当前位置:文档之家› 多电子原子的结构

多电子原子的结构

多电子原子的结构
多电子原子的结构

第8节 多电子原子的结构

第一部分 上节课复习内容:

1、主量子数n :22

22048n

Z h e E n ?-=εμ

.....),,n ()eV (n

Z .E n 3215951322

=?-=

2、 角量子数l

)n .....,,,l (h )l (l M 1321021-=?

?

?

??+=π

e l l βμ)1(+=

3、磁量子数

)l ,......,,m (,h

m

M z ±±±==2102π

)l ,......,,m (,m e z ±±±=-=210βμ

4、自旋运动

)s (h )s (s M s 2

1

21=

?

??

??+=π )m (,h m M s

sz 2

12±==π

e e s )s (s g βμ1+=

e s e sz m g βμ-=

5、 总量子数

π

21h )

j (j M j +=

s l ,......s l ,s l j --++=1

π

2h m M j

jx = j ,......,,,m j ±±±±=2

5

2321

6、径向分布

第二部分 本节课授课内容:

1、多电子原子的Schrodinger 方程及其近似解

2、原子轨道能和电子结合能

3、电子互斥能

4、原子的电离能和电子亲和能

引言:由单电子体系转移到多电子体系

第四节 多电子原子的Schrodinger 方程及其近似解

一、原子单位

下面引入原子单位(自然单位)来描述方程

自然单位中所有的物理量都用符号au 或是a.u.来表示,但对于不同的物理量,它的物理意义与数值大小是不一样的,如

长度:m .a au 110102917751-?== 质量:kg .m au e 31101191-?== 电荷:C .e au 1910611-?-== 能量:eV .a e au 227410

02==

πε,能量的自然单位也经常写作hartree

(2个电子相距Bohr 半径时的势能) 从中也可得出:04πε=1au

角动量:s J .h

au ??==-34100546121π

例:对于氢原子及类氢离子体系,它的1s 和2s 波函数为:

???

? ??-???

?

??=r a z s e

a z 0

2

1303

1πψ

????

?

?

-???? ?

?-???

? ????? ??=r a 2z

s

e

r a z a z 002

1303

22241πψ

所以,上二式根据自然单位可以写成:

()zr s e z -???

?

??=2

13

1πψ

()()/2zr s e zr z

--???

?

????? ??=22412

13

ψ

二、多电子原子的Schrodinger 方程

1、双电子原子的动能与势能项

()

22

2

1

2

221m

8h T T T ?

+?-=+=π

???

12

02210212

21r 4e r r 14Ze V V V V πεπε+???? ??+-=++=????

e 2

2、双电子体系的Schrodinger 方程

(

)

12

02210222

2

122

r 4e r 1r 14Ze m 8h V T H

πεπεπ+???? ??+-?+?-+==???

所以,Schrodinger 方程为:

()ψψπεπεπE r 4e r 1r 14Ze m

8h 120221022

22122=??????+???? ??+-?+?-

按照原子单位,可以写为:

()

ψψE r 1r z r z 2

112212

221=??????+?

??? ??+-?+?- 3、多电子体系的Schrodinger 方程

∑∑∑∑=+===+-?-+n 1i n

1i j ij

n 1i i n 1i 2i r 1r 121V T H

==??? 或者:∑∑∑∑===+-?-n

1i i j ij n 1i i n 1i 2i r 1r 121H >=? ∑∑∑∑===+-?-n 1i i j ij

n 1i i n 1i 2i r 1r 121H <=?

所以,此时的Schrodinger 方程为:

ψψE r 1r 121n 1i n 1i j ij n 1i i n 1i 2i =???

?

????+-?-∑∑∑∑=+===

4、多电子体系方程的无电子势能项时的解

当电子势能项为0时,可采用分离变量方法,令:

(n)(2)......(1)n).,(1,2,.....n 21ψψψψ= 将原方程分解为n 个单电子方程:

(i)E (i)H

i

i i

i ψψ=? 此时,体系的总的轨道波函数为各个单电子轨道波函数的乘积,而体系总能量则是每个轨道的总能量之和:

n 21E E E E +++=......

5、多电子体系方程的自洽场方法(Hartree-Fock 方法)

单电子近似:在不忽略电子相互作用的情况下,用单电子波函数来描述多电子原子中单个电子的运动状态,这种近似称为单电子近似,这时体系中各个电子都分别在某个势场中独立运动,就象是单电子体系一样。

假定电子i 处在原子核及其他(n-1)个电子的平均势场中运动。为了计算平均势场,可以先引进一组近似波函数(n)1),......,(i 1),-(i ,(2),......(1),n 1i 1-i 21ψψψψψ++求电子间的势能部分,使之成为只与r i 有关的函数V(r i ),即:

)V(r r Z 21H i

i

2i i +?=--? 然后解得新一轮的函数,再反过来求势能项,再求一轮函数,只到新一轮函数与上一轮函数满足精度要求时为止。最后一轮函数就是求得的最后值。

21

H i i =-?(n)

1),......,(i 1),-(i ,(2),......(1),n 1i i 21ψψψψψ++V(r i 结果

原子轨道能:由于采用了单电子近似,最后自洽场中计算得到的i ψ可看作原子中单电子的运动状态,即,原子轨道,相应的i E 就叫做原子轨道能。

注意:自洽场计算中,原子轨道能之和不正好等于原子的总能量,而应该扣除多计算的电子间的互斥能。(成对电子间的互斥能量,或不同轨道间的电子的互斥能量)

6、多电子体系方程的中心力场方法

中心力场方法:将原子中其他电子对第i 个电子的排斥作用看成是球对称的、只

与径向有关的力场。这样第i 个电子受其他电子的排斥作用被看成相当于i σ个电子在原子中心与之相互排斥。

势能函数为:

i

*

i i i i i i r Z r -z r r z V ---==+=σσ

其中,Z*为有效核电核数,i σ是屏蔽常数。此时,相应的Schrodinger 方程为:

i i i i i 2i E r -z 21ψψσ=??

