当前位置:文档之家› 程控增益放大器

程控增益放大器

程控增益放大器
程控增益放大器

模拟电子技术基础

课程设计(论文) 程控增益放大器

院(系)名称电子与信息工程学院专业班级通信132班

学号

学生姓名

指导教师

起止时间:2015.7.6—2015.7.19

课程设计(论文)任务及评语

院(系):电子与信息工程学院教研室:电子信息工程

摘要

本文设计是程控增益放大器。说明了程控增益放大器的结构和功能及其主要的特点。最后举出了实用电路。

放大器是应用最广泛的一类电子线路。它的功能是将输入信号进行不失真地放大。在广播,通信,自动控制,电子测量等各种电子设备中,放大器是必不可少的组成部分。在各类电子仪器和设备所采用的电子线路中,集成运算放大器是应用最普遍的模拟电子器件。集成运放配上不同的反馈网络和采用不同的反馈方式,就可以构成功能和特性完全不同的各种集成运放电子电路,简称运放电路。这些运放电路是各种电子电路中的最基本的组成环节。

本系统能够实现增益由程序控制,能够满足各项技术指标,测量准确,工作可靠,性能价格比较高。

关键词:运算放大器;多路转换开关;程控;增益放大

目录

第1章绪论 (1)

1.1程控增益放大器发展概况(或研究现状) (1)

1.2本文研究内容 (1)

第2章程控增益放大器总体设计方案 (2)

2.1 程控增益放大器设计方案论证 (2)

2.2总体设计方案框图及分析 (2)

第3章程控增益放大器单元电路设计 (4)

3.1 程控增益放大器具体电路设计 (4)

3.1.1 模拟开关设计 (5)

3.1.2 集成电路运算放大器设计 (5)

3.1.3 反馈电阻网络设计 (7)

3.1.4增益调整电路设计 (8)

3.2 元器件型号选择 (9)

3.3 参数计算 (9)

第4章程控增益放大器仿真与调试 (10)

4.1 Multisim仿真与调试 (10)

4.2 仿真结果分析 (10)

第5章程控增益放大器实物制作 (12)

5.1 程控增益放大器电路焊接 (12)

5.2 程控增益放大器作品 (12)

第6章作品测试与数据分析 (13)

第7章总结 (15)

参考文献 (16)

[键入文字]

第1章绪论

1.1程控增益放大器发展概况(或研究现状)

随着电子技术的不断发展,程控增益放大器在自动测控、智能测控、智能仪器仪表等重要领域的应用越来越广泛。程控增益放大器可以通过软件程序改变增益,它能自动适应大范围变化的模拟信号,针对被测信号的大小来调节放大器的增益,将不同的幅度的模拟信号放大到某个特定的范围来保证后端电路正常工作。随着电子技术的不断发展,可变增益放大器在自动测控等应用越来越广泛。

1.2本文研究内容

本设计是一种放大倍数由程序控制的放大器符号PGA,在多通道多参数空间一个测量放大器,多通道放大器的信号的大小并不相同,都是放大至A/D交换器输入要求的标准是电压,因此对各个通路要求测量放大器的增益也不同。放大器的交流是由数字信号控制的反馈电阻完成的,这种电路结构简单成本低使其幅度程控增益放大器(PGA)主要用于对幅度较小信号进行增益控制,达到ADC转化器所工作的要求。利用拨码开关的数码代替电位器刻度,具有线性度好、精度高、直观,可直接或间接取代一般线性电位器或多圈线性电位器。在电子仪器仪表设备、工业自动化控制,稳压、恒流、供电、机电保护、电动机保护、温控、湿度、压力、重量等自动控制中达到数字设定的目的。放大器的增益的变化是由数字信号控制其反馈电阻完成的。

第2章程控增益放大器总体设计方案

2.1 程控增益放大器设计方案论证

程控增益放大器并不多见,需要采用其它方法来实现,通常有三种方法:

1) 放大器+多路转换开关+MCS-51单片机

第一种方法采用MCS-51单片机及其扩展,多路转换开关,数控增益放大器等构成了实用性较强的硬件电路。放大器是应用最广泛的一类电子线路。它的功能是将输入信号进行不失真地放大。在广播,通信,自动控制,电子测量等各种电子设备中,放大器是必不可少的组成部分。在各类电子仪器和设备所采用的电子线路中,集成运算放大器是应用最普遍的模拟电子器件。集成运放配上不同的反馈网络和采用不同的反馈方式,就可以构成功能和特性完全不同的各种集成运放电子电路,简称运放电路。这些运放电路是各种电子电路中的最基本的组成环节。

本系统能够实现增益由程序控制,能够满足各项技术指标,测量准确,工作可靠,性能价格比较高。

2)运放+模拟开关+电阻网络

第二种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。此种方法所需元器件较多,电路庞大。虽然精度受到限制,但是较易实现。

3)运放+数字电位器。

第三种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。但现有的数字电位器分辨率有限,常见的有32、64抽头,少数可达1024抽头,因而构成的放大器精度有限,无法满足10位甚至12位数据采集系统的要求。

本设计采用方案2。

2.2总体设计方案框图及分析

根据放大倍数以步距1在1~100范围内变化的要求,可用3位拨码开关对D/A置数来设置放大倍数,并用模拟开关控制增益。该方案电路简单,使用者必须根据增益在哪一挡来换算放大倍数,且只能实现预置数功能。总体框图如图1.1所示。

图2.1 程控增益放大器框图

第3章程控增益放大器单元电路设计

3.1 程控增益放大器具体电路设计

电源电路为了保证足够的电源供应,我们制作了一个有±5V、±12V、±15V、0~30V 可调的电压源。V o为输出端。

图3.1程控增益放大器整体电路

拨码开关输入3位10进制数1-999时,输出为20Ω,实际上是3个位上的电阻器并联,相当于1个560kΩ的电位器,共有10×10×10=1000种组合的阻值,在一般情况下,完全可以取代在模拟电路中广泛使用的无级调节的电位器。这种用法不需任何外部调整元件件就能可靠地工作。但为了保证效果更好,应该在正、负电源供电端连接一个1μF的旁路钽电容到模拟地,且应尽可能靠近放大器的电源引脚,并按图中所示点接地。使输入级输出的直流电位低于输入直流电位,这样后级就可直接接NPN型管;由于PNP型管的发射结击穿电压很高,这种差动放大电路的差模输入电压也很高,可达30V以上,此外,共基极电路输入电阻较小,而输出电阻较大,有利于接有源负载,并起到将负载与NPN管隔离开的作用。集成电路运算放大器偏置电路的作用是向各级放大电路提供合适的偏置电流,决定各级的静态工作点输出级的作用是向负载输出足够大的电流,要求它的输出电阻要小,并应有过载保护措施。输出级大都采用互补对

