当前位置:文档之家› 二极管基本电路及其分析方法

二极管基本电路及其分析方法

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中

半导体二极管及其基本电路

半导体二极管及其基本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。

图(1)浓度差使载流子发生扩散运动 (2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠

近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性 (1)外加正向电压(正偏) 在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。

二极管的七种用法

二极管其他7中应用电路详解 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。 如图1.1所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图1.1 3只普通二极管构成的简易直流稳压电路 1.1电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。

关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 1.2 二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中之一是二极管导通后其管压降基本不变,对于常用的硅二极管而言导通后正极与负极之间的电压降为0.6V。 根据二极管的这一特性,可以很方便地分析由普通二极管构成的简易直流稳压电路工作原理。3只二极管导通之后,每只二极管的管压降是0.6V,那么3只串联之后的直流电压降是0.6×3=1.8V。 1.3 故障检测方法 检测这一电路中的3只二极管最为有效的方法是测量二极管上的直流电压,如图1.2所示是测量时接线示意图。如果测量直流电压结果是1.8V左右,说明3只二极管工作正常;如果测量直流电压结果是0V,要测量直流工作电压+V是否正常和电阻R1是否开路,与3只二极管无关,因为3只二极管同时击穿的可能性较小;如果测量直流电压结果大于1.8V,检查3只二极管中有一只开路故障。

“断路法”分析二极管电路工作状态 4 例-文章-基础课-模拟电

二级管不是线性元什,对其构成的鼙流、限幅、续流保护、低压稳压、门电路等电路进行分忻时可以采用二极管的理想模型( 正向导通时视为短路,反向截止时视为开路) 或恒压降馍型( 止向导通时视为恒压源,反向截止时视为开路) ,还可以采用折线模型( 正向导通时视为恒压源串联一小电阻,反向截止时视为开路) 。不管采用哪种等效模型,关键在于分忻出二极管在电路中的上作状态到底处于正向导通还是处于反向截止.当电路中有多个二极管或有交流信号时二极管的工作状态并不能很直观地判断出来。 本文所述“断路法”能快速判断出二极管的工作状态,其核心思想是先将昕有二极管从电路中断开,分折这种情况下各二极管的正向压降:例如,理想模犁时正向压降大于零时二极管导通,否则截止。若电路中有多个二极管,断路时正向压降最高的二极管优先导通,再把已分忻出导通的二圾管放回电路,重新分忻其他二圾管断路时的正向压降( 依旧遵循正向压降最高的优先导通) ,直到所有二极管状态分析完。对有交流信号时二极管的工作状态,同样的分析过程要用在不同

的电压值范围。下面以几个例题来说明该方法的陵用( 二极管工作状态分析采用理想模型) 。 【例1] 判断图1 中二极管的状态并求P 点电位。 图1 是只有一个_ 二极管的情况。按“断路法”进行分析,先将二极管从电路中断开,断开后,左(N) 、右(P) 各自构成独立的回路。N 点电位为2k Ω电阻上的压降加5k Ω电阻上的压降: VN=-10x2 /20 十15x5 /30=1 .5(V) ;P 点电位为10k

Ω电阻上的压降:VP=15x10/150=1(V) ,可知二极管D 承受的正向压降UPN=-O .5V ,故该二极管截止(P 点电位为1V) 。 【例2 】求图2 中N 点电位( 已知V1=5V ,Vz=3V) 。 图2 是有两个二极管的情况( 为门电路) 。先将二极管D1 、D2 都断开,这时,A 点电位VA=V1=5V ;B 点电位VB=V2=3V ;N 点电位VN=OV ,则D1 承受的正向压降UAN=5V ;D2 承受的正向压降UHN=3V ,D1 承受的正向压降更大,故其优先导通,将其放回原电路后相当于短路( 如图3) ,这时N 点电位变为VN=V1 x9 /10=4 .5V ;D2 承受的正向压降 UBN=3V-4 .5V=-1 .5V( 为负) ,故D2 截止,收回原电路后相当于断路( 如图3) ,所以N 点电位为4 .5V 。 【例3 】求图4 中的输出波形uo( 已知输入ui=10sin ωtV) 。