?????-- 其中,i ψ是单电子波函数,可以叫做原子轨道,而相应的能量i E 为原子轨道能。此时,i ψ仍由三个量子数决定

),((r)Y R lm nl

nlm φθψ'= (eV) n

)(Z E 2i 2

*6.13-=

而原子的总能量近似地由各个电子的能量E i 加和得到。

7、原子的电离能和电子亲和能

原子的电离能:气态原子失去一个电子为一价气态正离子所需的最低能量称为原子的第一电离能,常用I 表示

A

A 1E E E I e

(g)A A(g)-+==+→+?

气态A +失去一个电子成为二价气态正离子A 2+所需的能量为第二电离能,依次类推。

电离能的其它定义:垂直、绝热、任意

电子亲和能:当气态原子获得一个电子成为一价负离子时所放出的能量称为电子亲和能,用Y 表示。

8、原子轨道能和电子结合能

原子轨道能:原子轨道能是指和单电子波函数i ψ相应的能量i E 原子的总能量:近似等于各个电子的原子轨道能之和

电子结合能:是指在中性原子中当其他电子均处在可能的最低能态时,某电子从指定的轨道上电离时所需能量的负值。它反应的是原子轨道能级的高低,所以又叫原子轨道能级。

(1) 原子轨道能和电子结合能的实验测定

轨道冻结:假定中性原子中失去一个电子以后,其余的原子轨道上电子的排布不因此而发生变化,这种情况叫做轨道冻结。

原子轨道能的实验测定:原子轨道能近似等于这个轨道上电子的平均电离能的负值(如果不考虑分裂,所有简并轨道做为一个轨道来考虑,如2s 和2p)

电子结合能的实验测定:是指在中性原子中当其他电子均处在可能的最低能态时,某电子从指定的轨道上电离时所需能量的负值

如,He 的第一电离能(I 1)和第二电离能(I 2)分别为24.6 eV 和54.4 eV , 所以,它的原子轨道能为-(I 1+ I 1)/2=-39.5 eV , 而电子结合能为-I 1=-24.6 eV 。

(2) 由屏蔽常数近似计算原子轨道能

原子轨道能可近似由屏蔽常数来估计计算。Slater 提出了这种方法,先用屏蔽常数估计出有效的核电荷数,再计算原子轨道能,其方法的过程如下:

a. 分组

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

b. 外层电子对内层无屏蔽作用

c. 同一组内σ=0.35(1s 电子为0.30)

d. 对于s 和p 电子,相邻内一组的电子对它的屏蔽常数为0.85,

对于d 和f 电子,相邻内一组的电子对它的屏蔽常数均为

1.00

e. 更内一组的σ=1.00

最后,有效核电荷数为∑=σ-Z Z *

例1 用Slater 方法计算C 的1s, 2s, 2p 的原子轨道能。已知C 原子的第一至第四电离有分别为11.26、24.38、47.89、64.49 eV ,试利用实验电离能数值估计其1s 和2s 的原子轨道能。 解:

(1) 利用Slater 方法

s 1σ=0.3 Z*=6-0.3=5.7

s 2σ=2*0.85+3*0.35=2.75 Z*=6-2.75=3.25

2p 同2s 轨道

(eV) n

)(Z E 2i 2

*6.13-=

eV

32

n )(Z E eV 442.01

.7 n )(Z E 222s 2s 22

1s 1s 9.525

.36.136.1356.136.132

2*2

2*------====== (2) 利用实验电离能方法

eV

)/2I (I E eV

3/4 )I I I (I E 651s 43212s 0.44125.9-=+=-=+++=--

例2 已知He 原子的第一电离能为24.6 eV ,求算一个1s 电子对另一个1s 电子的屏蔽常数σ

根据电离能的定义:

I 1 = E(He +)-E(He)

22

6.13n Z E He -=+(eV)=-54.4eV

eV n

E He

2

2

2)2(2.27)2(6.132σσ--=-?-= 所以,根据I1 = E(He+)-E(He)

24.6=-54.4+27.2(2-σ)2

解得 =0.30

电子云与原子轨道教案

第一节原子结构(第二课时) 【教学目标】 知识目标: 1.原子核外电子运动的特征。 2.了解核外电子的分层排布规律,能画出1~18号元素的原子结构示意图 能力目标: 1.空间的想象能力和抽象思维能力。 2.分析推理能力。 情感目标: 1.培养学生的唯物观,世界是物质的。 2.物质的运动是有规律的。 3.培养学生用普遍联系的观点分析问题。 教学重点:原子核外电子的排布规律 教学难点:原子核外电子运动的特征,电子云,原子核外电子的排布规律。 教学过程: 【引入】普通物体的运动有固定的轨迹,可以测定或根据一定的数据计算出来在某一时刻的位置,并且能描绘出其运动轨迹。而原子核外电子的运动没有固定的轨迹,不能测定或计算出电子在某一时刻的位置,也无法描绘出其运动轨迹。但是电子的运动并不是毫无规律可循的。今天我们将学习有关核外电子运动的知识。 【板书】二、电子云与原子结构 【讲解】首先,我们来总结一下核外电子的运动特征 【板书】1、原子核外电子的运动特征 (1)电子的质量很小,只有9.11×10-31千克; (2)核外电子的运动范围很小(相对于宏观物体而言); (3)电子的运动速度很大。 【提问】如何描述核外电子的运动状态呢?(以氢原子为例) 【讲解】科学家是用这种方法来描述的,在一定时间间隔内电子在原子核外出现概率的统计,电子每出现一次,在图中就增加一个小点,可以想象成你手持一架虚拟的高速照相机拍摄电子,然后把所有照片叠加在一起得到的图像。由此得到的概率分布图看起来像一片云雾,因而被形象的称为电子云。(结合图讲解) 【板书】2、电子云 【提问】前面我们讲解的是核外只有1个电子的氢原子的电子云图,也就是1S电子的电子云图,且电子云是球形的。那么是不是所有的原子的核外电子的电子云都是球形的呢?【讲解】答案是否定的,根据科学家的研究,P电子的电子云形状呈纺锤形(或无柄亚铃形);d电子云是花瓣形。像这种电子云的轮廓图我们又称为原子轨道 【板书】3、原子轨道 【讲解】像书上的图1-12是S能级的原子轨道,且随着能层序数n的增大,原子轨道半径也增大。这是由于1S、2S、3S……电子的能量依次增高,电子在离核更远的区域出现的概率增高,电子云就向更大的空间扩展。从图1-13可见,跟S电子不同,P电子的原子轨道是纺锤形的,每个P能级有3个原子轨道,他们相互垂直,分别以Px、Py、Pz为符号。且P电子原子轨道的平均半径也随n增大而增大。