称输出级,两管轮流工作,且每个管于导电时均使电路工作在射极输出状态,故带负载能力较强。该电路是利用接通通道改变一个状态,从而反馈电阻改变一次,相应的电压增益改变一次数值。

3.1.1 模拟开关设计

如图3.2所示为模拟开关部分,由DSWPK_10来控制反馈电阻网络。从而控制增益。

图3.2 模拟开关

3.1.2 集成电路运算放大器设计

集成电路运算放大器是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路输入级:通常由双输入差分放大电路构成。主要作用是提高抑制共模信号能力,提高输入电阻。

中间级:带恒流源负载和复合管的差放和共射电路组成的高增益的电压放大级,主要作用是提高电压增益。

输出级:采用互补对称功放或射极输出器组成,主要是降低输出电阻,提高带负载能力。

(一)集成电路运算放大器中的电流源

1.基本电流源

分压式射极偏置电路为基本电流源电路。当三级管工作在放大区,由于射极电流仅由两分压电阻决定,因此当负载发生变化(也即集电极电阻发生变化),输出电流(即集电极电流)保持不变,体现了恒流特性。

2.有源负载

由于电流源具有直流电阻小而交流电阻大的特点,因此在模拟集成电路中,常把它作为负载使用,称为有源负载。

3.电流源的应用

(1)为集成运放各级提供稳定的偏置电流;

(2)作为各放大级的有源负载,提高电压增益。

(二)偏置电路

偏置电路的作用是向各级放大电路提供合适的偏置电流,决定各级的静态工作点。F007的偏置电路由T8~T13组成。基准电流由T12、R5、T11,和电源EC(15V)、EE (- 15V)决定:

Ir=(Ec+Ee-Ube11-UBE12)÷R5

T10、T11和R4组成微电流源电路,提供输入级所要求的微小而又十分稳定的偏置电流,并提供T9所需的集电极电流,即IC10=IC9 +2IB3;T8与T9 组成镜像恒流源电路,提供T1、T2的集电极电流,即IC1+IC2=IC9,T12与T13组成镜像恒流源电路,提供中间级T16、T17的静态工作电流,并充当其有源负载。

(三)输入级

它的电路形式几乎都采用各种各样的差动放大电路,以发挥集成电路制造工艺上的优势。UPC277C的输入级电路是由T1~T7组成的带有恒流源及有源负载的差动放大电路。有源负载是由T5,T6、T7及R1、R2、R3组成的改进型镜象恒流源电路。用它作差动放大电路的有源负载,不仅可以提高电压放大倍数,还能在保持电压放大倍数不变的条件下,将双端输出转化为单端输出。

T1~T4组成共集一共基型差动放大电路。其中,T1、T2接成共集电极形式,可以提高电路的输入阻抗,同时由于UC1=UC2 = EC - UBE8,因而共模信号正向界限接近EC,即提高了共模信号的输入范围;T3、T4,组成共基极电路,具有较好的频率特性,同时输还能完成电位移动功能,使输入级出的直流电位低于输入直流电位,这样后级就可直接接NPN型管;由于PNP型管的发射结击穿电压很高,这种差动放大电路的差模输入电压也很高,可达30V以上。

图3.3集成电路符号

(四)中间级

中间级电路的主要任务是提供足够大的电压放大倍数,并向输出级提供较大的推动电流,有时还要完成双端输出变单端输出,电位移动等功能。UPC277C的中间级是由复合管T16、T17和电阻R6组成的共发射极放大电路,T12、T13组成的镜象恒流源作为它的有源负载,因而可以获得很高的电压放大倍数。R6起电流负反馈作用可以改善放大特性。

(五)输出级

输出级的作用是向负载输出足够大的电流,要求它的输出电阻要小,并应有过载保护措施。输出级大都采用互补对称输出级,两管轮流工作,且每个管于导电时均使电路工作在射极输出状态,故带负载能力较强。UPC277C输出级采用的就是由T14和复合管T18、T19组成的互补对称电路。R7、R8和T15组成电压并联负反馈偏置电路,使T15的c、e两端具有恒压特性,为互补管提供合适而稳定的偏压,以消除文越失真。

D1、D2和R9、R10组成过载保护电路,正常工作时,R9、R10上的压降较小,D1、D2均处于截止状态,即保护电路处于断开状态,一旦因某种原因而过载,T14及复合管的电流超过了额定值,则R9、R10上的压降明显增大,D1、D2将导通,从而对T14和T15的基极电流进行分流,限制了输出电流的增加,保护了输出管。

集成运放的新产品不断出现,它们的性能更加优越,除通用型集成运放外,还出现了一些专用集成运放。

集成运放作为一个有源放大器件应用于实际电路时,常用图Z0608所示符号表示。-它有两个输入端、一个输出端。大箭头表示信号传输方向。当信号从反相端输入时,输出电压与输入电压成反相关系,当信号从同相端输入时,输出电压与输入电压同相。

3.1.3 反馈电阻网络设计

反馈电阻网络是由拨码开关电阻网络组成的可调式反馈电阻网络,1,2端口接放大部分的1,2端口联入反馈网络中。

图3.4反馈电阻网络

3.1.4增益调整电路设计

利用拨码开关接通通道改变一个状态,从而反馈电阻改变一次,相应的电压增益改变一次数值。1,2接线柱接反馈网络。V o为输出端,实际中运放采用常用的LM423N也能满足要求。

图3.5 增益调整电路

3.2 元器件型号选择

表3.1元器件型号

序号编号名称参数个数

1 R5—R13 电阻100Ω9

2 R15—R2

3 电阻10Ω9

3 R26—R3

4 电阻1Ω9

4 J1 J2 J3 拨码开关DSWPK_10 3

5 R1 R3 电阻50Ω 2

6 U1B 运放LM423N 1

7 V1 V2 直流电源12V 2

8 R4 滑动变阻器1KΩ 1

9 XMM1 XMM2 万用表____ 2

10 ____ 导线____ 若干

3.3 参数计算

电路增益Au=1+Rf/Rx只要算出相应的即可,例:Rx等于20M与25M的并联,即Rx=11.1.相应的Au=1+100/11.1=10.01.在输出电压为1—10v之间求出相应的相应的放大倍数在1—99之间,根据相应的拨码开关计算出输入电阻与输出电阻的适当值即Ri ≥8M,Ro≤20.所以,增益公式G=20㏒Au得到所要调整的范围。

