当前位置:文档之家› 超级电容器基本原理及性能特点

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点
超级电容器基本原理及性能特点

超级电容器基本原理及性能特点

中心议题:

?超级电容器的原理、结构和特点

?Maxwell超级电容器结构

?超级电容选型与应用

超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池

相同,因此也有称作“电容电池”。超级电容属于双电层电容器,它是世界上已投入

量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器原理

电化学双层电容器(EDLC)因超级电容器被我们所熟知。超级电容器利用静

电极化电解溶液的方式储存能量。虽然它是一个电化学器件,但它的能量储存机制

却一点也不涉及化学反应。这个机制是高度可逆的,它允许超级电容器充电放电达

十万甚至数百万次。

超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关

的多孔板。对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另

外一层。

传统的电解电容器存储区域来自平面,导电材料薄板。高电容是通过大量的

材料折叠。可能通过进一步增加其表面纹理,进一步增加它的表面积。过去传统

的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。电介质越薄,在空间受限的区域越可以获得更多的区域。可以实现对介质厚度的表面面积限制

的定义。

超级电容器的面积来自一个多孔的碳基电极材料。这种材料的多孔结构,允

许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。超级电容

器的充电距离取决于电解液中被吸引到电极的带电离子的大小。这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。

超级电容可以用做后备电源,类似于UPS,在系统突然断电后,负责在极短时间内为系统提供能量。在这种应用中,需要后备电源有快速的启动时间。由于

超级电容是物理反应的方式储存电能,充放电速度快,相对电池有着更为快速的响应时间。

图1:超级电容用作备用电源示意图

电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电在0.03秒,超级电容充放电在1秒左右,基本上是从0.1秒到10秒,这个时间正好是汽车、吊车刹车或启动的时间,其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。

在风力发电风轮机变桨时、机车、电动机、汽车、吊车启动时需要的能量远大于其正常工作时需要的能量,超级电容可以辅助电池、发动机等动力系统提供峰值功率,从而减轻电池或发动机的负担。没有超级电容时,在负载启动、维持运行和终止的过程中,能量全部由电池或发动机供给。如果加入了超级电容,负载启动时需要的峰值功率可以由超级电容承担。

图2:超级电容提供峰值功率示意图

在机车、电动机、汽车、吊车刹车时,超级电容可以重新捕获能量。这样,加入了超级电容做辅助电源,可以提高能量利用效率,延长电池或发动机寿命。同时

相对于没有超级电容的动力系统,电池或发动机不需要提供峰值功率,因而尺寸可以更小。下图是超级电容辅助电池、发动机的工作模式示意图。

图3:没有超级电容的动力系统工作模式

图4:超级电容用作辅助电源的动力系统工作模式

超级电容器内部结构

超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。

图1. 超级电容器结构

超级电容器的部件从产品到产品可以有所不同。这是由超级电容器包装的几何结构决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。

对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。最后将电极箔焊接到终端,使外部的电容电流路径扩展。

Maxwell超级电容器结构

图2. 超级电容器电极

图3.电极——制胜的关键

如上图2所示,为Maxwell超级电容的电极,这被认为是他们超级电容器技术的最关键部分。这个电极是由铝,碳元素制成,其中树脂作为粘合剂,纸作为隔膜。

超级电容器的特点

(1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;

(2)循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;

(3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;

(4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;

(5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;

(6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;

(7)超低温特性好,温度范围宽-40℃~+70℃;

(8)检测方便,剩余电量可直接读出;

(9)容量范围通常0.1F--1000F 。

法拉(farad),简称“法”,符号是F

1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V

1库仑是1A电流在1s内输运的电量,即1C=1A?S。

1库仑=1安培?秒

1法拉=1安培?秒/伏特

超级电容与电池的比较

相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。本文介绍超级电容与其他储能产品的性能比较,例如与各种电池的比较,替代的可能性。