多电子原子

陸、多電子原子 6.1 氦原子 6.1.1 氦原子初探 氦原子是氦核與兩電子合成的系統。 122121V V V K K K H n ++++++=. 作近似(設核不動) ,? ()()1221122211V H H V V K V K H ++≡++++=,1H 與2H 為 第一電子與第二電子個別與核組成單電子原子的能量泛函。過渡到量子力學, ?i i e i r e m H 0222422?πε-?-= (i =1, 2),12 201241r e V πε=。 先暫不考慮12V ? 210H H H +=,0?H 的本徵函為)()(),(221121r r r r ψψψ=, 本徵值為 ???? ??+-=???? ??+-=+=2221 222212210114.54226.13n n eV n n eV E E E . ? 基態:-108.8 eV ,第一激發態:-68.0 eV 。 ?「第一電離能」first ionization energy (-++→+e He e i He ..)()4.548.1084.54=---=eV . 但實驗發現:1. 氦的電離能為24.6 eV ? 基態能階為-79.0 eV 。2. 據光譜線分析,第一、二激發態各包含一「獨態」(singlet )與一「三重態」(triplet )。 6.1.2 交換對稱(exchange symmetry ) 電子為不合群粒子 ? ()()1,22,1ψψ-= ──交換反對稱。 上章說過,原子裡電子的態幅包含位宇態幅及儀態幅: ()()()()i i m l n i b r i r i i l i i i ↑≡= ψχψψ或()()i i m l n r i i l i i ↓= ψψ, i =1, 2。 ? 設21b b =,例如s 1,()()()( )2 1 21211112 12,12↑↓-↓↑=r r s s s ψψψ 設21b b ≠,例如s b 11=,s b 22=,()2,121s s ψ可有兩類情形: singlet 獨態(space symmetric, spin anti-symmetric ): ()()()()()( )2 121211222112 121↑↓-↓↑+r r r r s s s s ψψψψ triplet 三重態(space anti-symmetric, spin symmetric ): ()()()()()21211222112 1↑↑-r r r r s s s s ψψψψ ()()()()()( )2 121211222112 121↑↓+↓↑-r r r r s s s s ψψψψ r 12

高中化学第1章原子结构与性质第1节原子结构(第2课时)能量最低原理电子云与原子轨道学业分层测评新人教选

能量最低原理 电子云与原子轨道 (建议用时:45分钟) [学业达标] 1.图中所发生的现象与电子的跃迁无关的是( ) 【解析】燃放烟火、霓虹灯、燃烧蜡烛等获得的光能都是电子跃迁时能量以光的形式释放出来导致的,而平面镜成像则是光线反射的结果。 【答案】 D 2.X、Y、Z三种元素的原子,其最外层电子排布分别为n s1、3s23p1和2s22p4,由这三种元素组成的化合物的化学式可能是( ) A.X2YZ3B.X2YZ2 C.XYZ2D.XYZ3 【解析】最外层电子排布为3s23p1和2s22p4的元素分别是Al和O,它们的化合价分别为+3、-2。最外层电子排布为n s1的元素化合价为+1,根据化合价代数和为0知C项符合题意。 【答案】 C 3.图1和图2分别是1s电子的概率密度分布图和原子轨道图。下列有关认识正确的是( ) A.图1中的每个小黑点表示1个电子 B.图2表示1s电子只能在球体内出现 C.图2表明1s轨道呈圆形,有无数对称轴 D.图1中的小黑点表示某一时刻,电子在核外所处的位置 【解析】电子云图中的一个小黑点只表示电子曾经在此出现过一次,A错误;图2所

示只是电子在该区域出现的几率大,在此之外也能出现,不过几率很小,B错误;1s轨道在空间呈球形而不是圆形,C错误。 【答案】 D 4.p轨道电子云形状正确叙述为( ) A.球形对称 B.对顶双球 C.极大值在x、y、z轴上的哑铃形 D.互相垂直的梅花瓣形 【解析】p轨道的电子云形状为 【答案】 C 5.下列各能级中轨道数最多的是( ) A.7s B.6p C.5d D.4f 【解析】s轨道是球形对称的,p轨道有3种伸展方向,而d轨道有5种伸展方向,f 轨道有7种伸展方向。因此7s、6p、5d、4f的原子轨道数分别为1、3、5、7。 【答案】 D 6.以下列出的是一些原子的2p能级和3d能级中电子排布的情况。其中违反了泡利原理的是( ) 【解析】泡利原理是指在一个原子轨道中最多只能容纳两个电子,且自旋状态相反,故A违反了泡利原理。 【答案】 A 7.下面是第二周期部分元素基态原子的电子排布图,据此下列说法错误的是( )