图3.6总体电路图

第4章程控增益放大器仿真与调试

4.1 Multisim仿真与调试

本电路满足微小信号在各种状态下的放大调节,同时能够有效地抑制干扰信号,可靠地检测出缺隐信号,常常需要高精度的测量放大器和合适的滤波器。因事先不知道被测信号的大小,用微控制器来检测,从而控制放大器的放大倍数,能将信号调到最佳,获得最佳测量数据。又因为不知控制系统中激励信号的频率以及在不同的环境条件下的干扰情况,因此,为了实现大动态范围、多干扰因素的检测系统的智能化,程控放大与程控滤波是必然的选择,以实现软件与硬件有机地结合。这是目前比较新颖、实用的电路设计按照上述方法设计的可编程增益放大电路,克服了传统可编程放大器增益范围小的缺点,,扩大了增益范围、提高了增益精度。基本完成了系统基本及发挥部分的要求,在某些方面性能有极大的提高,大大超过了要求。但由于时间紧张等原因,整个系统还存在着设计简陋,测量精度不是很高等问题。由于系统采用了模块化设计,系统还有很大的升级扩展空间,仿真如图。

图4.1总体仿真图

4.2 仿真结果分析

仿真结果满足预期要求如图。

图4.2 仿真结果图

第5章程控增益放大器实物制作

5.1 程控增益放大器电路焊接

按照实验设计电路将相应元器件焊接在电路板上。在焊接过程中先设计好排版,然后再进行焊接,这样焊接出来的实物不容易短路并且更加美观。

5.2 程控增益放大器作品

图5.1实物电路图

第6章作品测试与数据分析

按照实验电路将运放的5、6管脚分别接入用函数信号发生器调好的120mV正弦交流信号,地端都接在GND上,4管脚接入+12V电源,11管脚接入-12电源,7管脚为输出端,分别用万用表接在5,、6管脚测输入电阻,接在输出端测输出电压。

图6.1输入电阻测试图

图6.2输入电阻测试结果图

第7章总结

在这为期两个星期的课设中,讲理论与实践相结合。经过课题的确立,查阅资料,设计方案,仿真模拟,实物焊接以及后期的论文修改等过程,不仅让我对所学知识得以运用,有了更深刻的理解之外,更补充了更多的相关知识和锻炼了自己实际动手焊接电路的能力。在课设进行过程中,更是得到老师的答疑解惑,将课题中存在的问题与实际问题相验证,还有与同学组员之间相互探讨,互相帮助,让课程设计得以顺利完成。

课程设计开始初期,对自己的课题知之甚少,随着后来的慢慢琢磨和老师同学的帮助使课题走向明朗。并且在此次课设中还学习了新的仿真软件Multisim的安装与使用,对实验的结果预期起到了很大的作用。当然在实验中也遇到了很多各种各样的困难,比如设计的思路方案,器件的选择,仿真电路的调试以及实物的焊接等,但好在在课设过程中最终得以解决。同时对于我个人来说,除了方案设计的困难,仿真电路的连接和焊接实物的能力有很大欠缺,这次课设也可以说是对我的动手能力的一次好的锻炼,实践出真知,没有足够的动手能力,就奢谈在未来的科研尤其实验研究中有所成就。

从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。实验过程中,也对团队精神的进行了考察,在成功后一起体会喜悦的心情,果然是团结就是力量。最后在课设中,我们把理论知识搬到实际中去理解与消化,锻炼自己的学科素质,同时也锻炼自己的动手能力与应用能力,提高自身素质。

本人签字:

参考文献

[1]姚福安主著《电子电路设计与实践》山东省科学技术出版社.2001

[2]康华光主编《电子技术基础模拟部分(第五版)》高等教育出版社2012

[3]何希才主著《新型实用电子电路400例》北京:电子工业出版社

[4]姚福安主著《电子电路设计与实践》山东省科学技术出版社.2001

[5]付家才主编《电子实验与实践》北京:高等教育出版社.2004

[6]张大彪主编《电子技术技能训练》北京:电子工业出版社.2002

[7]张卫平张英儒编著《现代电子电路原理与设计》北京:原子能出版社1997.2.

晶体管中频小信号选频放大器设计(高频电子线路课程设计)

课程设计任务书 学生姓名:专业班级:电子1001班 指导教师:韩屏工作单位:信息工程学院题目:晶体管中频小信号选频放大器设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体管或集成电路完成一个调幅中频小信号放大器的设计; 2.放大器选频频率f0=455KHz,最大增益200倍,矩形系数不大于5; 3.负载电阻R L=1KΩ时,输出电压不小干0.5V,无明显失真; 4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年12月10日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年12月11日至2013年12月26日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2013年12月27日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. I Abstract ...................................................................................................... I I 一、绪论 (1) 二、中频小信号放大器的工作原理 (2) 三、中频选频放大器的设计方案 (3) 3.1 稳定性分析 (3) 3.2 提高放大器稳定性的方法 (4) 3.3中频选频放大 (5) 3.4 信号负反馈 (6) 四、电路仿真与分析 (7) 4.1 multisim仿真软件简介 (7) 4.2 中频选频放大部分仿真 (7) 五、实物制作及调试 (9) 六、个人体会 (12) 参考文献 (13) 附录I 元件清单 (14) 附录II总电路图 (15)

自动增益放大器剖析

自动增益控制放大器 一、设计思路描述 本自动增益控制放大器系统以MSP430G2553为控制核心。利用单片机内部ADC10对末级输出信号采样,可由按键控制三种模式以及增益倍数的切换,也可根据采样得到的末级输出信号幅度大小,自动控制DAC7811作为TLC085反馈电阻网络,从而实现对末级自动增益控制。在软件设计中,我们实现三种不同的模式切换: 1.交流手动模式中。根据选择增益倍数不同,我们可以算出不同的code值,将code值传给DAC7811。例如:当我选择0.2倍增益时,那么需要控制前级衰减,同时code值为2048,因此增益倍数Av=0.1*4096/2048=0.2。 2.直流自动换挡模式。根据单片机内部ADC10对输出信号采样幅度大小,自动控制前级是否衰减、控制CD4051选择OPA 2227反馈电阻,从而实现0.2、0.5、 2、5的最大增益倍数。 3.自动增益模式。根据利用单片机内部ADC10对输出信号采样幅度大小自动控制前级是否衰减,控制CD4051选择OPA 2227反馈电阻。 二、硬件电路设计 2.1前级信号衰减电路 VDD

图2.1 前级衰减电路 如图2.1所示,前级衰减电路由CD4051、OPA2227、20K?以及2K?电阻组成,其中CD4051为单刀八掷开关。在该电路中,单片机MSP430G2553通过P1.3口进行对CD4051中两种电阻进行选择,改变OPA2227反馈电阻,从而实现0.1倍与1倍的控制。 在整个电路中,前级衰减电路十分重要,它不仅仅是对输入信号进行衰减,还可以对单片机MSP430G2553进行保护。 2.2末级DAC7811增益自动控制电路 图2.2 DAC7811增益自动控制电路 图2.2为末级DAC7811增益自动控制电路。利用单片机内部ADC10对输出信号经过OPA2340绝对值整形后的波形进行采样,根据幅值控制CD4051选择