图1:各种各样的储能产品

之所以叫超级电容,是因为超级电容的容值都是法拉级的,且可以很快提供一个充放电,这是传统的电容或者电池做不到的。下面介绍了各种产品不同的应用范围,横坐标是能流密度,纵坐标是能量密度,从中可以看到哪个地方是电池的应用范围,哪个地方是传统电容的应用范围,哪一块是超级电容的应用范围。

图2. 超级电容和其他储能技术的比较

我们知道电池的充放电大概在1小时到10个小时左右,而传统电容是作为滤

波使用的,充放电是在0.03秒,但是超级电容就在1秒左右,基本上是从0.1秒

到10秒,这正是汽车比如刹车起动的时候要用的,当然任何的设备比如风能变桨

系统,变桨的时候要提供能量也是在这个时间段。超级电容的能流密度和能量密度

都非常高。超级电容是用物理的方法储能,电池是用化学反应的方法来储能,所以

电池的反应时间会很长,超级电容可以快速的充放电,这是它的根本原因,也是超

级电容的性能优势之所在。

传统的储能系统是使用铅酸电池。以风力发电为例,有风时由风力发电机发电,无风时由储能系统供电。当电源断开进行切换时,铅酸电池需要十几秒的反应时间。这时便可由超级电容进行辅助。由于超级电容是将电荷储存起来,可以快速的补充

和释放,而电池则需要经过化学反应的方式进行充放电。在这十几秒的时间里,超

级电容可以提供短时间的能量,保证电源稳定。超级电容可以工作在在-40℃~65℃之间,可以覆盖PC -20℃~60℃的工作温度范围和电池0℃~50℃的工作温度。超

级电容是功率密集元件,但放电时间较短,电池是能量密集型元件,放电时间较

长。

图3.超级电容与电池的充放电次数比较

超级电容的应用主要是用作备用电源和提供峰值功率。超级电容用作备用电源时,具有高可靠性、免维护、长寿命和宽工作温度范围的特点。由于超级电容能够进行高功率的充放电,所以可以将火车,城市轻轨的刹车能量储存起来,加速时提供峰值功率,或者可以在吊车起吊时,电动机启动时提供峰值功率。

图4.超级电容与电池的储能原理比较

如上图4所示,超级电容和电池在储能原理上最大的不同在于超级电容利用的是物理的储能方式而电池利用的是化学的储能方式。同时,超级电容和电池的储能的决定因素也不同。

图5.超级电容与锂离子电池比较

超级电容器是功率密集元件(>10kW/L)而锂离子电池是能量密集元件(~200 Wh/L)。

图6.电池电压随电池能量的变化

图7.超级电容器的放电特性

超级电容与电池比较,有如下特性:

a LOW ESR),功率密度(Power Density)是锂离子的数

十倍以上,适合大电流放电,(一枚4.7F电容能释放瞬间电流18A以上)。

b. 超长寿命,充放电大于50万次,是Li-Ion电池的500倍,是Ni达68年。

c. 可以大电流充电,充放电时间短,对充电电路要求简单,无记忆效应。

d. 免维护,可密封。

e.温度范围宽-40℃~+70℃,一般电池是-20℃~60℃。

聚焦超级电容选型与应用

超级电容和电池都是能量的存储载体,但二者有不同的特点。超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。

超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。

超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。

除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:

超级电容的典型应用与选型

超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。本文介绍超级电容的工作原理,并着重介绍在集装箱龙门吊车和智能电表上的应用。