第三节多电子原子的原子结构

第三节多电子原子的原子结构 外层只有一个电子时,由于该电子仅受到核的吸引如氢原子或类氢原子,可以精确求解出波函数。但多电子原子核外有2个以上的电子,电子除受核的作用外,还受到其他电子对它的排斥作用,情况要复杂得多,只能作近似处理。但上述氢原子结构的某些结论还可用到多电子原子结构中: 在多电子原子中,每个电子都各有其波函数ψi,其具体形式也取决一组量子数n、l、m。多电子原子中的电子在各电子层中可能占据的轨道数,与氢原子中各电子层轨道数相等。 多电子原子中每个电子的波函数的角度部分Y(θ,φ)和氢原子Y(θ,φ)相似,所以多电子原子的各个原子轨道角度分布图与氢原子的各个原子轨道的角度分布图相似。同理两者的Y 2图也相似。 处理多电子原子问题时,认为其他电子对某个电子i的排斥,相当于其他电子屏蔽住原子核,抵消了一部分核电荷对电子i的吸引力,称为其他电子对电子i的屏蔽作用(screening effect),引进屏蔽常数σ(screening constant)表示其他电子所抵消掉的核电荷。这样多电子原子中电子i的能量公式可表示为 式中(Z –σ)= Z′称为有效核电荷(effective nuclear charge)。多电子原子电子的能量和Z、n、σ有关。Z愈大,相同轨道的能量愈低,如基态氟原子1s电子的能量比基态氢原子1s电子的能量低;n愈大,能量愈高;起屏蔽作用的电子愈多,总的屏蔽作用愈强。σ愈大,能量愈高。影响σ有以下因素: 1. 外层电子对内层电子的屏蔽作用可以不考虑,σ=0; 2. 内层 (n-1层)电子对最外层(n层)电子的屏蔽作用较强,σ=,离核更近的内层(n-2层)电子对最外层电子的屏蔽作用更强,σ=; 3. 同层电子之间也有屏蔽作用,但比内层电子的屏蔽作用弱,σ=,1s之间σ=。n相同l 不同时,l愈小的电子,它本身的钻穿能力愈强,离核愈近,它受到其他电子对它的屏蔽作用就愈弱,能量就愈低E n s <E n p <E n d <E n f。 氢原子只有1个电子,无屏蔽作用,其激发态能量与l无关。 4. l相同,n不同时,n愈大的电子受到的屏蔽作用愈强,能量愈高: E n s <E(n+1)s <E(n+2)s <… E n p <E(n+1)p <E(n+2)p <… 5. n 、l都不同时,情况较复杂。比如3d和4s,会出现n小的反而能量高的现象,E4s<E3d,称为能级交错。 美国科学家鲍林(Pauling L C)根据大量的光谱数据计算出多电子原子的原子轨道的近似能级顺序,如下图

原子的核外电子排布和结构示意图及其强化练习

四十六、原子的核外电子排布和结构示意图 一、原子的核外电子排布规律 总规律:原子的核外电子是分层排布的。 1、核外电子总是尽先排布在能力最低的电子层中。也就是说,排满了K 层才排L 层,排 满了L 层才排M 层。(但不能继续说排满了M 层才排N 层) 2、每个电子层最多容纳的电子数为2n 个。 3、最外层最多容纳的电子数不超过8个(K 层作最外层时不超过2个)。 4、次外层最多容纳的电子数不超过18个,倒数第三层最多容纳的电子数不超过32个。 二、结构示意图:用各电子层容纳的电子数表示原子或者离子的核外电子排布情况的示意图。 例如:S S 2- K + “+” “19”表示钾离子的核电荷数为19,“2”表示K 层容纳2个电子,“8”表示L 层容纳8个电子,“8”表示M 层容纳8个电子。

3、具有2电子的微粒:He, Li+, Be2+, H2 具有10电子的微粒:Ne、N3-、O2-、F-、Na+、Mg2+、Al3+、CH4、NH3、 H2O、HF、H3O+、NH4+、OH-、NH2-、 具有18电子的微粒:、Ar、P3-、S2-、Cl-、K+、Ca2+、SiH4、PH3、H2S、HCl、 C2H6、N2H4、H2O2、F2、HS-、O22-、 三、强化练习 1、某主族元素的原子有5个电子层,最外层只有1个电子,下列描述中正确的是() A、其单质常温下跟水反应不如钠剧烈 B、其原子半径比钾原子半径小 C、其碳酸盐易溶于水 D、其氢氧化物不能使氢氧化铝溶解 2、下列四种元素中,其单质氧化性最强的是() A、原子含有最外层电子数最多的第二周期元素 B、位于周期表中第三周期ⅢA族的元素 C 的元素 D、原子结构示意图为的元素 3、氢化钠(NaH)+1价,NaH与水反应放出氢气。下列叙 述中,正确的是() A、NaH在水中显酸性 B、NaH中氢负离子的电子层排布与氦原子的相同 C、NaH中氢负离子半径比锂离子半径小 D、NaH中氢负离子可被还原成氢气 4、用R代表短周期元素,R原子最外层的电子数是最内层电子数的2倍。下列关于R的描述 中正确的是() A、R的氧化物都能溶于水 B、R的最高价氧化物所对应的水化物都只是H2RO3 C、R元素都是非金属元素 D、R的氧化物都能与NaOH溶液反应 5、已知铍(Be)的原子序数为4,下列对铍及其化合物的叙述中,正确的是() A、铍的原子半径小于硼的原子半径 B、氯化铍分子中铍原子的最外层电子数是8 C、氢氧化铍的碱性比氢氧化钙的弱 D、单质铍跟冷水反应产生氢气 6、下列关于稀有气体的叙述不正确的是() A、原子的最外电子层都有8个电子 B、其原子与同周期IA、IIA族阳离子具有相同的核外电子排布 C、化学性质非常不活泼 D、原子半径比同周期ⅦA族元素原子的小 7、在短周期元素中,若元素原子的最外层电子数与其电子层数相等,则符合条件的元素种 类为() A、1种 B、2种 C、3种 D、4种

原子结构—电子云与原子轨道教学设计

《电子云与原子轨道》教学设计

课堂练习复习提问电子在那里出现的概率小,点密的地方表示电子在那里出现 的概率大。 【问题2】S电子云的原子轨道都是球形的,电子只能出 现在球体内吗? 【讲解点拨】绘制电子云轮廓图常把电子出现的概率约 为90%的空间圈出来,而电子也出现在球体外,只是概率小 于90%。 【讲解】认识原子轨道能级的电子云轮廓图 演示文稿展示S能级、P能级、d能级的电子云轮廓图。 【提出概念】轨道:量子力学把电子在原子核外的一个 空间运动状态称为一个原子轨道。 PPT:不同能层的能级、原子轨道及电子云轮廓图。 教师提问(略) 1.构造原理 2.书写Cl、K、Fe元素原子的核外电子排布式。 小组合作讨论后, 小组代表发言。 加深理解 得出结论:1.所有 原子的任一能层 的S电子云轮廓都 是一个球形,只是 球的半径大小不 同。2.其他空间运 动状态的电子云 都不是球形的。P 电子云是哑铃 状…… 学生回答问题 学生回忆 Cl:1s22s22p63s23p5 K: 1s22s22p63s23p64s1 F e:1s22s22p63s23p63d64s2

