当前位置:文档之家› 一讲:二极管及其基本电路

一讲:二极管及其基本电路

一讲:二极管及其基本电路
一讲:二极管及其基本电路

导言 我们为什么要学习模拟电子技术

在自然界以及人类活动中,存在着各种各样的信息。承载着这些信息的载体,就叫做信号。现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。

然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。因此,需要将这些信号输入到放大电路中进行放大处理。

如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。可以说,“放大”一词,就是这门课的核心。

课时一:二极管及其基本电路

一、PN 结

1. 形成

通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。

2. 单向导电性

PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通;

PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。

3. 电容效应

PN 结的电容效应包括扩散电容D C 和势垒电容B C 。

4. 反向击穿特性

PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。

二、半导体二极管

半导体二极管就是一个封装的PN 结。

1. 二极管的伏安特性

1) 伏安特性表达式

二极管是一个非线性器件,其伏安特性的数学表达式为

)1(-=T D V v S D e I i

在室温下(K T 300=时),mV V T 26=。

[例1.1]在室温下,若二极管的反向饱和电流为nA 1,求它的正向电流为mA 5.0时应加多大的电压。

2) 伏安特性曲线

二极管的伏安特性曲线如下图所示。

正向特性:D v 小于死区电压(开启电压)时,0?D i ;正向部分的开始阶段,电流增加的比较慢;在电流D i 较大时,电压D v 随电流变化很小,称为导通电压。(死区电压:硅管为V 5.0,锗管为V 1.0;导通电压:硅管为V 7.0,锗管为V 2.0)

反向特性:当反向电压T D V v >>,且小于BR V 时,S D I i -?,反向饱和电流很小。当反向电压的绝对值达到BR V 后,反向电流会突然增大,二极管反向击穿。

2. 温度特性

温度升高时,二极管的正向曲线左移,正向压降减小;温度每升高C °1,正向电压降将降低mV mV 5.2~2。

二极管的反向饱和电流S I 也随温度的改变而改变,温度每升高C °10,反向饱和电流将增加一倍。

三、二极管基本电路的分析方法

在二极管两端接入正向电源和电阻,就构成了最基本的二极管电路。

1. 图解分析法

图解分析的前提是已知二极管的V I -特性曲线,因此在复杂的电路中,图解法并不实用,但对理解电路的工作原理和工作点的概念有很大帮助。

[例1.2]电路如图1,二极管的伏安特性如图2,常温下mV V T 26?,问:二极管在i u 为零时的电流和电压各为多少?

2.模型分析法

a.理想模型:正向导通时,二极管正向压降为零,相当于一根导线;反向截止

时,二极管电流为零,相当于开路。

V,[例1-3]判断下列图中的二极管是导通的还是截止的,并求出AO两端电压

AO 设二极管是理想的。

u的波形如图b,在0

i

的波形,设二极管是理想的。

隔内,试绘出)(t

v

o

b.恒压降模型:正向导通时,二极管正向压降为常数(硅管V

7.0,锗管V2.0);

反向截止时,二极管电流为零,相当于开路。

[例1-5]使用恒压降模型,重复例1-4。

[例1-6]电路如图,电源tV v s w sin 2=,试分别使用理想模型和恒压降模型(其中二极管为硅管)分析,绘出负载L R 两端的电压波形,并标出幅值。

c. 折线模型:用一电池电压和一个电阻D r 串联的电路模型。D r 可用折线的斜率

求出。

d. 小信号模型:如果电路中除了直流电源外,还有微变信号(交流小信号)时,

则对后者而言,二极管可用交流等效电阻d r 表示,其值与静态工作点有关,即DQ T d I V r /?,其中mV V T 26=(常温下)。

[例1-7]电路如图,D 为硅管,V V DD 2=,W =k R 1,mV t v s )502sin(50′=p 。

1)静态时,求二极管中的静态电流和o v 的静态电压;

2)动态时,求二极管中的交流电流振幅和o v 的交流电压振幅;