超级电容通过分离正负电荷来储存能量,是物理方法储能,电池是用化学反应

的方法来储能,所以电池的反应时间会很长,超级电容容量大,充放电速度快,而

且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。

超级电容提供峰值功率的应用案例

集装箱龙门吊车使用柴油机做动力,当龙门下来的时候有一个动能,通常是通

级电容,刹车的动能可以转换成电能,通过一定的电路充电到超级电容里面去,反

过来当龙门上升的时候通过一定的逆行电路把超级电容的能量反馈到电机里面。

由于使用了超级电容提供峰值功率,柴油机只需要提供维持运行的较小的功率,因而柴油机的尺寸可以减小一半,同时节省了成本。类似的应用还包括叉车、混合

动力汽车、轻轨或地铁。

图5:超级电容用在集装箱龙门吊车上面

自动抄表系统抄表时,数据发送需要非常大的能量,超级电容能够提供大的能量。下图是Maxwell超级电容在智能电表上的应用,超级电容取代锂离子电池,寿

命可以延长一倍,占版面积比锂离子电池小。在自动抄表系统中的水表和气表中,

超级电容配合电池,延长使用寿命。

图6:超级电容在智能电表中替代电池

选择合适的超级电容

超级电容的选型和数量配置需要根据不同的应用来判断,选择要素包括最大和

最小工作电压、平均电流、平均功率、峰值电流、峰值功率、工作环境温度、运行

时间、寿命。

超级电容的额定电压用VR表示,通过最大工作电压(Vmax)可以算出需要串

联的超级电容的数量。计算公式为:

接下来,根据平均电流(I,单位为安培)、运行时间(dt,单位为秒)、最小

工作电压(Vmin),通过下面公式,就能计算出系统所需要的电容容值的近似值。

系统电容值与串联的每个电容之间的关系用下面的公式表示:

如果使用相同容值的电容,那么公式可以简化为:。根据这个计

算值,对照产品规格表,可以找出合适的产品。

如果各个电容之间是并联关系,系统电容值与单个电容之间的容值关系式为:

除此之外,其他需要考虑的因素有,电容的内阻与瞬时电压降有关,工作环境温度会影响电容内阻和寿命。

替代蓄电池的超级电容储能模块设计

替代蓄电池的超级电容储能模块设计 引言 电能是当代社会不可或缺的重要资源,而储能设备的优劣直接影响着电力设备的充分应用。近年来随着便携式设备、不间断电源系统以及电动车的大量开发使用,蓄电池的使用量日益增加。可充电蓄电池,特别是铅酸蓄电池凭借其价格低廉、性能稳定、没有记忆功能等卓越特点普遍应用在各行各业。但蓄电池受其先天条件的制约,存在着循环寿命差、高低温性能差、充放电过程敏感、深度放电性能容量恢复困难、环境污染的问题,传统蓄电池已经越来越无法满足人们对储能系统的要求。 超级电容是近几年才批量生产的一种新型电力储能器件,也称为电化学电容。它既具有静电电容器的高放电功率优势又像电池一样具有较大电荷储存能力[1,2],单体的容量目前已经做到万法拉级。同时,超级电容还具有循环寿命长、功率密度大、充放电速度快、高温性能好、容量配置灵活、环境友好免维护等优点。自1957年美国人Becker发表第一篇关于超级电容的专利以来,超级电容的应用范围越来越广:在直流电气化铁路供电、UPS等应用方向进行研究,目前已开发出了50kVA和80kVA的实验样机[3];利用超级电容器配合蓄电池作为辅助动力源,促进汽车的能源回收,提高能源利用率[4],并出现了超级电容混合动力汽车[5]。随着超级电容性能的提升,它将有望在小功耗电子设备、新能源利用以及其他一些领域中部分取代传统蓄电池。 本文介绍了一种基于超级电容设计的用以替代12V蓄电池的超级电容模块,通过计算分析得出模块的组合结构、最佳充电电流范围、充电时间以及总的输出能量。该模块具有寿命长,不造成污染,功率和能量密度大等优点,具有很好的开发应用前景。 一、超级电容储能模块的设计 由于超级电容的放电不完全,存在最低工作电压,所以单体超级电容的能量为 ,其中C为超级电容的单体电容量,为单体超级电容充电 完成的电压值。 超级电容器单体储存能量有限且耐压不高,需要通过相应的串连并联方法扩容,扩大超级电容的使用范围。而通过相应的DC-DC芯片可以提高超级电容的最低工作电压。假设超级电容以m个串联,n组并联的方式构成。则每个超级电容的能量输出为 (1) 其中,为芯片的最低启动电压。故超级电容阵列的能量总输出为,为超级电容的总能量。 本文采用SU2400P-0027V-1RA超级电容,具有较高的功率比、能量比和较低的等效串联电阻(ESR(DC)=1mΩ)。为了构成替代12V蓄电池的超级电容模块,我们采用8

