡器的性能。 相关术语 标称频率晶体元件规范指定的频率 频率温度特性振荡频率随温度变化而改变的特性 长期频率稳定度振荡器长时间工作频率的稳定性 短期频率稳定度振荡器短时间工作频率的稳定性 温度频率偏差振荡频率随温度的偏差 室温频率偏差在室温时振荡频率的偏差 起振时间振荡输出达到规定值的时间 上升时间(方波输出)方波输出时波形从10%到90%所需的时间 下降时间(方波输出)方波输出时波形从90%到10%所需的时间

石英晶体元件性能参数简介

石英晶体元件性能参数简介 术语简介: 1、石英晶体元件的等效电路 其等效电路是一个晶体元件在谐振频率附近具有与晶体元件相同阻抗特性的电路,通常用L1、R1、C1相串联后再与C0并联表示。见下图。 2、石英晶体元件的等效参数(包括静态参数和动态参数):

C0-静电容 L1-等效电感 C1-等效电容 R1-等效电阻 2.1 等效电阻R1 石英晶体的等效电阻是其工作时能量损耗的量度,它包括晶片的内摩擦、支架应力损耗、空气阻尼、电极膜与晶片之间的内摩擦等,其影响大小不等,难以计算。 2.1.1、串联谐振电阻R1 在规定条件下,晶体元件在串联谐振频率f时呈现的等效电阻,又 称谐振电阻,即不加负载电容时测得的电阻。 2.1.2、负载谐振电阻R L 在规定条件下晶体元件在与规定的负载电容C L相串联后工作在负 载谐振频率f L时所呈现的电阻。

R L与R1的关系为:R L=R1[1+( C0 /C L)]2 2.1.3、影响谐振电阻的因素 影响谐振电阻的因素很多,例如原材料质量情况、晶体设计是否合 适、生产工艺水平、清洁程度高低、晶体使用是否恰当、激励电平 的高低等。一般情况下,晶体的泛音电阻要比其基频的电阻大,但 是采取特殊措施也可以使泛音电阻比其基频的电阻小。 2.2、等效电容C1 等效电容C1:等效电路中串联臂中的电容,也称动态电容。 2.2.1、C1的表达式 C1=1/ L1 (2∏f)2 C1值用仪器直接测量时是用下式计算出来的: C1=2(f L-f r)(C0+C L)/ f r =2Δf(C0+C L) / f r 或者 C1=2(f L1-f r) (f L2-f r)(C L2-C L1)/ f r (f L1-f L2)=2Δf L1Δf L2 C L/ f rΔf L f L-加负载电容C L后的频率

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

石英晶体基础

石英晶体基础 石英,学名二氧化硅。 是自然界分布最广的物质之一。它有五种变体(β石英、α石英、α磷石英、方石英、溶炼石英),其中α石英和β石英具有压电效应,当施加压力在晶片表面时, 它就会产生电气电位, 相对的当一电位加在芯片表面时, 它就会产生变形或振动现象, 掌握这种振动现象, 控制其发生频率的快慢, 以及精确程度, 就是水晶振荡器的设计与应用。 石英是由硅原子和氧原子组合而成的二氧化硅(Silicon Dioxide, SiO2), 以32点群的六方晶系形成的单结晶结构﹝图一﹞.单结晶的石英晶体结构具有压电效应特性, 当施加压力在晶体某些方向时, 垂直施力的方向就会产生电气电位. 相对的当以一个电场施加在石英晶体某些轴向时, 在另一些方向就会产生变形或振动现象. 掌握单结晶石英材料的这种压电效应, 利用其发生共振频率的特性, 发挥其精确程度作为各类型频率信号的参考基准, 就是水晶震荡器的设计与应用. 因为石英晶体具有很高的材料Q值,所以绝大部份的频率控制组件,如共振子及振荡器,都以石英材料为基础. 以石英为基础的频率控制组件可以依其压电振动的属性, 可以分为体波(bulk wave)振动组件及表面声波(surface acoustic wave)振动组件. 体波振动组件如石英晶体共振子, 石英晶体滤波器及石英晶体振荡器, 表面波振动组件如表面波滤波器及表面波共振子. 当石英晶体以特定的切割方式, 以机械加工方式予以表面研磨, 完成特定的外型尺寸就是通称的石英芯片(quartz wafer 或quartz blank ). 将这个石英芯片放置在真空还境中, 于表面镀上电极后,再以导电材料固定在金属或是陶瓷基座上, 并加以封装, 就成为一般所谓的石英晶体共振子( quartz crystal resonator ). 利用石英共振子在共振时的低阻抗特性及波的重迭特性, 用邻近的双电极, 可以做出石英晶体滤波器. 将石英振荡子加上不同的电子振荡线路, 可以做成不同特性的石英振荡器. 例如: 石英频率振荡器(CXO), 电压控制石英晶体振荡器(Voltage Controlled Crystal Oscillator, VCXO), 温度补偿石英晶体振荡器(Temperature Compensated Crystal Oscillator, TCXO), 恒温槽控制石英晶体振荡器(Oven Controlled Crystal Oscillator, OCXO)…等. 相对于体波谐振的是表面声波的谐振. 将石英晶体表面镀以叉状电极(inter-digital-transducer, IDT)方式所产生的表面振荡波, 可以制造出短波长(高频率)谐振的表面声波共振子(SAW Resonator)或表面声波滤波器(SAW Filter).