程控放大器的设计与实现

程控放大器的设计与实现 摘要 本文介绍了一种可通过程序改变增益的放大器。它与ADC相配合,可以自动适应大范围变化的模拟信号电平。系统以89S51单片机作微处理器,运用NE5532芯片组成运放电路,采用CD4052芯片担任增益切换开关,通过软件控制开关的闭合或断开来达到改变电路的增益。 文章首先对系统方案进行论证,然后对硬件电路和软件设计进行了说明,最后重点阐述了系统的调试过程,并且对调试过程中遇到的问题以及解决方案进行了详细说明。该系统设计达到了预期要求,实现了最大放大60db的目的。 关键词 程控放大器;运算器放大器;单片机;增益 The Design and Realization of Program-Controll Amplifier Abstract This article introduces a amplifier which changes the gain through the software. It coordinates with ADC and adapts the simulated signal level with wide range change automatically. The system uses the 89s51 SCM as the core. The NE5532 chip composes the operational circuit and the CD4052 chip composes the gain switch. The gain of the circuit is changed by software which can control switch closed or disconnect. The article first demonstrates the system plan, then introduces the hardware and the software, finally explains the debugging process of the system with emphasis. It also especially analogizes the problem in the debugging process and the resolutions. This system design has achieved anticipative request and realized enlarged 60db most greatly the goal. Key words Program-controlled amplifier; operational Amplifier; SCM; gain

新型多路数控增益放大器

新型多路数控增益放大器 信息来源: 维库开发网发布时间:2009年12月30日 在数字与模拟接口电路中,通常采用放大器和多路开关来完成信号的放大与通道的选择,常用芯片有LF147、CA3140等,多通道选择开关有AD7501等。目前尚没有具有多路放大的专用模拟接口芯片。采用传统的技术方案用做A/D转换器前端接口电路,需要对放大器电路进行增益调节,改变增益控制电阻的阻值达到放大量的变化,当遇到具有+/-极性的输入信号时,处理起来更加繁锁。另外,在小信号的状态下,如采用常用的8位A/D转换器,一个5 V(满量程)的输入信号的分辨率为1/256,一个2.5 V输入信号通过放大至满量程后,它的分辨率将提高1倍,一个小于1/256信号如直接采用A/D转换器,该信号则已无分辨率可言。这样必需通过放大器进行预放大。 开发研制的基于微组装工艺的集成化高精度多路数控增益放大器(型号为 DG8256),是用MCM(多芯片组装)技术实现的。在极性处理方面采用绝对值电路使得输出信号为正值,采用8位A/D转换器时,对小信号均可通过数字控制的方法进行256级增益控制,从而实现了高精度的连续放大。低频高精度A/D转换器的理想前级,放大器具有8个通道的信号输入。基于MCM技术的多路数控增益放大器体积小、重量轻,适用于小型微机处理系统中模拟接口电路,而且放大器具有良好的温度特性,适用于军事、商业、工业、民用领域。 1主要技术参数 开发该接口模块源于某雷达发射设备的控制与保护电路的研制。电路需要模拟接口电路,与以往的雷达发射机控制与保护电路不同的是对体积要求更高,要求在很小的体积下完成复杂的信号采样与控制。这就启发了我们开发研制该模块。模块具备8个通道信号输入,每个通道的信号具有正负信号输入能力,模块末级输出为正值输出,通道选择采用TTL信号控制,信号具有增益可控的能力,增益控制采用TTL电平控制。模块的主要技术参数如下: a)供电电源:±12 V; b)输入信号幅度:-5 V~+5 V; c)输入通道数:3位数控(S0~S2),8通道信号输入(Vin0~Vin7); d)输出信号幅度:0~+5 V; e)输入信号频率:i≥5 kHz; f)放大可控增益:-16 dB~+16 dB; g)放大器线性度:≤2%; h)增益调节:8位数控(G0~G7),256级线性; i)输入阻抗:≥510 kΩ; j)输出电流:≥2 mA; k)工作温度:-55℃~+85 ℃; 1)封装:DIP(双列直插式封装)24脚; m)外型尺寸:长×宽×高为33 mm×21 mm×6.0 mm: n)镀金引脚:引脚长5 mm。 2功能特性与电路原理 2.1功能特性

单片机自动增益放大器

自动增益放大器 摘要:本系统有四个模块组成:程控放大器,峰值检测,液晶。程控放大器采用两片AD603接连组成,放大电压增益可达50dB,增益0.2v步进可调,电压增益误差不大于5%。放大器输出无明显失真。峰值测量采用真有效值采样芯片AD637先进行有效值采样,然后通过PCF8951进行AD采样,最后再转换成峰值,液晶采用LCD1602,系统以stc89c51单片机为控制核心,经测试验证,系统运行稳定,操作方便。 关键词:程控放大器,峰值检测,AD采样,单片机。 Abstract:This system has three modules: SPC amplifiers, peak detection, liquid crystal. By two AD603 program-controlled amplifier amplification voltage gain one, can gain 1db stepping 0.2v, adjustable, voltage gain error is not more than 5%. Amplifier output without obvious distortion. Measure true RMS peak by sampling AD637 chip on sampling, then PCF8951 through effective sampling, finally to AD convert peak, LCD USES lcd1602 management system with stc8951 SCM as control core and tested, the system runs stably, convenient operation. Key: SPC amplifier Peak detection AD sampling chip SCM 1. 方案的论证与比较 1.1 设计需求 1.1.1 基本要求 (1)放大器可以从信号发生器或音乐播放器输入音频信号(50Hz~10KHz), 输出可以带200Ω负载或驱动8Ω喇叭(2~5W)。(20 分) (2)当输入信号幅度在10mV~5V 间变化时,放大器输出默认值保持在2V ±0.2V(有效值)内,波动越小越好。(30 分) (3)可以显示输入信号幅度和频率。(10 分) (4)能够在1V~3V 范围内步进式调节放大器输出幅度,步距0.2V。(15 分) (5)能够根据环境噪声调整自动调节放大器输出幅度。(15分) (6)其它发挥设计。(10 分) (7)设计报告。(20 分) 1.1.2 发挥部分