3)求输出电压o v 的总量。

四、稳压二极管——齐纳击穿

稳压管,又称齐纳二极管,是一种特殊的二极管,其伏安特性与二极管类似,但它的反向击穿特性很陡。因此,稳压管通常工作于反向击穿状态来稳定直流电压。

图中的Z V 表示反向击穿电压,即稳压管的稳定电压。稳压管的正常工作状态是反向击穿状态。

[例1-8]电路如图,所有稳压管均为硅管,且稳定电压V V Z 8=,设tV v i w sin 15=,试绘出1o v 和2o v 的波形。

完整版二极管7种应用电路详解

极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用 第一反应是整流, 对二极管的其他特性和应用了解不多, 认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害 了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析, 许多二极管电路无法用单向导电 特性来解释其工作原理。 二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电 路的工作原理, 而需要掌握二极管更多的特性才能正确分析这些电路, 例如二极管构成的 简易直流稳压电路,二极管构成的温度补偿电路等。 941二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中, 由于电路简单,成本低,所以 应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是 0.6V 左右,对锗二极管而言是 0.2V 左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的 VD1、VD2和VD3 是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1 ?电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难 了。 关于这一电路的分析思路主要说明如下。 (1) 从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止 会同时截止。 (2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在 VD1正极通过电阻 R1接电路中 的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。由此分 析可知,3只二 极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。 (3) 从电路中还可以看出,3只二极管上没有加入交流信号电压, 因为在VD1正极即电路中的 A 点与 地之间接 有大容量电容 C1,将A 点的任何交流电压旁路到地端。 2 ?二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定 了电路中A 点的直流电压。 众所周知,二极管内部是一个 PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中 !£ mime i-yAn^Of

二极管及其应用电路--笔记整理

半导体二极管及其应用电路 1.半导体的特性 自然界中的各种物质,按导电能力划分为:导体、绝缘体、半导体。半导体导电能力介于导体和绝缘体之间。它具有热敏性、光敏性(当守外界热和光的作用时,它的导电能力明显变化)和掺杂性(往纯净的半导体中掺入某些杂质,会使它的导电能力明显变化)。利用光敏性可制成光电二极管和光电三极管及光敏电阻;利用热敏性可制成各种热敏电阻;利用掺杂性可制成各种不同性能、不同用途的半导体器件,例如二极管、三极管、场效应管等。 2.半导体的共价键结构 在电子器件中,用得最多的材料是硅和锗,硅和锗都是四价元素,最外层原子轨道上具有4个电子,称为价电子。每个原子的4个价电子不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系,这些价电子一方面围绕自身的原子核运动,另一方面也时常出现在相邻原子所属的轨道上。这样,相邻的原子就被共有的价电子联系在一起,称为共价键结构。 当温度升高或受光照时,由于半导体共价键中的价电子并不像绝缘体中束缚得那样紧,价电子从外界获得一定的能量,少数价电子会挣脱共价键的束缚,成为自由电子,同时在原来共价键的相应位置上留下一个空位,这个空位称为空穴, 自由电子和空穴是成对出现的,所以称它们为电子空穴对。在本征半导体中,电子与空穴的数量总是相等的。我们把在热或光的作用下,本征半导体中产生电子空穴对的现象,称为本征激发,又称为热激发。 由于共价键中出现了空位,在外电场或其他能源的作用下,邻近的价电子就可填补到这个空穴上,而在这个价电子原来的位置上又留下新的空位,以后其他价电子又可转移到这个新的空位上。为了区别于自由电子的运动,我们把这种价电子的填补运动称为空穴运动,认为空穴是一种带正电荷的载流子,它所带电荷和电子相等, 符号相反。由此可见, 本征半导体中存在两种载流子:电子和空穴。而金属导体中只有一种载流子——电子。本征半导体在外电场作用下,两种载流子的运动方向相反而形成的电流方向相同。本征半导体的导电能力取决于载流子的浓度。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度时影响半导体性能的一个重要的外部因素。

半导体二极管及其基本电路

半导体二极管及其基本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。

图(1)浓度差使载流子发生扩散运动 (2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠

近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性 (1)外加正向电压(正偏) 在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中

半导体二极管及其基本电路

第二章半导体二极管及其基本电路 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。(一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导电工作原理、 ?二极管的V-I特性及主要性能指标