半导体二极管及其基本电路

第二章半导体二极管及其基本电路 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。(一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导电工作原理、 ?二极管的V-I特性及主要性能指标

2.1 半导体的基本知识 2.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。 2.1.2 半导体的共价键结构 在电子器件中,用得最多的半导体材料是硅和锗,它们的简化原子模型如下所示。硅和锗都是四价元素,在其最外层原子轨道上具有四个电子,称为价电子。由于原子呈中性,故在图中原子核用带圆圈的+4符号表示。半导体与金属和许多绝缘体一样,均具有晶体结构,它们的原子形成有排列,邻近原子之间由共价键联结,其晶体结构示意图如下所示。图中表示的是晶体的二维结构,实际上半导体晶体结构是三维的。 硅和锗的原子结构简化模型及晶体结构

二极管基本电路及其分析方法

§1-4 二极管基本电路及其分析方法 1.4.1 二极管的等效模型 1、二极管的直流模型 1)理想开关模型 2)恒压降模型 3)3)折线模型 2、二极管的交流小信号模型 当在二极管的工作点上叠加有低频交流小信号电压ud时,只要工作点选择合适,且ud足够小,可以将Q点附近的特性曲线看成是线性的(线性化),则交流电压与电流之间的关系可以用一个电阻rd来表示。 rd——即为工作点处的交流电阻,rd=UT/ID。 注意:小信号模型只能表示交流电压与电流之间的关系,不能反映总的电压与电流的关系。 1.4.2 二极管的应用电路 二极管在低频电路和脉冲电路中常用于整流、限幅、钳位、稳压等波形变换和处理电路,在高频电路中常用于检波、调幅、混频等频率变换电路. 1、整流电路

2、二极管限幅电路 二极管的导通压降为UD=0.7V, (1)|ui|< UD时, D1、D2 都截止,视为开路,输出为uo=ui。 (2)ui> UD时,D1截止,D2导通,输出为uo = 0.7V 。 (3)ui<-UD时,D2截止,D1导通,输出为uo = -0.7V 。 输出电压被限幅在±0.7V之间,是一个双向限幅电路。由于二极管在限幅时并非理想的恒压源,在限幅期间电压仍会有变化,所以二极管限幅为“软限幅”。限幅电路常用作波形变换和保护电路。 3、二极管钳位电路 钳位:把交流信号的顶部或底部固定在某个电位值上。 二极管钳位电路是改变信号直流成分的电路。

(1)ui负半周,二极管导通,uo=uD =0V,导通电阻RD很小, C被充电到ui的峰值。 (2)ui正半周,二极管反偏截止,C无法放电,输出电压为uo=ui+uC=5V。(3)下一个负半周,二极管上的电压为0,二极管截止,输出电压为uO=0V。此后,二极管保持截止状态,电容无法放电,相当于恒压源,输出电压为:uo=ui +2.5V,uo的底部被钳位于0V。

最新半导体二极管及其基本电路

半导体二极管及其基 本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。 图(1)浓度差使载流子发生扩散运动

(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性

一讲:二极管及其基本电路

导言 我们为什么要学习模拟电子技术 在自然界以及人类活动中,存在着各种各样的信息。承载着这些信息的载体,就叫做信号。现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。 然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。因此,需要将这些信号输入到放大电路中进行放大处理。 如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。可以说,“放大”一词,就是这门课的核心。

课时一:二极管及其基本电路 一、PN 结 1. 形成 通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。 2. 单向导电性 PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通; PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。 3. 电容效应 PN 结的电容效应包括扩散电容D C 和势垒电容B C 。 4. 反向击穿特性 PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。 二、半导体二极管 半导体二极管就是一个封装的PN 结。 1. 二极管的伏安特性 1) 伏安特性表达式 二极管是一个非线性器件,其伏安特性的数学表达式为

相关主题
文本预览
相关文档 最新文档