AD603程控增益调整放大器

AD603程控增益调整放大器 AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。 在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。AD603正是这样一种具有程控增益调整功能的芯片。它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。 AD603的特点、内部结构和工作原理 (1)AD603的特点 AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。 (2)ad603引脚排列是、功能及极限参数 AD603的引脚排列如图1所示,表1所列为其引脚功能。 引脚1 增益控制输入“高”电压端(正电压控制) 引脚2 增益控制输入“低”电压端(负电压控制) 引脚3 运放输入 引脚4 运放公共端 引脚5 反馈端 引脚6 负电源输入 引脚7 运放输出 引脚8 正电源输入 ●电源电压Vs:±7.5V; ●输入信号幅度VINP:+2V; ●增益控制端电压GNEG和GPOS:±Vs; ●功耗:400mW; ●工作温度范围; AD603A:-40℃~85℃; AD603S:-55℃~+125℃; ●存储温度:-65℃~150℃ (3)AD603内部结构及原理 AD603内部结构图如图2所示。AD603由一个可通过外部反馈电路设置固定增益GF(31.07~51.07)的放大器、0~-42.14dB的宽带压控精密无源衰减器和40dB/V的线性增益控制电路构成。

电子综合课程设计题目资料

电子综合课程设计题目汇总 1、水温控制系统设计 任务:设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 要求: 1)基本要求 (1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。(2)环境温度降低时(例如用电风扇降温)温度控制的静态误差≤1℃。(3)用十进制数码管显示水的实际温度。 2)发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变(由40℃提高到60℃)时,自动打印水温随时间变化的曲线。 2、语音提示系统 设计任务: 1)基本要求 设计并制作一个语音提示系统,能对出入口人员进行实时提示。 A. 能检测人员的进出方向。 B. 能够根据人员不同的进出方向发出不同的提示音。 C.具有录音功能。根据不同的场合,录制不同的提示音。录音时间大于4秒。 2)发挥部分 A.统计一天的人流量,通过按键显示。 B.显示当前时间。 C.在语音提示的同时能用灯光显示。 D.录音时间大于等于8秒。 3、程控音频OCL功率放大器

任务:设计一个功率可程控、有输出功率显示的OCL 音频功率放大器电路。后级OCL 功率放大部分用分立元件制作,供电电源为±15V ,输入信号电压幅度为(10~1000)mV rms ,负载为为8欧电阻。其结构框图如下图所示。 Ω =8L R 要求: 1)基本要求 用仿真软件对电路进行验证,使其满足以下要求: (1)失真度≤3%时,输出功率P 0≥7.5W ; (2)频率响应为(20~22000)Hz ; (3)在信号源的幅度和频率固定为某一值时,可以设置输出功率,并实时测量、显示输出功率,显示的输出功率(P s )与设定功率(P g )的相对误差()3%s g g P P P -≤; 2)发挥部分 制作一个正弦波信号发生器的实物,使其完成以下功能: A 失真度≤10%时,输出功率P 0≥6W ; B 频率响应为(30~10000)Hz ; C 在输入端交流短路接地时,输出端交流信号≤20mVpp ; D 在信号源的幅度和频率固定为某一值时,可以设置输出功率,并实时测量、显示输出功率。 说明: 1)设计报告必须包括建模仿真结果,发挥部分可以选作。 2)因为有的竞赛题目不易进行建模仿真,参赛者可以针对两道不同题目分别进行建模仿真与实物制作,评分时,仿真结果与实物制作各自的得分相加,作为参赛者的最后总分。此时,只需要提交针对仿真结果的设计报告。 4、程控高增益选频放大器设计 任务:

自动增益控制放大器

摘要 自动增益控制电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。 本课题主要研究应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。 本课题介绍了自动增益控制的概念原理以及对自动增益控制放大器各部分的工作原理,最后对系统的测试结果以及设计与实现中应该注意的问题也做了详细分析。 关键词:放大器;自动增益控制;电压跟随器;滤波器 目录 摘要 (1) 第1章引言 (4) 第2章自动增益控制 (4) 2. 1自动增益控制 (4) 2.1.1自动增益控制基本概念 (4) 2.1.2自动增益控制的原理 (5) 2. 2自动增益控制放大器 (5) 2. 3本课题的研究内容 (5) 第3章自动增益控制放大器的电路设计 (6) 3. 1方案选择 (6) 3. 2压随器工作原理 (8) 3. 3整流电路工作原理 (8) 3. 4滤波 (9) 3. 5增益控制工作原理 (9) 3. 6电路元器件选择 (10) 3.6.1运算放大器 (10) 3.6.2场效应管的选择 (11) 3.6.3其他元器件的选择 (11)

第4章放大器电路的调试及实验结果 (12) 4. 1放大器电路的调试 (12) 4. 2实验结果及存在问题 (12) 第5章总结 (14) 参考文献 (15) 附录 (15) 致谢 (16) 第1章引言 随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益 控制电路越来越被人们熟知并且广泛的应用到各个领域当中。自动增益控制线路,简称AGC线路,A是AUTO(自动),G是GAIN(增益),C是CONTROL(控制)。它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进 行调整。当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输 入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对 输入信号进行衰减的需要。也就是说,AGC功能可以通过改变输入输出压缩比例自 动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大 的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信 号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。目前,实 现自动增益控制的手段有很多,在本文中,主要研究的是如何以放大器来实现自 动增益控制的目的,也就是自动增益控制放大器。 第2章自动增益控制 2. 1自动增益控制 2. 1. 1自动增益控制的基本概念 接收机的输出电平取决于输入信号电平和接收机的增益。由于各种原因,接 收机的输入信号变化范围往往很大,信号弱时可以是一微伏或几十微伏,信号强 时可达几百毫伏,最强信号和最弱信号相差可达几十分贝。这个变化范围称为接 收机的动态范围。 影响接收机输入信号的因素很多,例如:发射台功率的大小、接收机离发射 台距离的远近、信号在传播过程中传播条件的变化(如电离层和对流层的骚动、天

通用可变增益放大器

通用可变增益放大器(B题) 摘要 本着简单、准确、可靠、通用的原则,采用了分级设计匹配互连的思想。本放大器系统分为前级放大部分、增益放大与控制电路部分、档位控制部分、后级稳压输出部分四部分。全系统采用单一的模拟电路方式,通过前级放大部分获得所需输入电压、输入阻抗等重要参数;通过拨码开关连接的反馈电阻进行精密全局控制,获得20dB至40dB之间分辨力不低于0.1%的可变增益范围;通过档位控制部分电路实现四个档位增益值转换,在衰减电路的作用下得到三个档位的增益值,即—20dB至0、0至20dB、20dB至40dB;最后通过后级稳压输出部分获得输出幅度不低于±8V的输出电压,此部分电路包括抑制零点漂移的调零电路。通过验证,本系统可以对输出电压数值的漂移,零点漂移等不良影响进行有效地抑制和降低。通过全面的调试和测量,使得本系统基本满足题目的基本部分和发挥部分的要求并融入了自己的创新思想,设计出了一个可控范围大、输出幅度高、稳定性好、抗干扰能力强、幅频特性好的通用可变增益放大器。