2.1 半导体的基本知识 2.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。 2.1.2 半导体的共价键结构 在电子器件中,用得最多的半导体材料是硅和锗,它们的简化原子模型如下所示。硅和锗都是四价元素,在其最外层原子轨道上具有四个电子,称为价电子。由于原子呈中性,故在图中原子核用带圆圈的+4符号表示。半导体与金属和许多绝缘体一样,均具有晶体结构,它们的原子形成有排列,邻近原子之间由共价键联结,其晶体结构示意图如下所示。图中表示的是晶体的二维结构,实际上半导体晶体结构是三维的。 硅和锗的原子结构简化模型及晶体结构

最新半导体二极管及其基本电路

半导体二极管及其基 本电路

二、半导体二极管及其基本电路 基本要求 ?正确理解:PN结的形成及单向导电性 ?熟练掌握:普通二极管、稳压二极管的外特性及主要参数 ?能够查阅电子器件相关手册 难点重点 1.PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。 图(1)浓度差使载流子发生扩散运动

(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。 图(2)内电场形成 (4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。 2.PN结的单向导电性

电路板中常用7大类二极管

电路板中常用7大类二极管 一、肖特基二极管 肖特基二极管,即肖特基势垒二极(SchottkyBarrierDiode,缩写成SBD)的简称。肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管。 它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。

二、变容二极管 变容二极管又称"可变电抗二极管",是利用pN结反偏时结电容大小随外加电压而变化的特性制成的。反偏电压增大时结电容减小、反之结电容增大,变容二极管的电容量一般较小,其最大值为几十皮法到几百皮法,最大区容与最小电容之比约为5:1。它主要在高频电路中用作自动调谐、调频、调相等,例如在电视接收机的调谐回路中作可变电容。变容二极管属于反偏压二极管,改变其PN结上的反向偏压,即可改变PN结电容量。反向偏压与结电容之间的关系是非线性的,变容二极管的电容值与反向偏压值的关系: (a) 反向偏压增加,造成电容减少; (b) 反向偏压减少,造成电容增加。 电容误差范围是一个规定的变容二极管的电容量范围。数据表将显示最小值、标称值及最大值,这些经常绘在图上。

光敏二极管应用电路

二极管应用电路 图4-1是采用光敏二极管的最简单的光检测电路,图(a)是二极管输出端为开路方式,其输出电压随入射光量的对数呈线性变化,但容易受温度变化的影响。图(b)是二级管输出端为短路方式.输出电流随入射光量的对数呈线性变化. 一般采用输出端短路的工作方式。然而,这两种电路都是光电二极管单个使用,其输出电压(或电流)非常小,一般要与晶体管或 IC等放大器组合使用。 图4-1 最简单的光检测电路 图4-2是无偏置电路实例、其中图(a)接高阻抗负载?图(b)接低阻抗负载。负载阻抗越高其特性越接近输出端开路方式,负载阻抗越低则越接近输出端短路方式。然而因二级管都是单个使用,所以输出信号极小?一般需要接放大电路。 图4-£无偏置电路 图4-3是反向偏置电路实例。光敏二极管加反向偏置,则响应速度可提高几倍以上。图 4-3(a)是接有较大负载电阻的电路. 图4-3(b)是接有较小负载电阻的电路。图4-3(n)所示电路的输出电压比图4-3(b)所示电路大,但响应特性不如图4-3(b)。图4-3(b)所示电路的输出电压比图4-3(a)小,但响应速度比图4-3(a)快。它们的响应特性都比无偏置电路好,但暗电流 比无偏置电路大。

(b) 图43 反向偏置电路 图4-4是光敏二极管与晶体管组合应用电路实例。图 4-4(a)为典型的集电极输出电路形 式,而图4-4(b)为典型的发射极输出电路形式。 集电极输出电路适用于脉冲入射光电路,输出信号与输入信号的相位相反,输出信号 一般较大。而发射极输出电路适用于模拟信号电路,电阻 RB 可以减小暗电流,输出信号与 输入信号的相位相同,输出信号一般较小。 图4-4与晶体管组合应用电路 图4-5是光敏二极管 VD 与运放A 组合应用实例.团4-5(a)为无偏置方式,图 4-5(b)为 反向偏置方式。 无偏置电路可以用于测量宽范围的入射光, 例如照度计等,但响应特性比不上反向偏置 的电路,可用反馈电阻Rf 调整输出电压,如果Rf 用对数二极管替代. 的电压。反向偏置电路的响应速度快?输出信号与输入信号同相位。 VD Vo 5-15V VD -L 5 ?15V T Et, R E 3. 3Mfl 12V V T Vo 2- 2kD 则可以输出对数压缩 4. 7kfi %