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

超级电容器原理和应用

超级电容器原理和应用 分类:移动互联的基本知识或讲座 2007.6.13 20:14 作者:kimberye | 评论:0 | 阅读:5029 超级电容器简介(图) 作者:Maxwell Technologies Bobby Maher 随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。 电池技术的缺陷 Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 超级电容器的特点和优势 超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。 除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。因此,必须采用恒流或恒压充电器。 10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

超级电容器储能技术及其应用

超级电容器储能技术及其应用 摘要:超级电容器是近年发展起来的一种新型储能元件,具有功率密度高、寿命长、无需维护及充放电迅速等特性。叙述了超级电容器的分类、储能原理和性能特点,介绍了超级电容器目前的应用领域及应用中需要关注的问题。 超级电容器,也叫电化学电容器,是20世纪60年代发展起来的一种新型储能元件。1957年,美国的Becker首先提出了可以将电容器用作储能元件,具有接近于电池的能量密度。1962年,标准石油公司(SOHIO)生产了一种工作电压为6V、以碳材料作为电极的电容器。稍后,该技术被转让给NEC电气公司,该公司从1979年开始生产超级电容器,1983年率先推向市场。20世纪80年代以来,利用金属氧化物或氮化物作为电极活性物质的超级电容器,因其具有双电层电容所不具有的若干优点,现已引起广大科研工作者极大兴趣。 1超级电容器的储能原理 超级电容器按储能原理可分为双电层电容器和法拉第准电容器。 1.1双电层电容器的基本原理 双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储能量的一种新型电子元件。当电极和电解液接触时,由于库仑力、分子间力或者原子间力的作用,使固液界面出现稳定的、符号相反的两层电荷,称为界面双电层。这种电容器的储能是通过使电解质溶液进行电化学极化来实现的,并没有产生电化学反应,这种储能过程是可逆的。 1.2法拉第准电容器的基本原理 继双电层电容器后,又发展了法拉第准电容,简称准电容。该电容是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度的化学吸脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。 2超级电容器的特性 超级电容器是介于传统物理电容器和电池之间的一种较佳的储能元件,其巨大的优越性表现为:①功率密度高。超级电容器的内阻很小,而且在电极/溶液界面和电极材料本体内均能实现电荷的快速储存和释放。②充放电循环寿命长。超级电容器在充放电过程中没有发生电化学反应,其循环寿命可达万次以上。③充电时间短。完全充电只需数分钟。④实现高比功率和高比能量输出。⑤储存寿命长。⑥可靠性高。超级电容器工作中没有运动部件,维护工作极少。⑦环境温

超级电容器的工作原理

超级电容器的工作原理 根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric double layer capacitor, EDLC)和赝电容器(Pesudocapacitor)。 2.1 双电层电容器原理 双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。 双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。双电层电容器的容量大小与电极材料的孔隙率有关。通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。但不是孔隙率越高,电容器的容量越大。保持电极材料孔径大小在2,50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。 2.2 赝电容器原理 赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10–6 F/cm2。对氧化还原型电容器而言,可实现的最大容量值则非常大[9],而碳材料的比容通常被认为是20×10–6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10,100 倍。目前赝电容电极材料主要为一些金属氧化物和导电聚合物。