教师讲解课堂练习自主构建 课堂小结 二、泡利原理和洪特规则 【讲解】上节课我们学习了电子排布式的画法,下面需 要大家学会电子排布图的画法。电子排布图中每个方框代表 一个原子轨道,每个箭头代表一个电子。 【板书】C、N的基态原子的电子排布式(略) 1.写出24号、29号元素的电子排布式、电子排布图。 2.阅读元素周期表,比较有什么不同,为什么?从元素周 期表中查出铜、银、金的外围电子层排布。它们是否符合构 造原理? 教师引导学生小组讨论,形成补充规则。 相对稳定的状态是: 全充满:(P6,d10,f14) 全空:(P0,d0,f0) 半充满:(P3,d5,f7) 【引导】原子结构示意图、电子排布式、电子排布图不 同化学用语所能反映的粒子结构情况和区别。 结论: 1.原子结构示意图能直观反映粒子核内的质子数和核外 电子层数及各能层上的电子数。 2.电子排布能直观反映粒子各能层、各能级和各轨道的能 量的高低及个轨道上的电子分布情况及电子的自旋状态。 【归纳总结】PPT 1.核外电子排布规则: (1)能量最低原理 (2)泡利原理 (3)洪特规则 2.核外电子排布表示方法: (1)原子结构示意图 (2)电子排布式 (3)电子排布图 听、看、识忆、理 解 练习 1.写O、F、 Al、Si、P原子的电 子排布图。 对比元素周期表, 产生疑问。小组讨 论。 练习2.书写C、N Ca、Cl原子结构示 意图,电子排布 式、电子排布图。 深入理解 归纳、总结、识记

原子的基态与激发态、电子云与原子轨道

第2课时 原子的基态与激发态、电子云与原子轨道 [目标定位] 1.知道原子的基态、激发态与光谱之间的关系。2.了解核外电子运动、电子云轮廓图和核外电子运动的状态。 一、能量最低原理和原子的基态与激发态 1.原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 (1)处于最低能量的原子叫做基态原子。 (2)当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。 (3)基态、激发态相互间转化的能量变化 基态原子 吸收能量释放能量,主要形式为光 激发态原子 2.不同元素的原子发生跃迁时会吸收或释放不同的光,若用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,则可确立某种元素的原子,这些光谱总称原子光谱。 (1)玻尔原子结构模型证明氢原子光谱为线状光谱。 (2)氢原子光谱为线状光谱,多电子原子光谱比较复杂。 3.可见光,如灯光、霓虹灯光、激光、焰火……都与原子核外电子发生跃迁释放能量有关。 (1)基态原子 电子按照构造原理排布(即电子优先排布在能量最低的能级里,然后依次排布在能量逐渐升高的能级里),会使整个原子的能量处于最低状态,此时为基态原子。 (2)光谱分析 不同元素的原子光谱都是特定的,在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。 1.下列说法正确的是( ) A .自然界中的所有原子都处于基态 B .同一原子处于激发态时的能量一定高于基态时的能量

C.无论原子种类是否相同,基态原子的能量总是低于激发态原子的能量 D.激发态原子的能量较高,极易失去电子,表现出较强的还原性 答案 B 解析处于最低能量的原子叫做基态原子。电子由较低能级向较高能级跃迁,叫激发。激发态原子的能量只是比原来基态原子的能量高。如果电子仅在内层激发,电子未获得足够的能量,不会失去。 2.对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主要原因是() A.电子由激发态向基态跃迁时以光的形式释放能量 B.电子由基态向激发态跃迁时吸收除红光以外的光线 C.氖原子获得电子后转变成发出红光的物质 D.在电流的作用下,氖原子与构成灯管的物质发生反应 答案 A 解析解答该题的关键是明确基态原子与激发态原子的相互转化及其转化过程中的能量变化及现象。在电流作用下,基态氖原子的电子吸收能量跃迁到较高能级,变为激发态原子,这一过程要吸收能量,不会发出红色光;而电子从较高能量的激发态跃迁到较低能量的激发态或基态时,将释放能量,从而产生红光,故A项正确。 理解感悟光是电子释放能量的重要形式之一,日常生活中的许多可见光,如灯光、霓虹灯光、激光、焰火等都与原子核外电子发生跃迁释放能量有关。 易错提醒电子云图与电子云轮廓图不是同一个概念,电子云轮廓图实际上是电子云图的大部分区域;量子力学把电子在原子核外的一个空间运动状态称为一个原子轨道,电子云轮廓图就是我们通常所说的原子轨道图。 二、电子云与原子轨道 1.原子核外电子的运动特点。 (1)电子的质量很小(9.1095×10-31kg),带负电荷。 (2)相对于原子和电子的体积而言,电子运动的空间很大。 (3)电子运动的速度很快,接近光速(3.0×108m·s-1)。 2.电子在核外空间做高速运动,不能确定具有一定运动状态的核外电子在某个时刻处于原子核外空间何处,只能确定它在原子核外各处出现的概率,得到的概率分布图看起来像一片云雾,因而被形象地称作电子云。

电子云与原子轨道教案

《电子云与原子轨道》教学设计 本节内容是人教版高二化学上册所学选修3第一章第一节《原子结构与性质》的第五课时。本节课的授课对象主要是高三上普通班的同学。 一、教学设计思路分析 1、教材分析 本节课的地位和作用:人教版高中化学选修3、第一章第一节“原子结构与性质”(P9页)第五课时,主要内容为“电子云与原子轨道”概念的建立;了解原子核外电子的运动规律,掌握泡利原理、洪特规则;以及掌握不同能层的能级、原子轨道以电子云轮廓图的的关系。 教学重点:通过s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解。 教学难点:学会从电子云模拟轮廓图取理解核外电子的排布特点及特殊性质。 2、学情分析 学生接受能力较强,已处于高二阶段;在该阶段学生对原子结构以及核外电子排布等已有一定的理解,为这节课的学习也奠定了一定的基础。但对核外电子的运动规律以及原子轨道非常陌生,而且不易将泡利原理和洪特规则熟练地运用于原子轨道的理解中。 学生的好奇心强,已具备了探究的意识;掌握了探究必备的相关知识,如知道原子的组成,物质的远动是有规律的,核外电子的运动规律要遵循能量最低原理、洪特规则和泡利原理。 3、教学思路 以学生活动为主体,探究学习方法为基本方法,理论学习与实践相结合,用多媒体展示,通过模型建立,组织学生思考与讨论,从而获得认知。 二、教学方案设计 1、教学目标 知识与技能: (1)使学生领会电子云及原子轨道的基本含义。 (2)使学生理解s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解进一步掌握核外电子的排布及运动规律物质。 过程与方法:

创设学习情景,空间模型,引导学生积极参与探究过程,获取知识和亲身体验。培养学生知识迁移能力,合作学习能力,同时培养学生用普遍联系的观点分析问题。 情感态度与价值观: 培养学生的唯物观,世界是物质的;物质的运动是有规律;培养学生用普遍联系的观点分析问题。 2、教学方法: 教法:讨论法、讲授法指导教学。 学法:自主阅读法、讨论法。 3、教学准备 多媒体设备、PowerPoint课件、 4、教学过程

原子结构 原子核外电子排布

第五章原子结构元素周期律 第一节原子结构原子核外电子排布 【高考新动向】 【考纲全景透析】 一、原子的构成 1. 原子的构成 原子的组成表示式:X,其中X为原子符号,A为质量数,Z为质子数,A-Z为中子数。2.基本关系 ①质子数=核电荷数=核外电子数 ②阳离子中:质子数=核外电子数+电荷数 ③阴离子中:质子数=核外电子数-电荷数 ④质量数=质子数+中子数 3.元素、核素、同位素之间的关系如下图所示: 元素、核素和同位素的概念的比较

二、 原子核外电子排布 1.电子层的表示方法及能量变化 圆圈表示原子核,圆圈内标示出核电荷数,用弧线表示电子层,弧线上的数字表示该电子层的电子数。要注意无论是阳离子还是阴离子,圆圈内的核电荷数是不变的,变化的是最外层电子数。 离核由近及远→电子能量由低到高 2.核外电子分层排布的规律 核外电子的分层运动,又叫核外电子的分层排布,其主要规律有: (1)能量规律 原子核外电子总是先排能量最低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。即排满了K 层才排L 层,排满了L 层才排M 层。 (2)分层排布规律 ①原子核外每个电子层最多容纳2n 2 个电子。 ②原子最外层电子数不超过8个电子(K 层为最外层不能超过2个电子)。 ③原子次外层电子数不超过18个电子(K 层为次外层不能超过2个电子)。 【热点难点全析】

〖考点一〗原子的构成及概念比较 1.构成原子的粒子 2.组成原子的各种粒子及相互关系 (1)原子或分子:质子数(Z)=核电荷数=核外电子数 (2)阳离子:核外电子数=质子数-所带电荷数 (3)阴离子:核外电子数=质子数+所带电荷数 3.同位素、同素异形体、同系物、同分异构体的比较 〖提醒〗(1)质子数与核外电子数之间的关系,对于原子不易出错,对于阴、阳离子容易出错。应清楚阳离子核外电子数少于质子数,阴离子核外电子数多于质子数。 (2)元素、同位素、同素异形体、同系物、同分异构体的判断关键是描述的对象。如: ①具有相同质子数的两微粒不一定是同种元素,如Ne和H2O。 ②质子数相同而中子数不同的两微粒不一定互为同位素,如14N2和13C16O。 ③2H2和3H2既不是同位素,也不是同素异形体。 【典例1】铀(U)是重要的核工业原料,其中23592U是核反应堆的燃料,下列关于23592U和23892U的说

高二化学电子云与原子轨道教案

第一节原子结构 第三课时 一、教学目标 1. 了解电子云和原子轨道的含义。 2. 知道原子核外电子的排布遵循能量最低原理 二、教学重难点 1. 原子轨道的含义 2. 泡利原理和洪特规则 三、教学方法 以科学探究、思考与交流等方式,探究泡利原则、洪特规则以及原子结构之间的关系,充分认识结构决定性质的化学基础 四、教具准备 多媒体 【教学过程】 【导入】 复习构造原理 Cr 1s22s22p63s23p63d54s1【引入】电子在核外空间运动,能否用宏观的牛顿运动定律来描述呢? 五、电子云和原子轨道: 1. 电子云 宏观物体的运动特征: 可以准确地测出它们在某一时刻所处的位置及运行的速度;可以描画它们的运动轨迹。 微观物体的运动特征:核外电子质量小,运动空间小,运动速率大。无确定的轨道,无法描述其运动轨迹。无法计算电子在某一刻所在的位置,只能指出其在核外空间某处出现的机会多少。 【讲述】电子运动的特点:

①质量极小 ②运动空间极小 ③极高速运动。因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。 概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。 2. 原子轨道 【讲述】S 的原子轨道是球形的,能层序数越大,原子轨道的半径越大。 P 的原子轨道是纺锤形的,每个P 能级有3个轨道,它们互相垂直,分别以P x 、P y 、P z 为符号。P 原子轨道的平均半径也随能层序数增大而增大。 【讲述】s 电子的原子轨道都是球形的(原子核位于球心),能层序数越大,原子 轨道的半径越大。这是由于1s ,2s ,3s……电子的能量依次增高,电子在离核 更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理 解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s 电子比1s 电子能量高,克服原子核的吸引在离核更远的空间出现的概率就比1s 大,因而2s 电子云必然比1s 电子云更扩散。 3. 轨道表示式 (1)表示:用一个小方框表示一个原子轨道,在方框中用“↑ ”或“↓ ”表示该轨道上排入的电子的式子。 电子排布式:1s 2 2s 22p 3 轨道表示式: (2)原则 ?泡利原理:内容:每个原子轨道上最多只能容纳两个自旋状态不同的电子。即每个原子轨道最多只容纳两个电子。 ?洪特规则:内容:原子核外电子在能量相同的各个轨道上排布时,电子 尽量分占不同的原子轨道,且自旋状态相同,这样整个原子的能量最低。 全充满(p6,d10,f14)全空时(p0,d0,f0)半充满(p3,d5,f7) 1S 2S 2P +7 2 5