二极管7种应用电路详解

许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是左右,对锗二极管而言是左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中之一是二极管导通后其管压降基本不变,对于常用的硅二极管而言导通后正极与负极之间的电压降为。 根据二极管的这一特性,可以很方便地分析由普通二极管构成的简易直流稳压电路工作原理。3只二极管导通之后,每只二极管的管压降是,那么3只串联之后的直流电压降是×3=。 3.故障检测方法 检测这一电路中的3只二极管最为有效的方法是测量二极管上的直流电压,如图9-41所示是测量时接线示意图。如果测量直流电压结果是左右,说明3只二极管工作正常;如果测量直流电压结果是0V,要测量直流工作电压+V是否正常和电阻R1是否开路,与3只二极管无关,因为3只二极管同时击穿的可能性较小;如果测量直流电压结果大于,检查3只二极管中有一只开路故障。

稳压二极管原理电路及应用

` 稳压二极管原理电路及应用 引言 二极管因用途不同而种类繁多。稳压二极管是其中的一种。我们知道晶体二极管具有单向导电的性能。正向连接时是导电的(在电路中,二极管的正极接电源的正极,二极管的负极接电源的负极),反向连接是不导电的,只有很小很小的漏电流。但是如果给某些特定二极管反向电压逐渐加大到某一数值,二极管就会被击穿,这时二极管又开始反向导电。随着导电电流逐渐增大(只要电流不是增加到损坏二极管的程度),二极管两端的电压却基本上保持不变,几乎恒定在二极管击穿的电压数值上。这就是二极管的反向击穿特性。利用这个特性,人们制成稳压二极管[1]。由于这种反向击穿特性能起稳压作用,所以在电路中稳压二极管必须反向连接,就是二极管的正极接电源的负极,二极管的负极接电源的正极。 1.稳压二极管的原理及电路 1.1稳压管的特性 稳压管的伏安特性曲线如图l所示。由图可见,反向电压在一定围变化时,反向电流很小;当反向电压增高到击穿电压时,反向电流突然剧增,即稳压管反向击穿;此后,虽然电流在很大围变化,但稳压管两端的电压变化很小,这一特性便可用来稳压。稳压管与其他二极管不同的是,其反向击穿是可逆的。当反向电压去掉后,稳压管又恢复正常状态但是,如果反向电流超过允许值,稳压管的PN结也会因过热而损坏。由于硅管的热稳定性比锗管好,因此一般都用硅管做稳压二极管,例如2CW系列和2DW系列都是硅稳压二极管[2] 图1 硅稳压二极管伏安特性和符号 1.2 稳压管的主要参数 1.2.1 稳定电压U: 稳压管反向击穿后稳定工作时的电压值称为稳定电压,如2CW13型为5V一6.5V,具有温度补偿作用的2DW7A型稳压管为5.8V一6.6V。对于某只稳压管,其U是这个围的某一Z确定数值。因此在使用时,具体数值需要实际测试。 1.2.2 稳定电流I Z文档Word