金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物, 如:MnO2、V2O5、 2、NiO、H3PMo12O40、WO 3、PbO2和Co3O4等[10]。金属氧化物作为超级电容器电RuO2、IrO 极材料研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700,760 F/g。但RuO2稀有的资源及高昂的价格限制了它的应用。研究人员希望能从MnO2及NiO等贱金属氧化物中找到电化学性能优越的电极材料以代替RuO2。用导电聚合物作为超级电容器的电极材料是近年来发展起来的。聚合物产品具有良好的电子电导率,其典型的数值为1,100 S/cm。一般将共轭聚合物的电导性与掺杂半导体进行比较,采用术语“p掺杂”和“n掺杂”分别用于描述电化学氧化和还原的结果。导电聚合物借助于电化学氧化和还原反应在电子共轭聚合物链上引入正电荷和负电荷中心,正、负电荷中心的充电程度取决于电极电势[9]。导电聚合物也是通过法拉第过程大量存储能量。目前仅有有限的导电聚合物可以在较高的还原电位下稳定地进行电化学n型掺杂,如聚乙炔、聚吡咯、聚苯胺、聚噻吩等。现阶段的研究工作主要集中在寻找具有优良的掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。 超级电容器作为一种新型的储能元件,具有如下优点: (1)超高的容量。超级电容器的容量范围为0.1,6 000 F,比同体积的电解电容器容量大2 000,6 000倍。 (2)功率密度高。超级电容器能提供瞬时的大电流,在短时间内电流可以达到几百到几千安培,其功率密度是电池的10,100倍,可达到10×103 W/kg左右。 (3)充放电效率高,超长寿命。超级电容器的充放电过程通常不会对电极材料的结构产生影响,材料的使用寿命不受循环次数的影响,充放电循环次数在105以

超级电容直流储能系统

第一章前言 1.1课题背景 1.1.1超级电容直流储能系统的发展概况 由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。已经进行混合动力、燃料电池、化学电池产品及应用的研究开发,取得了一定的成效。但是由于它们固有的使用寿命短、温度特性差、化学电池污染环境、系统复杂、造价高昂等致命弱点,一直没有很好的解决办法。而超级电容器以其优异的特性扬长避短,可以部分或全部替代传统的化学电池用于车辆的牵引电源和启动能源,并且具有比传统的化学电池更加广泛的用途。正因为如此,世界各国(特别是西方发达国家)都不遗余力地对超级电容器进行研究与开发。其中美国、日本和俄罗斯等国家不仅在研发生产上走在前面,而且还建立了专门地国家管理机构(如:美国的USABC、日本的SUN、俄罗斯的REVA等),制定国家发展计划,由国家投入巨资和人力,积极推进。就超级电容器技术水平而言,目前俄罗斯走在世界前面,其产品已经进行商业化生产和应用,并被第17届国际电动车年会(EVS—17)评为最先进产品,日本、德国、英国、法国、澳大利亚等国家也在急起直追,目前各国推广应用超级电容器的领域已相当广泛。在我国推广使用超级电容器,能够减少石油消耗,减轻对石油进口的依赖,有利于国家石油安全;有效地解决城市尾气污染和铅酸电池污染问题;有利于解决战车的低温启动问题。目前,国内主要有10余家企业在进行超级电容器的研发。 1.2 超级电容在国内外相关技术发展现状 1.2.1 国外超级电容的生产及发展状况 目前,在超级电容产业化方面,美国、日本、俄罗斯处于领先地位,几乎占据了整个超级电容市场。这些国家的超级电容产品在功率、容量、价格等方面各有自己的特点与优势。 1.2.2 国内超级电容的研究现状 1.2. 3 超级电容的应用研究现状 1.2.3.1 超级电容做混合型电动机车的启动或加速用辅助电源目前,大部分内燃机车、混合动力汽车、电动汽车、车辆低温启动、轨道车辆能量回收、航天航空、电动叉车、起重机 1.2.3.2 超级电容是方便可靠的储能设备超级电容放电速度快、体积小、重量轻,可以为众多电子产品和存储器提供电源或后备电源,同时又可以提供大功率的脉冲电流,可以满足通讯设备对电源的要求。手电筒、直流屏储能系统、应急照明灯储能系统 1.2.3.3 超级电容在电力系统中的应用超级电容在电力系统中的应用主要有以下两个方面: (1)提高供电质量在电力变配电所系统中,变配电设备主要是由直流电源装置直流屏来提供直流电源的。 (2)UPS系统和应急电源为了解决工厂车间因为停电而带来的经济损失,通常的储能设备是用UPS系统。 1.3.3.4 超级电容在军用领域有重要用途卫星等空间飞行器的电源大多是: (1)调节飞行器配电系统的电压电动飞行器配电系统直流线电压是270V,它