怎样确定原子的电子层排布

怎样确定原子的电子层排布 一、电子层容量原理 ?在原子核外电子排布中,每个电子层最多容纳的电子数为2n2,这个规律在一些无机化学教材中叫做最大容量原理。我认为,该原理并不能全面反映原子核外电子排布的真实情况,其一,它只适合于离核近的内电子层,且不是最大,而是等于2n 2;其二,离核远的外电子层,实际排布的电子数则远远小于2n 2,根本不能用此原理来描述。离核近的内电子层与离核远的外电子层,各有其电子容量的规律,原子的电子层排布,就是这两种规律结合而成的。为此,我总结出内电子层和外电子层的各自的容量规律,并将两者结合起来,称为“电子层容量原理”,其内容如下: 设ω为原子的电子层数,n 为从原子核往外数的电子层数,m 为由原子最外层往里数的电子层数。 当n <22+ω时,为内电子层,每个电子层容纳的电子数=2n 2。 当n ≥22+ω时,为外电子层,每个电子层最多容纳的电子数=2(m+1)2. 核外只有k层时,最多容纳2个电子。 ?由上述两个关系组成的电子层排布如下: ?从以上图示可知,原子的电子排布是两头少,中间多。 应用电子层容量原理,可使外电子层不用2n 2,避免出现太大偏差. 应用外电子层的公式,可以取代中学教材中的如下规律: (1) 最外层电子数不超过8个(最外层为K 层,则不超过2个)。 (2) 次外层电子数不超过18个。 ?(3) 外数第三层电子数不超过32个.…… 因为这些规律可直接从外电子层的公式推出。 稀有气体原子的电子层排布则是很规整的相等关系,其内电子层电子数为2n2,外电子层电子数为2(m +1)2,因此,稀有气体元素原子的电子层结构是一种稳定结构.主族元素的 原子,最外层未达到2(m +1)2个电子(即8个电子),一般副族元素的原子,最外层和次外层的 电子数均小于2(m+1)2。原子的电子层数越多,出现未填满电子数2(m+1)2的外电子层数 就越多。它可用下式计算:未排满2(m+1)2个电子的电子层数最多为2 ω(当为偶数)或21-ω(为奇数)。例如:核外有6个电子层的元素,没有排满2(m +1)2个电子的外电子层数最多为6 /2=3。镧系元素的原子,一般就有4、5、6三个电子层的电子数未达到2(m +1)2。 ?2n 2是由电子运动状态的四个量子数及泡利不相容原理所得出的关系,而2(m +1)2却是由能级交错现象所得出的关系。 对于多电子原子,由于电子的屏蔽作用和穿透作用,出现了原子轨道的交错现象,产生了与元素周期表中周期相对应的能级分组,能级组的通式为ns 、(n -2)f 、(n -1)d 、np 。从第3电子层起,出现E n d>E (n +1)s ,从第4电子层起,出现E nf >E(n +2)s .因此,在次外层电子数未达到最大容量时,已出现了最外层电子的填充,而最外层电子数未达到最大容量时,又

多电子原子

第五章 多电子原子 1 分别按LS 耦合和jj 耦合写出 pd 电子组态可以构成的原子态 解答: p 电子的轨道角动量和自旋角动量量子数 l 1 = 1 s 1 =1/ 2 d 电子的轨道角动量和自旋角动量量子数l 2 = 2 s 2 = 1/2 (1) LS 耦合情况: 总轨道角动量量子数 L = l 1 + l 2;l 1 + l 2 ? 1;…… | l 1 ? l 2| = 3,2,1 总自旋角动量量子数 S = s 1 + s 2;s 1 + s 2 ? 1;…… |s 1 ? s 2| = 1,0 总角动量量子数 J = L + S ,L + S ? 1,…… |L ?S| 可耦合出的原子态2S+1L J 有:3F 4,3,2、3D 3,2,1、3P 2,1,0、1F 3、1D 2、1P 1 (2) jj 耦合情况: p 电子的总角动量量子数 j 1 = l 1 + s 1,l 1 + s 1 ? 1,……,| l 1 ? s 1| = 3/2,1/2 d 电子的总角动量量子数 j 2 = l 2 + s 2,l 2 + s 2 ? 1,……,| l 2 ? s 2| = 5/2,3/2 总角动量量子数 J = j 1 + j 2,j 1 + j 2 ? 1,…… | j 1 ? j 2| 可耦合出的原子态 (j 1, j 2)J 有 (3/2, 5/2)4,3,2,1 、(3/2, 3/2)3,2,1,0 、(1/2, 5/2)3,2 、(1/2, 3/2)2,1 2 求4I 15/2 态的总角动量、总轨道角动量、总自旋角动量,并求总轨道角动量与总总角动量之间的夹角。 解答:由题中原子态符号可知: 总自旋角动量量子数 S 满足 2S+1 = 4,即 S = 3/2 总轨道角动量量子数 L = 6 总角动量量子数 J = 15/2 总自旋角动量:P S = )1(+S S ? = 2 15 总轨道角动量:P L = 42)1(=+L L 总角动量:P J = 2 255 )1(= +J J 三个角动量满足三角关系。 ),cos(22 22J L J L J L S P P P P P P P ???-+= 代入各角动量数值后计算得 cos (P L , P J ) = 9856.010710 102= 所以夹角为 arc cos (0.9856) = 9.7 ? 3 写出 15P 、16S 、17Cl 、18Ar 的基态 电子组态, 并确定基态原子态。 解答:各元素基态电子组态如下 15P :1s 22s 22p 63s 23p 3 16S :1s 22s 22p 63s 23p 4 17Cl :1s 22s 22p 63s 2 3p5 18Ar :1s 22s 22p 63s 23p 6 根据轨道方框图法直接确定各元素的基态原子态。轨道填充规则为:(1)尽量使各电子自旋