第1章__半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 自测题 1.1 判断下列说法是否正确,用“√”和“?”表示判断结果填入空内 1. 半导体中的空穴是带正电的离子。(?) 2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。(√) 3. 因为P型半导体的多子是空穴,所以它带正电。(?) 4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。(√) 5. PN结的单向导电性只有在外加电压时才能体现出来。(√) 1.2 选择填空 1. N型半导体中多数载流子是 A ;P型半导体中多数载流子是B。 A.自由电子B.空穴 2. N型半导体C;P型半导体C。 A.带正电B.带负电C.呈电中性 3. 在掺杂半导体中,多子的浓度主要取决于B,而少子的浓度则受 A 的影响很大。 A.温度B.掺杂浓度C.掺杂工艺D.晶体缺陷 4. PN结中扩散电流方向是A;漂移电流方向是B。 A.从P区到N区B.从N区到P区 5. 当PN结未加外部电压时,扩散电流C飘移电流。 A.大于B.小于C.等于 6. 当PN结外加正向电压时,扩散电流A漂移电流,耗尽层E;当PN 结外加反向电压时,扩散电流B漂移电流,耗尽层D。 A.大于B.小于C.等于 D.变宽E.变窄F.不变 7. 二极管的正向电阻B,反向电阻A。 A.大B.小 8. 当温度升高时,二极管的正向电压B,反向电流A。 A.增大B.减小C.基本不变 9. 稳压管的稳压区是其工作在C状态。 A.正向导通B.反向截止C.反向击穿1.3 有A、B、C三个二极管,测得它们的反向电流分别是2μA、0.5μA、5μA;在外加相同的正向电压时,电流分别为10mA、30mA、15mA。比较而言,哪个管子的性能最好? 【解1.3】:二极管在外加相同的正向电压下电流越大,其正向电阻越小;反向电流越小,其单向导电性越好。所以B管的性能最好。 题习题1 1.1 试求图P1.1所示各电路的输出电压值U O,设二极管的性能理想。

一讲:二极管及其基本电路

导言 我们为什么要学习模拟电子技术 在自然界以及人类活动中,存在着各种各样的信息。承载着这些信息的载体,就叫做信号。现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。 然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。因此,需要将这些信号输入到放大电路中进行放大处理。 如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。可以说,“放大”一词,就是这门课的核心。

课时一:二极管及其基本电路 一、PN 结 1. 形成 通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。 2. 单向导电性 PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通; PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。 3. 电容效应 PN 结的电容效应包括扩散电容D C 和势垒电容B C 。 4. 反向击穿特性 PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。 二、半导体二极管 半导体二极管就是一个封装的PN 结。 1. 二极管的伏安特性 1) 伏安特性表达式 二极管是一个非线性器件,其伏安特性的数学表达式为

常见二极管分类及应用简介

各种二极管的用途及常用二极管分类介绍 常用二极管 1.整流二极管 作用:利用PN结的单向导电性把交流电变成脉动直流电,整流二极管结构主要是平面接触型,其特点是允许通过的电流比较大,反向击穿电压比较高,但PN结电容比较大,一般广泛应用于处理频率不高的电路中。例如整流电路、嵌位电路、保护电路等。整流二极管在使用中主要考虑的问题是最大整流电流和最高反向工作电压应大于实际工作中的值,并要满足散热条件。 2.检波(也称解调)二极管 作用:利用二极管单向导电性将高频或中频无线电信号中的低频信号或音频信号提取出来广泛应用于半导体收音机、录机、电视机及通信等设备的小信号电路中,其工作频率较高,处理信号幅度较弱。检波二极管一般可选用点接触型锗二极管,例如2AP系列、1N34/A/、1N60等。选用时,应根据电路的具体要求来选择工作频率高、反向电流小、正向电流足够大的检波二极管,主要考虑工作频率。虽然检波和整流的原理是一样的,而整流的目的只是为了得到直流电,而检波则是从被调制波中取出信号成分(包络线)。检波电路和半波整流线路完全相同。因检波是对高频波整流,二极管的结电容一定要小,所以选用点接触二极管。能用于高频检波的二极管大多能用于限幅、箝位、开关和调制电路。 3.变容二极管 又称压控变容器,是根据电压变化而改变节电容的半导体,工作在反向偏压状态。应用:高频调谐、通信电路中可做可变电容器使用。有专用于谐振电路调谐的电调变容二极管,适用于参放的参放变容二极管,以及固体功率源中倍频、移相的功率阶跃变容二极管,用于电视机高频头的频道转换和调谐电路,多以硅材料制作。 4.快速二极管 快速二极管的工作原理与普通二极管是相同的,但由于普通二极管工作在开关状态下的反向恢复时间较长,约4~5ms,不能适应高频开关电路的要求。快速二极管主要应用于高频整流电路、高频开关电源、高频阻容吸收电路、逆变电路等,其反向恢复时间可达10ns。快速二极管主要包括快恢复二极管和肖特基二极管。 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。快恢复二极管在制造上采用掺金、单纯的扩散等工艺,可