目录 摘要 (2) 目录 (3) 一、方案论证与比较 (4) 1、前级放大部分 (4) 2、增益放大与衰减控制电路 (4) 3、后级电压输出 (5) 二、系统设计 (5) 1、总体设计思路 (5) 2、主要电路原理分析与计算 (6) 2.1、前级放大电路 (6) 2.2、增益放大与控制电路 (6) 2.3、档位控制电路 (7) 2.4、电压输出电路 (7) 三、系统测试方法与测试数据 (8) 1、测试仪器 (8) 2、测试方法与测试数据 (8) 2.1、测前级放大电路 (8) 2.2、测增益放大与控制电路 (8) 2.3、各级电路调节好后,进行测量和详细记录 (8) 3、测试结果分析 (9) 3.1、测试结果分析 (9) 3.2、误差分析 (9) 3.3、测试心得 (10) 四、总结 (10)

增益可控射频放大器

增益可控射频放大器 一、系统方案 1、方案分析与比较 方案1:以高增益精度的压控VGA芯片AD603作为核心放大器,但频率再高时,效果很不理想,并且在级联时,很容易产生自激现象。 方案2:采用宽带可变增益FET放大电路,其缺点是增益步进控制难以实现,高频时频率的稳定性不好,在75MHz~108MHZ增益起伏较大,不能满足要求。 方案3:采用射频放大器AD8321+衰减器HMC472+放大器AD809的形式。第一级为AD8321三级级联,使增益倍数达到52dB。考虑到输入信号为高频信号,随着频率增加,幅度衰减增大,所以第二级加上可设置分贝衰减器,衰减器随着频率升高衰减效果明显,通过这样的方式使输出幅度稳定。但考虑实际拟合后,增益会稍微下降,最后通过第三级放大器将增益值稳定至输入增益。AD8321是一款低成本、数字控制式可变增益放大器,所需输出增益由8比特串行字决定,方便STM32程控,输出增益范围为-27.4dB~26dB,增益变化为0.75 dB/LSB。具有极低输出噪声电平,上行带宽高达235 MHz(最小增益),符合题目200MHz要求。 综上考虑,AD8321具有频带宽、噪声低、增益可编程,易于与STM32进行串行通信等优点,选用方案3。 2、系统整体设计 根据题目要求,本系统主要由:键盘控制,液晶显示、语音播报模块,三级AD8321级联,衰减器,第二级放大模块,滤波器电路,电压转换电路组成。总体设计框图如图一所示:

图一 二、理论分析与计算 1、射频放大器设计 按照本设计要求,带宽为40MHz~200MHz ,电压增益为52dB 。所以采用AD8321三级级联的方式。8321最大增益为26dB ,理论上总增益=26+26+26=78dB ,符合设计要求。并且阻抗之间已经匹配,级联时无需额外电阻网络。为了防止高频走线间干扰,采用贴片式电路,原理图是根据器件手册的应用电路来设计。 2、频带内增益起伏控制 造成通频带内增益起伏的原因有很多,包括带内波动、运放幅频响应不平坦及供电电源电压不稳等,为了降低增益波动,在三级放大输出加上衰减器,利用衰减器HMC472随着频率增高衰减效果明显的特性,使频带内增益起伏得到控制。对幅度衰减特性进行补偿,最后再加一级AD809,将增益稳定。 3、射频放大器稳定性 由于本系统的处理对象是高频信号,所以整个系统对噪声的处理要求很高才能保证射频放大器的稳定性。噪声来源包括:电源、外界环境、级间干扰,以及走线间相互干扰等。针对不同的噪声,采用了不同的处理措施: (1)电源干扰:使用电感、电容构成滤波电路,能有效滤除纹波。在每个运放的电源引脚并联去耦电容。 (2)外界环境干扰,为了防止外界干扰,可以将电源线和地线加宽,并且在制PCB 板时加以覆铜;对自动增益级及功率放大级增加屏蔽罩,提高其抗干扰性能。 (3)级间干扰,各级之间,采用了高低频电容来滤除高低频噪声。 DC-DC (9V ) DC-DC (5V ) AD8321 AD8321 AD8321 STM32 液晶显示 键盘 直流稳压电源 输入 输出 语音播报 AD809 滤波器 衰减器

自动增益控制(AGC)放大器..

自动增益控制放大器(AGC)设计 摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。整个设计使用负反馈原理,实现了自动增益的控制。 关键字:AD603 MSP430 峰值检测自动增益控制 一、方案设计与论证 1.1整体方案 方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。 优点:该方案理论简单,制作起来也相对容易,只有硬件电路。 缺点:理论低端,精度不够,没有创新,通用性不好。 方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。 优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。 缺点:需要软硬件配合,系统稍复杂。 通过对两个方案的综合对比,我们选用方案二。 1.2控制模块 方案一:采用MCS-51。Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。 MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而

集中选频放大器概述教案.

小信号调谐放大器虽然有增益高、矩形系数好等优点而应用较广,但也还存在着一些缺点:如多级放大器中因谐振回路多,每级都要调谐,故调整不方便;回路直接与有源器件相联,其频率特性会受到来自晶体管参数、分布参数变化的影响,使其不能满足某些特殊频率特性的要求,如频带很窄,或者要求通频带外衰减很大的场合。 随着集成电路技术的飞速发展,许多具有不同功能特点的新的集成放大电路不断出现,给电子电路开发与应用提供了极为有利的条件。对干采用集成放大电路构成高频选频放大器来说,通常是采用集中滤波和宽频带集成放大电路相结合的方式来实现,它被称为集中选频式放大器。因多用于中频段,故又称为集成中频放大器。 目前,宽频带集成放大电路的型号很多,各自的性能和适应范围也有所不同。使用时可根据放大器的技术指标要求查阅有关的集成电路手册,选用合适的集成电路。对干集中滤波器可选用频率特性合适的陶瓷滤波器、晶体滤波器、声表面波滤波器或LC 滤波器。 一、集成中频放大器的组成 图2-2-1是集中选频式放大器的组成示意框图。它是由线性宽带放大器和集中滤波器组成,宽带放大器多用集成宽频带放大器,它体积小,性能好,可靠性高。由于集中滤波器通常是固定频率的,所以其宽放的频带也只需比滤波器的通频带宽些就可以了,如接收机的中频放大器。图(a)中,集中滤波器接在高增益宽带放大器的后面。这里宽带放大器只是表示放大器本身的频带宽度比放大的信号频带以及集中滤波器的频带更宽一些。 (a)(b) 前放大 宽放大 集滤波 (a)(b) 图2-2-1 集成中频放大器组成框图 当集成选频式放大器用于接收机中放时,为了避免有用信号频率附近的干扰信号在宽带放大器中产生的非线性作用,通常将集中滤波器放在高增益放大器之前,如图(b)所示。若集中滤波器衰减较大时,为避免使中放噪声系数加大,可在集中滤波器前加低噪声的前置放大器,以补偿滤波器的损耗。 起选频作用的部件是一个具有高选择性的集中滤波器,常用的有LC 带通滤波器、晶体滤波器、陶瓷滤波器、声表面波滤波器等等。目前,这些滤波器已得到广泛应用。因晶体滤波器特性与陶瓷滤波器相似,下面简单介绍陶瓷滤波器和声表面波滤波器。