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

【CN209767213U】超级电容储能系统及基于超级电容储能系统电源管理系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920484704.9 (22)申请日 2019.04.11 (73)专利权人 国网浙江余姚市供电有限公司 地址 315400 浙江省宁波市余姚市体育场 路145号 专利权人 国网浙江省电力有限公司宁波供 电公司 (72)发明人 严文杰 施立 黄永钦 刘文建  朱振洪  (74)专利代理机构 杭州华鼎知识产权代理事务 所(普通合伙) 33217 代理人 项军 (51)Int.Cl. H02J 7/34(2006.01) H02J 7/00(2006.01) (54)实用新型名称 超级电容储能系统及基于超级电容储能系 统电源管理系统 (57)摘要 本实用新型涉及电源领域,尤其涉及超级电 容储能系统及基于超级电容储能系统电源管理 系统,包括若干个串联连接的超级电容器单元, 该系统还包括:连接在电源输出端的恒流限压充 电电路;若干个分别与各超级电容器单元连接的 输入电压均衡电路,所述输入电压均衡电路的输 入端连接恒流限压充电电路的输出端;以及一端 与各超级电容器单元输出端连接,另一端与负载 连接的的动态柔性输出电路。本实用新型在原有 串联超级电容器单元的基础增加恒流限压充电 电路、输入电压均衡电路、动态柔性输出电路以 及过压保护电路,以实现对各超级电容器单元进 行恒流恒压充电、各超级电容器单元两端的电压 达到均衡、 动态柔性均压输出以及过压保护。权利要求书2页 说明书7页 附图4页CN 209767213 U 2019.12.10 C N 209767213 U

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

超级电容器基本原理及性能特点

聚焦超级电容选型与应用 上网时间:2010-05-27 作者:Zoro 来源:电子元件技术网 超级电容和电池都是能量的存储载体,但二者有不同的特点。超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。 超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。 超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。 除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:

超级电容器基本原理及性能特点 超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容与电池的比较 相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。本文通过图表来对比各种不同储能产品的特点。 超级电容的典型应用与选型 超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。本文介绍超级电容的工作原理,并着重介绍在集装箱龙门吊车和智能电表上的应用。

超级电容器的发展与应用

常州信息职业技术学院 学生毕业设计(论文)报告 系别:电子与电气工程学院 专业:微电子技术 班号:微电071 学生姓名:徐天云 学生学号:0706033131 设计(论文)题目:超级电容器的发展与应用指导教师:刘民建 设计地点:常州信息职业技术学院起迄日期:2009.7.1—2009.8.20

毕业设计(论文)任务书 专业微电子信技术班级微电071姓名徐天云 一、课题名称:超级电容器的发展与应用 二、主要技术指标:额定容量、额定电压、额定电流、最大存储能量、能量密度、功率密度、使用寿命、循环寿命、等效串联电阻、漏电流等技术指标 三、工作内容和要求:本文先从普通电容器入手,进而引出超级电容器的产生。从而以此为基础,阐释了超级电容器的构造、定义、以及工作原理。接着从超级电容器的性能技术介绍其使用特点和注意事项,然后又介绍了超级电容器的发展与现状以及其在生产生活中的应用。最后还进行其以后发展的广阔前景。 四、主要参考文献:[1]夏熙、刘洪涛,一种正在发展的储能装置—超电容器(2)[J]电池工业,2004,9(4):181-188; [2]钟海云,李荐,戴艳阳,等,新型能源器件—超级电容器研究发展最新动态[J]电源技术,2004,25(5):367-370; [3]薛洪发,超大容器器在铁路运输生产中的应用[J]中国铁路2000(5):52.。 学生(签名)2009年6 月26 日 指导教师(签名)2009年6 月26 日 教研室主任(签名)2009年6 月27 日 系主任(签名)2009年6 月28 日