第6章半导体二极管及其应用电路习题答案3

选择正确答案填入空内。 (1)在本征半导体中加入 A 元素可形成N 型半导体,加入 C 元素可形成P 型半导体。 A. 五价 B. 四价 C. 三价 (2)PN 结加正向电压时,空间电荷区将 A 。 A. 变窄 B. 基本不变 C. 变宽 (3)设二极管的端电压为v D ,则二极管的电流方程是 c 。 A. D v I e S B. T D V v I e S C. )1e (S -T D V v I (4)当温度升高时,二极管的反向饱和电流将 a 。 A. 增大 B. 不变 C. 减小 (5)稳压管的稳压区是其工作在 c 。 A. 正向导通 B.反向截止 C.反向击穿 (6)稳压二极管稳压时,其工作在(c ),发光二极管发光时,其工作在( a )。 A .正向导通区 B .反向截止区 C .反向击穿区 6.2将正确答案填入空内。 (1)图P 6.2(a )所示电路中二极管为理想器件,则D 1工作在 状态,D 2工作在 状态,V A 为 V 。 解:截止,导通,-2.7 V 。 (2)在图P6.2(b)所示电路中稳压管2CW5的参数为:稳定电压V z = 12 V ,最大稳定电流I Zmax = 20 mA 。图中电压表中流过的电流忽略不计。当开关S 闭合时,电压表V 和电流表A 1、A 2的读数分别为 、 、 ;当开关S 断开时,其读数分别为 、 、 。 解:12 V ,12 mA ,6 mA ,12 V ,12 mA ,0 mA 。 6.3 电路如图P 6.3所示,已知v i =56sin ωt (v),试画出v i 与v O 的波形。设二极管正向导通电压可忽略不计。 6.4 电路如图P6.4所示,已知v i =5sin ωt (V),二极管导通电压V D =0.7V 。试画出电路的传输特性及v i 与v O 的波形,并标出幅值。 图P6.4 的解:当v i 为 正半周时,D 1截止,D 2导通,v O =-2.3V 。当v i 为负正半周,且小于-3时,D 1截止,D 2仍导通,v O 大于-3V 后,;v O =v i 。 图 P6.3 图P6.4 _ o + 图P6.2 (a) 图 P6.2 (b) D 1 V i

肖特基二极管原理和应用

一、肖特基二极管简介 肖特基二极管是德国科学家肖特基(Schottky)1938年发明的。肖特基二极管与普通的PN结二极管不同。是使用N型半导体材料与金属在一起结合形成金属一半导体结。肖特基二极管比普通二极管有正向压降低、反向电荷恢复时间短(10ns以内)等优点。 应用特点:适合于高频、大电流、低电压整流电路以及微波电子混频电路、检波电路、高频数字逻辑电路等。 二、肖特基产品特性 1.肖特基二极管的正向压降比快恢复二极管正向压降低很多,所以自身功耗较小,效率高。2.由于反向电荷恢复时间极短,所以适宜工作在高频状态下。3.能耐受高浪涌电流。4.以前的肖特基管反向耐压一般在200V以下,但现在最新技术可以做到高达1000V的产品,市场应用前景十分广阔。5.目前市场上常见的肖特基管最高结温分100℃、125℃、150%、175℃几种(结温越高表示产品抗高温特性越好。即工作在此温度以下不会引起失效)。 三、肖特基二极管结构 肖特基二极管在结构原理上与。PN结二极管有很大区别,它的内部是由阳极金属(金、银、铝、钼、铂等材料制造成阻挡层)、二氧化硅消除边缘区域的电场(提高管子耐压)、N一外延层、N型硅基片、N+阴极层及阴极金属等构成.如图1和图2所示,在N型基片和阳极金属之间形成肖特基势垒。

常见肖特基二极管剖视图见图 四、肖特基产品应用 本文只介绍工作于高频大电流环境下的整流。 这里示出应用于电脑电源的整机电路,见图4。T3次级部分的整流管就用了肖特基管。此外,肖特基管还广泛用于笔记本电脑的电源适配器、液晶电视和液晶显示器电源、电动车电瓶充电器以及数字卫星接收机和机顶盒的电源等等。由于篇幅所限,无法一一刊登。

相关主题
文本预览
相关文档 最新文档