最新常用电子元件简介

常用电子元件简介

常用电子元件简介 一、电阻 电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K); 104则表示100K b、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻) 2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%) 银色 / 10-2 ±10 金色 / 10-1 ±5 黑色 0 100 / 棕色 1 101 ±1 红色 2 102 ±2 橙色 3 103 / 黄色 4 104 / 绿色 5 105 ±0.5 蓝色 6 106 ±0.2 紫色 7 107 ±0.1 灰色 8 108 / 白色 9 109 +5至 -20 无色 / / ±20 二、电容 1、电容在电路中一般用“C”加数字表示(如C25表示编号为25的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=103毫法=106微法=109纳法=1012皮法 容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF

基本元器件介绍

基本元器件介绍 一、基本概念 1、单位 长度单位:1m=102cm=103mm=106um=109nm=1012pm 电容单位:1F=103mF=106uF=109nF=1012pF 电阻单位:1Ω=103mΩ=106uΩ=109nΩ=1012pΩ,1MΩ=103kΩ 电感单位:1H=103m H=106u H=109n H=1012p H 1inch(英寸)=2.54cm 1mil(密耳)=1/1000inch=0.0254mm 2、有源元件无源元件概念 有源元件:电子元器件工作时,其内部有电源存在,则称为有源元件。需要外部能源实现其特定功能。一般用于信号放大、转换等。例如:晶体管、MOS管。无源元件:在电路中无需加电源即可在有信号时工作。不需要外加电源条件下,就可以实现其特性的电子元器件。例如:电阻、电容、电感。 3、数字电路基础知识: 用数字信号完成对数字量进行算数运算和逻辑运算的电路,数字电路仅存在逻辑“0”和“1”两种电平信号。 (1)逻辑电平: 数字电压的高、低电平通称为逻辑电平,即数字电路中的“0”和“1”。

I、TTL(Transistor-Transistor Logic)电平:规定+5V为逻辑“1”,0V为逻辑“0”。51单片机使用的是TTL电平。 II、LVTTL(Low Voltage TTL)电平:规定+3.3V为逻辑“1”,0V为逻辑“0”。 一些小模块可以使用LVTTL电平,如摄像头模块或者CH340下载器。 (2)数制: I、二进制Binarysystem(B):基数为2,用0和1两个数码表示,逢二进一。II、八进制Octalsystem(O):基数为8,用0~7表示,逢八进一。 III、十进制Decimalsystem(D):基数为10,用0~9表示,逢十进一。 IV、十六进制Hexadecimalsystem(H):基数为16,用0~F表示,0~9,超过十则用A~F表示。在程序中,习惯在数字之前加0x来表示一个十六进制的数,例如:0xAF,0x7A。 V、二进制、十六进制互相转换:四位二进制数计数从0000~1111,正好对应0~15,因此以四位二进制数为一个单位与十六进制互相转换。