毕业设计(论文)开题报告 设计(论文)题目 一、选题的背景和意义: 超级电容器发展始于20世纪60年代,起先被认为是一种低功率、低能量、长使用寿命的器件。但到了20世纪90年代,由于混合电动汽车的兴起,超级电容器才受到广泛的关注并迅速发展起来。现今,大功率的超级电容器被视为一种大功率物理二次电源,各发达国家都把对超级电容器的研究列为国家重点战略研究项目。目前,超级电容器在电力系统中的应用越来越受到关注。此外,超级电容器还活跃在电动汽车、消费类电子电源、军事、工业等高峰值功率场合。 二、课题研究的主要内容: 主要介绍了超级电容器的构造、定义以及其工作原理,还阐释了超级电容器的特点和使用注意事项,以及超级电容器的发展与现状。最后介绍了超级电容器在生产生活中的应用。 三、主要研究(设计)方法论述: 通过查阅书籍了解超级电容器的基本概念等信息,结合以前所学的电子专业知识认真研究课题。借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成

超级电容器的关键材料

超级电容器的关键材料 超级电容器的关键材料包括电极材料?电解质?隔膜和集电材料等? (一)电极材料 电极材料是决定电容器电容量大小的主要因素,对电极材料的要求是电导率较高且不与电解质发生化学反应,表面积尽可能大,价格便宜,制备过程中易于成形? 目前,超级电容器电极材料的代表是RuO2·nH2O,比电容已达到720F/g,但Ru资源稀缺且价格昂贵?而成本较低的?比表面积较高的多孔碳电极材料,其比电容只能达到200F/g左右? (二)电解质 在电化学超级电容器中,电解质也是关键的组成部分,它不仅在电容器的性能上起着许多决定性的作用,还在相当大程度上决定着电容器实用的可靠性?现在应用和研究的电解质大致可分为固态和液态两种,液态电解质又包含水溶液和有机溶液两类? 1.水系电解质 在使用活性炭作为电极的EDLC中,H2SO4由于具有较低的凝固点,而且不存在KOH所具有的沉积结晶现象而被广泛应用?考虑到电

导率等因素,研究者们认为30%是最佳浓度?相对于H2SO4溶液而言,KOH水溶液导电性稍差,但腐蚀性弱于H2SO4,集电极可采用高导电的金属材料,因而被人们采用?其他水溶液电解质,如HCl?H3PO4?HNO3及HClO4等,也被尝试作为EDLC的电解质,但效果不佳? 2.有机电解质 有机电解质的一个重要研究内容是支持有机溶剂的电解质盐的开发和选用?应用于EDLC的支持电解质种类不多,目前使用的阳离子主要是季铵盐(R4N+)和锂盐(Li+),此外季磷盐(R4P+)和芳香咪唑盐(EMI)也有报道;阴离子主要有ClO4-?BF4-?PF6-?AsF6-和(CF3SO2)2N-等?在各种电解质盐中,Et4NBF由于具有良好的综合性能,因而在EDLC中得到了广泛的应用? 3.固体电解质 固体电解质由于良好的可靠性?无电解质泄漏?可薄型化和可延长寿命等优点而备受青睐,也实现了全固态EDLC?运用于EDLC的固体电解质分为无机固体电解质和有机固体电解质? 1)无机固体电解质 无机固体电解质本身具有良好的导电性,人们对其用做EDLC的可能性进行了大量研究,尝试使用Rb2Cu8I3C17?β-Al2O3?HUO2PO4·H2O 和RbAg4I4等固态电解质作为EDLC的电解质,其中RbAg4I4最受人

相关主题
文本预览
相关文档 最新文档