自动增益放大器电路技术文档 8.15.1(1)

2014年江苏省大学生电子设计竞赛 设计报告 参赛题目:自动增益控制放大器 日期:二〇一四年八月十二日 至二〇一四年八月十五日

自动增益控制放大器(AGC)设计 摘要:自动增益控制(AGC)电路广泛地应用于现代电子设备中,本系统设计一款AGC控制放大器。整个系统以VCA810作为核心压控放大模块,以TI公司的MSP430 5438A型单片机作为微控制器,以继电器实现输入信号量程切换,以AD637型模块作为检波电路实现信号和噪声的检测、以计数器实现频率的测量,以ADS1118型A/D芯片和DAC124S085型D/A芯片分别实现模数和数模转换,基于TDA2030A实现音频功放电路,采用线性电源给系统供电。主要工作原理为,输入信号通过量程切换后进入压控放大模块或压控衰减电路,经A/D采样,输入至微控制器判断信号大小,据此控制开关电路进行量程分档,并输出控制信号至自动增益控制电路,以实现可控电平恒定输出。 经系统测试,设计要求的各项功能均达到,性能指标良好。当输入信号幅度在10mV~ 5V之间时,输出电压保持在2V 0.2V内。能够在1V~ 3V范围内步进式调节放大器输出幅度,步距为0.2V。 关键字:AGC放大器压控放大器噪声检测有效值检波 一、方案设计与论证 二、1.1整体方案 方案一:采用纯硬件电路实现,由VC810和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为VC810的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。 优点:该方案理论简单,制作起来也相对容易,只有硬件电路。 缺点:稳定性差,精度不够,没有创新,通用性不好。 方案二:采用VCA810和430单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器VCA810的放大倍数惊醒调整,从而实现输出电压的恒定。 优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。 缺点:需要软硬件配合,系统稍复杂。

程控增益放大器_电子技术基础课程设计

辽宁工业大学 模拟电子技术基础课程设计(论文) 题目:程控增益放大器 院(系):电子与信息工程学院 专业班级:通信101班 学号: 学生姓名 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第一章程增益放大器设计方案论证 (1) 1.1程控增益放大器的应用意义 (1) 1.2程控增益放大器设计的要求及技术指标 (1) 1.3 设计方案论证 (1) 1.4 总体设计方案框图及分析 (2) 第二章程控增益放大器各单元电路设计 (2) 2.1 编码开关的设计 (2) 2.2 集成电路运算放大器的设计 (5) 2.3增益调整电路设计 (8) 第三章程控增益放大器整体电路设计 (8) 3.1 整体电路图及工作原理 (8) 3.2 电路参数计算 (9) 3.3 整机电路的仿真 (9) 第四章课程设计的总结 (9) 参考文献 (10) 附录:器件清单 (11)

第一章程控增益放大器设计方案论证 1.1程控增益放大器的应用意义 程控增益放大器按输出信号的特点分类,可分为模拟式和数字式可编程放大器。可以通过数字电路控制模拟放大电路的放大倍数。可以自己设计电路,或者使用一些公司的现成的集成芯片实现。具体实行的电路很多。比如DAC+OP运放;OP运放+模拟开关;电阻分压网络+模拟开关+OP运放;集成芯片PGA102;PGA103;AD621;等等。利用拨码开关的数码代替电位器刻度,具有线性度好、精度高、直观,可直接或间接取代一般线性电位器或多圈线性电位器。放大器的增益的变化是由数字信号控制其反馈电阻完成的。程控增益放大器是一种在多通道多参数空间一个测量放大器,多通道放大器的信号的大小并不相同,都是放大至A/D交换器输入要求的标准是电压,因此对各个通路要求测量放大器的增益也不同。 1.2程控增益放大器设计的要求及技术指标 1.2.1设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 1.2.2技术指标 1.电压放大倍数N由拨码开关控制,199 ≤N。 ≤ 2.输出电压绝对值在1—10V范围。输入电阻Ω ≤20 Ro。 Ri8,输出电阻Ω ≥M 1.3设计方案论证 程控增益放大器通用的方法: 1)运放+模拟开关+电阻分压网络。 2)拨码开关+数字电位器+运放。 其中,第一种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。这种方法的电路比较复杂,。第二种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。而精度较为高,所以我们采用的是第二种方法设计的放大电路。

窄带选频放大器

电子课程设计电子课程设计报告 课题题目指导老师学生姓名学生学号完成时间: : : : : 窄带选频放大器 0808060413 2010.6.9

目录 摘要: (4) 1系统概述 (4) 1.1选频电路: (5) 1.2放大器: (5) 1.3低通滤波器: (5) 2单元电路设计与分析 (5) 2.1双T选频网络: (6) 2.2运算放大器 (7) 2.3低通滤波器 (8) 3电路的安装与调试 (9) 4结束语 (10) 4.1设计简单介绍 (10) 4.2设计调试中的难点 (11) 4.3改善及改进意向 (11) 4.4收获与体会 (11) 附上元件明细表及参考资料 (11)

(题目:窄带选频放大器) 摘要: 有源滤波器具有与rlc 串联谐振电路相同的特性曲线,利用数值计算的方法,得出两级级联的滤波器在临界偏调时各级中心频率f 0与q 值的关系,分析了电路不同q 值与平顶宽度的关系,在本设计中采用了RC 电路;据此,设计并制作了具有平顶特性的窄带通滤波器。仿真结果表明其特性与理论计算曲线大致相似。在制作过程中,为达到仿真效果及理论计算结果,不断对电路进行调试,还对电路的选择性、误差进行了分析。 关键词: 选频网络;运算放大器;低通滤波器;反馈电路。 1系统概述 本设计电路由选频电路、放大器和低通滤波器组成。 + + A + + A 2 3 2 3 6 4 5 5