常用元器件介绍

1.1电阻 1.1.1功能:电阻器是电路元件中应用最广泛的一种,在电子设备中约占元件总数的30%以上,其质量的好坏对电路工作的稳定性有极大影响。它的主要用途是稳定和调节电路中的电流和电压,其次还作为分流器分压器和负载使用,见图1.1 1.1.2符号: 图1.1 1.1.3分类: 1)从材料分:碳膜电阻(用RT表示),金属膜电阻(RJ表示),氧化膜电阻(用RY表示),线绕电阻(用RX表示),水泥电阻(用RS表示)等。见图1.2 图1.2 2)从功率分:1/6W,1/4W,1/2W,1W,2W等,大功率电阻一般水泥材料,用作负载。 3)从精密度分:常用的精度为±0.5%、±1%、±2%,±5%等,下面误差等级的分类:见表1.1 表1.1 4)从功能分:有纯电阻、压敏电阻、热敏电阻(NTC电阻,PTC电阻)、光敏电阻等 1.1.4色环阻值表示法:碳质电阻和一些1/8瓦碳膜电阻的阻值和误差用色环表示。在电阻上有三道或者四道色环。靠近电阻端的是第一道色环,其余顺次是二、三、四道色环,第一道色环表示阻值的最大一位数字,第二道色环表示第二位数字,第三道色环表示阻值未应该有几个零。第四道色环表示阻值的误差。色环颜色所代表的数字或者意义见下表1.2:

表1.2 示例: 1)在电阻体的一端标以彩色环,电阻的色标是由左向右排列的,图1的电阻为27000Ω±0.5%。 2)精密度电阻器的色环标志用五个色环表示。第一至第3色环表示电阻的有效数字,第4色环表示倍乘数,第5色环表示容许偏差,图1.3的电阻为17.5Ω±1% 表示27000Ω±5% 表示17.5Ω±1% 图1.3 1.1.5应用常识: 1)在电路图中电阻器和电位器的单位标注规则 阻值在兆欧以上,标注单位M。比如1兆欧,标注1M;2.7兆欧,标注2.7M。 阻值在1千欧到1兆欧之间,标注单位k。比如5.1千欧,标注5.1k;68千欧,标注68k;比如360千欧,标注360k。 阻值在1千欧以下,可以标注单位Ω,也可以不标注。比如5.1欧,可以标注5.1Ω或者5.1;680欧,可以标注680Ω或者680。 2)电阻的额定功率要选用等于实际承受功率1.5~2倍的,才能保证电阻耐用可靠。电阻在装入电路之前,要用万用表欧姆档核实它的阻值。安装的时候,要使电阻的类别、阻值等符号容易看到,以便核实。

电机性能参数解释

直流电动机作为机电执行元部件,内部有一个闭合的主磁路。主磁通在主磁路中流动,同时与第二个电路交链,其中一个电路是用以产生磁通的,称为激磁电路,另外一个是用来传递功率,称为功率回路或者电枢回路。现行的直流电动机都是旋转电枢式,也就是说激磁绕组及其所包围的铁芯组成的磁极为定子,带换向单元的电枢绕组和电枢铁芯结合构成直流电动机的转子。 1.转矩:电动机得以旋转的力矩,单位为 kg .m 或N. m; 2.转矩系数:电动机所产生转矩的比例系数,一般表示每安培电枢电流所能产生的转矩大小; 3.摩擦转矩:电刷、轴承、换向单元等因摩擦而引起的转矩损失; 4.启动转矩:电动机启动时所产生的旋转力矩; 5.转速:电动机旋转的速度,工程单位为 r/min,即转每分,在国际单位制中为 rad/s,即弧每秒; 6.电枢电阻:电枢内部的电阻,在有刷电动机里一般包括电刷与换向器之间的接触电阻,由于电阻中流过电流时会发热,因此总希望电枢电阻尽量小些; 7.电枢电感:因为电枢绕组是由金属线圈构成,必然存在电感,从改善电动机运行性能的角度来说,电枢电感越小越好。 8.电气时间常数:电枢电流从零开始达到稳定值的%时所经历的时间。测定电气时间常数时,电动机应处于堵转状态并施加阶跃性质的驱动电压。电气时间常数工程上常常利用电枢绕组的电阻Ra和电感La求出: Te=La/Ra 9.机械时间常数:电动机从启动到转速达到空载转速的%时所经历的时间。测定机械时间常数时,电动机应处于空载运行状态并施加阶跃性质的阶跃电压。机械时间常数工程上常常利用电动机转子的转动惯量J和电枢电阻Ra以及电动机反电动势系数Ke、转矩系数Kt求出:

常用电子元件介绍

常见电子元件认识 在我们生产的产品中,PNP,插件接触的元器件有电阻、电容、二极管、三极管、双栅极场效应管、IC、PCB板等,下面分别对其简单说明。 1、电阻(RESISTOR简称RES) 1-01.分类 (1)固定电阻: 按材料分有金属皮膜,碳素皮膜等电阻; 按外形分有插脚电阻,表面电阻等电阻; 按名称分有热敏电阻,压敏电阻,色环电阻,贴片电阻等电阻 (2)微调电阻:亦称半可调电阻 (3)可调电阻:亦称电位器或可变电阻 一般情况下(1)类电阻值不变化,(2)(3)类电阻阻值可随调整而变化,我们常用的有色环电阻,代号类电阻,表面电阻等,此类电阻没有方向性 1-02.基本单位及换算: 如右图(二)所示: A=第一色环(十位数)C=第三色环(幂指数) B=第二色环(个位数)D=最末环(误差值色环)

电阻值计算:R =(A×10+B)×10C A=红色=2C=黄色=4B=黑色=0D=银色=±10% 电阻值:R=(2×10+0)×104 =200KΩ 误差值:=±10% (二) 即该阻值180=200-200×10%≤R≤200+200×10%=220内均为OK 注:区分最末环 1)一般金色、银色为最末环 2)与其它色环隔离较远的一环为最末环 特例:五色环电阻的计算方法与四色环计算方法相同,五色色环前三位 为有效数字,如右图(三)所示:A=第一色环(百位数)A=红色2(三) B=第二色环(十位数)B=红色2C=第三色环(个位数)C=棕色1D=第四色环(幂指数)D=橙色3E=最末环(误差值色环) E=红色=±2% 电阻值计算:R=(A×100+B×10+C)×10 D R=(2×100+2×10+1)×10 3 误差值:=±2% 注:由于五色环电阻阻值准确,通常只有两种误差代号:±1%及±2%1-03-02代号类电阻,如右图(四)所示: 其阻值用三位代号数值来表示。 计算方法有两种:a)用LCR 测试仪直接读出其电阻值; b)根据表面数值来计算 (四) 代号电阻值 10110×10=100Ω10210×100=1KΩ10310×1000=10KΩ10410×10000=100KΩ271 27×10=270 B A C D 分隔开 B A C D E 103

石英晶体元器件详细技术资料

晶振行业人士众所周知石英晶体原名称呼为水晶体,主要成分有天然和人工,人工主要成分SiO2,以及化学材料,和到光学材料,当然最主要的还是压电材料了。压电石英晶体最主要的特征是原子或者是分子,是非常有规律的排列。反映在宏观上是外形的对称性。人造水晶在高温高压下结晶而成。在电场的作用下,晶振内部产生应力而形变,从而产生机械振动,获得特定的频率。我们利用它的这种逆压电效应特性来制造石英晶体谐振器。

负载谐振频率 图1 表示AT切厚度切变石英晶体随切角变化的频率温度特性曲线。由于AT切频率温度特性等效于三次方程,因此在较宽的温度范围内有较好的频率稳定性。

等效电路 图2 为晶体的等效电路,可利用其表述晶体在谐振频率附近的工作特性。Co表示静态电容,是晶体两电极之间的电容再加上引线及基座带来的电容。R1, L1,C1组成晶体等效电路的动态臂,C1表示石英晶振的动态电容,L1为动态电感,R1为动态电阻。 谐振频率 fr 及 fa 晶体元件电气阻抗为纯电阻时,对应着两个频率,其中较低的一个为串联谐振频率 fr, 较高的一个为并联谐振频率 fa, 在 fr 时晶体元件对应的电阻值 Rr 称为晶体的谐振电阻,在近似情况下: 负载谐振频率 在规定条件下,晶振元件与一负载电容相串联或并联,其结合阻

抗为纯电阻时的两个频率中的一个频率即为 f L 。在串联电容时,负载谐振频率是两个频率中较低的那个频率,而在并联电容时,负载谐振频率则是其中较高的那个频率。对某一个给定的负载电容值( C L ),实际上这两频率是相等的,可近似表述为 负载电容 从SMD晶振的两个引脚向电路系统看去电路所呈现的全部有效电容,即为负载电容,它与晶体元件一起决定晶体在电路上的工作频率。 品质因素 “ Q ”值是晶体等效电路中动态臂谐振时的品质因素。振荡电路所能获得的最大稳定性直接与电路中晶体的 Q 值相关。 Q 值越高,晶体带宽(△ f )越小,电抗值( fs - fa )变化越陡,外部电抗对晶体的影响越小。 石英晶片的制作流程

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh/g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶液;在弱氧化气氛下,将浓度为40~70g/l的高纯钴盐溶液与浓度为60~200g/l的沉淀剂混

相关主题
文本预览
相关文档 最新文档