1.1选频电路: 由UA741及电阻电容构成的双T选频网络构成,将输入的多种频率信号进行选频,运算放大器A1的反馈电路中,接入了窄频带滤波器,谐振频率f=1/2πRC=2KHz。 1.2放大器: 由UA741运算放大器构成半波整流器,输出正半周信号。 1.3低通滤波器: 由电阻电容构成,将高频经电容滤去,输出低频信号,因而该放大器仅选择2KHz(T=0.5ms)频率信号经放大后变为交流输出,其输出可接自动示波器显示输出波形。 2单元电路设计与分析

数控增益放大器设计

福州大学 《电子技术综合实验》 课题:数控增益放大器 姓名:张全宇 学号:011100938 学院:电气工程与自动化学院2011级9班 指导老师:张选利 实验时间:2013年6月28-30日 目录

一、实验任务 (3) 二、实验目的 (3) 三、实验设计 (3) 四、实验内容 (5) 五、元件清单 (5) 六、心得体会 (5) 七、参考文献 (5) 一、实验任务 设计一个数字控制增益的放大器,要求在控制按键的作用下,放大器的增益依次在1~8之间转换,同时用LED数码管显示放大器的增益。 二、实验目的

通过本实验,熟悉运算放大器、计数器、数据选择器、加法器、译码/显示电路的用法。 三、实验设计 按照要求,放大器的增益应在1~8之间,因此,可选择图1-1所示的同相比例放大器,其电压增益为 2 1 1uf R A R =+ 图1-1 同相输入比例放大器 如果取R1=10k Ω,则可以通过改变R2实现增益的改变,当R2=0时,Auf=1;R2=10 k Ω时,Auf=2;R2=20 k Ω时,Auf=3;依次类推,当R2=70 k Ω时,Auf=8。为达到放大器增益数字控制的目的,可由数据选择器和电阻构成数控电阻网络,代替图中的R2,通过改变数据选择器的地址编码,实现数控电阻的目的,由此设计出图1-2所示的电路。图中用74LS160构成八进制计数器,计数器的Q2、Q1、Q0作为数据选择器CC4051的地址输入。每按动一下按键S1,计数器加1,数控电阻网络的等效电阻发生变化,由此控制放大器的增益在1~8之间变化。 为了直观地显示放大器的增益,译码/显示电路如下图所示。图中74LS283为二进制加法器,通过加一运算,将计数器的值转化为电压放大倍数。

集成选频放大器实验

实验二集成选频放大器 一、实验目的 1、熟悉集成放大器的内部工作原理 2、熟悉陶瓷滤波器的选频特性 二、实验内容 1、测量集成选频放大器的增益。 2、测量集成选频放大器的通频带。 3、测量集成选频放大器的选择性。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、2 号板1块 4、双踪示波器1台 5、万用表1块 6、扫频仪(可选)1台 四、实验原理 1、集成选频放大器的原理图见下图

图2-1 集成选频放大器电路原理图 由上图可知,本实验中涉及到的集成选频放大器是带AGC(自动增益控制)功能的选频放大器,放大IC用的是Motorola公司的MC1350。 2、MC1350放大器的工作原理 图2-2为MC1350单片集成放大器的电原理图。这个电路是双端输入、双端输出的全差动式电路,其主要用于中频和视频放大。

图2-2 MC1350内部电路图 输入级为共射-共基差分对,Q1和Q2组成共射差分对,Q3和Q6组成共基差分对。除了Q3和Q6的射极等效输入阻抗为Q1、Q2的集电极负载外,还有Q4、Q5的射极输入阻抗分别与Q3、Q6的射极输入阻抗并联,起着分流的作用。各个等效微变输入阻抗分别与该器件的偏流成反比。增益控制电压(直流电压)控制Q4、Q5的基极,以改变Q4、Q5分别和Q3、Q6的工作点电流的相对大小,当增益控制电压增大时,Q4、Q5的工作点电流增大,射极等效输入阻抗下降,分流作用增大,放大器的增益减小。 五、实验步骤 1、据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及 可调器件(具体指出)。 2、按下面框图(图2-3)所示搭建好测试电路。

程控放大器的设计方案

长江大学电子系统设计竞赛参赛方案作品名称程控放大器 姓名周健(电气1083)、高秀龙(电气1083) 所在院系电子信息学院 完成时间2011.5.29

程控放大器 摘要:本设计以LF353、ATMEGA16、DAC0832芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。放大器的电压放大倍数从0.5倍到127.5倍,以±0.5倍为最小步进可设定增益步进,控制误差不大于5%,放大器的带宽大于200KHz。键盘和显示电路实现人机交互,完成对电压放大倍数和输出电压的设定和显示。 关键字:程控放大器、高精度、控制电压、电压变换、D/A、A/D。 一、系统方案设计与论证 1、方案的比较 程控放大器在信号调整与控制电路具有广泛的用途,如音响设备中音量的控制,电子设备中信号的准确放大,信号处理电路中输出信号的自动稳幅等。 准确程控增益可调放大器的实现方法通常有以下几种方案可供选用。 方案一:利用可程控的模拟开关和电阻网络构成放大器的反馈电阻,通过接入不同的电阻来实现放大器的放大倍数改变,以达到程控增益的目的。 此方案的优点是控制简单,电路实现较为容易。缺点是多路模拟开关使用频率较低,其导通电阻对信号传输精度影响较为明显,漂移较大,输入阻抗不高,对于较为精确的控制其影响难以进行后期修正,切换时抖动引起的误差比较大,切换速度较慢。控制精度增加一位,电阻网络就增加一级,电阻网络的电阻选择也较为困难,很难做到高精度控制。 方案二:利用数字电位器作为放大器的反馈电阻,实现放大器的放大倍数改变。

此方案和方案一原理基本相同,都是通过调节反馈电阻来实现对增益的控制,不同的是选用数字电位器来实现,缺点是数字电位器为了扩大使用电压范围,内部附加了由振荡器组成的充电泵,因而会产生有害的高频噪声,它同样不能满足高精度控制要求。 方案三:利用电流型DAC自身的乘法功能,可以实现程控放大器。此方案实现较为容易,控制精确较高,一般不能做到宽频使用。 方案四:利用新型单片集成电压控制放大器实现程控放大器。 此方案实现也较为容易,控制电路成本较低,使用频率受限于放大器本身。 方案五:利用D/A转换器与仪表放大器一起可组成程控增益放大器。 该方案电路简单,增益可调范围大,稳定性好,性价比高,其增益由输入数字量控制,电路很容易和计算机或单片机相连,组成自动测试系统。 2、方案确定 分析上述五种方案的优缺点,在满足要求的条件下,方案五具有更大的优越性和灵和性,因此我们采用D/A转换器与仪表放大器一起可组成程控增益放大器。 二、放大器的基本原理 1、D/A转换器原理

相关主题
文本预览
相关文档 最新文档