2018_2019学年高中化学课时跟踪检测(二)能量最低原理电子云与原子轨道

课时跟踪检测(二)能量最低原理电子云与原子轨道 1.下列有关电子云和原子轨道的说法正确的是( ) A.原子核外的电子像云雾一样笼罩在原子核周围,故称电子云 B.s能级的原子轨道呈球形,处在该轨道上的电子只能在球壳内运动 C.p能级的原子轨道呈哑铃形,随着能层的增加,p能级原子轨道也增多 D.与s电子原子轨道相同,p电子原子轨道的平均半径随能层的增大而增大 解析:选D A项,电子云只是一种对核外电子运动的“形象”描述;B项,核外电子并不像宏观物体的运动那样具有一定的轨道;C项,p能级在任何能层均只有3个轨道。 2.当碳原子的核外电子排布由转变为 时,下列说法正确的是( ) ①碳原子由基态变为激发态②碳原子由激发态变为基态③碳原子要从外界环境中吸收能量④碳原子要向外界环境中释放能量 A.①② B.②③ C.①③ D.②④ 解析:选C 核外电子排布由2s22p2转变为2s12p3,碳原子体系能量升高,由基态变为激发态,要从外界环境中吸收能量。 3.观察1s轨道电子云示意图,判断下列说法正确的是( ) A.一个小黑点表示1个自由运动的电子 B.1s轨道的电子云形状为圆形的面 C.电子在1s轨道上运动像地球围绕太阳旋转 D.1s轨道电子云的点的疏密表示电子在某一位置出现机会的多少 解析:选D 由电子云图可知,处于1s轨道上的电子在空间出现的概率分布呈球形对称,而且电子在原子核附近出现的概率最大,离核越远,出现的概率越小。图中的小黑点不表示电子,而表示电子曾经出现过的位置。 4.基态硅原子的最外能层的各能级中,电子排布的方式正确的是( )

解析:选C 基态硅原子的电子排布遵循能量最低原理、泡利原理、洪特规则,只有C选项正确。 5.对于Fe的下列电子排布,正确的是( ) 解析:选A Fe原子的核外电子排布为1s22s22p63s23p63d64s2,据洪特规则可知A正确。 6.某原子核外电子排布为n s2n p7,它违背了( ) A.泡利原理 B.能量最低原理 C.洪特规则 D.洪特规则特例 解析:选A p能级有三个轨道,根据泡利原理,每个轨道最多排2个电子,故p能级最多排6个电子,不可能排7个,故违背泡利原理。 7.下列原子中未成对电子数最多的是( ) A.C B.O C.N D.Cl 解析:选C 本题综合考查能量最低原理、泡利原理、洪特规则。各原子的轨道表示式为 碳原子有2个未成对电子,氧原子有2个未成对电子,氮原子有3个未成对电子,氯原子有1个未成对电子。 8.下列3d能级的电子排布图正确的是( )

原子物理第五章 多电子原子

第五章 多电子原子 5.1 e H 原子的两个电子处在2p3d 电子组态。问可能组成哪几种原子态?用原子态的符号表示之。已知电子间是LS 耦合。 解:因为2 1,2,12121====s s l l , 1 ,2,3;1,0,,1,; 2121212121==∴-?-++=-+=L S l l l l l l L s s s s S ,或 所以可以有如下12个组态: 4 ,3,23313,2,13212,1,0311,1,3,0,3,1,2,0,2,1,1,0,1F S L F S L D S L D S L P S L P S L ============ 5.2 已知e H 原子的两个电子被分别激发到2p 和3d 轨道,器所构成的原子态为D 3,问这两电子的轨道角动量21l l p p 与之间的夹角,自旋角动量21s s p p 与之间的夹角分别为多少? 解:(1)已知原子态为D 3,电子组态为2p3d 2,1,1,221====∴l l S L 因此,

' 212 22 12 212 22 12 222111461063 212/)(cos cos 26)1(6)1(22)1(οθθθπ =- =--=∴++==+==+==+=L l l l l L L L l l l l L L l l p p p p P p p p p P L L P l l p h l l p (2) 1212122S s s p p P ==∴===== 而 ' 212 22 12 212 22 12 32703 12/)(cos cos 2οθθθ== --=∴++=S s s s s S s s s s s s S p p p p P p p p p P 5.3 锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s 。当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s 态;(2)它被激发到4p 态。试求出LS 耦合情况下这两种电子组态分别组成的原子状态。画出相应的能级图。从(1)和(2)情况形成的激发态向低能级跃迁分别发生几种光谱跃迁? 解:(1)组态为4s5s 时 2 1,02121====s s l l , 1 301,1;1,001 ,0,0S J S S L J S S L 三重态时单重态时,=======∴ 根据洪特定则可画出相应的能级图,有选择定则能够判断出能级间可以发生的5种跃迁:

第二章 自由离子和原子电子结构

第二章 自由离子和原子的电子结构 1.单电子体系定态薛定谔方程及其解 氢原子及类氢离子是单核单电子体系,假定核处于质心不动,在 Born-Oppenheimer 近似下电子运动的薛定谔方程为 (xyz)E )(H φφ=∧ xyz ……(2-1) 哈密顿算符r Ze m V 2 2 2 2T H - ?- =+=∧∧ ∧ 2 ? 是Laplacian 算符,2 22 22 22 z y x ?? + ?? + ?? ? = ,氢原子序数1=Z , 变换坐标解方程(2-1),得本征值:)(6 .1322 22 4 2 eV n Z n me Z E -=- = , 本征函数:)()()(θ?θ?φlm nl nlm Y r R r = ……(2-2), 径向函数)(r R nl 只与r 有关,球谐函数:)()()(?θθ?m lm lm Y ΦΘ=, m l n 、、为主量子数、角量子数和磁量子数; ∞ 、、、= 21n , 1210-n l 、、、、= , l m ±±±=、、、、 210。 单电子原子波函数)()()(θ?θ?φlm nl nlm Y r R r =,即原子轨道,若再考 虑电子自旋)(σηs m (其中s m 为)(或σβσα)(): )()()(σηθ?φθ?σψr r nlm m nlm s l =,称为自旋-轨道。 ∧ ∧ z s s 、 只与自旋坐标σ有关,∧ ∧ z l l 、2 只与空间坐标有关;故 ∧ ∧∧ ∧ ∧ z z s s l l H 、、、、2 2 彼此对易,有共同本证函数 )(θ?σψ r s l m nlm ,例如 )2 1 123θ?σψ r (、 、-、,2 11 322 11 32-=-∧ E H ,本征值:9 6 .132 Z E -=, 2 11 32)12(22 11 322 2 -+=-∧ l ,本征值:26 ,

多电子原子的结构

第8节 多电子原子的结构 第一部分 上节课复习内容: 1、主量子数n :22 22048n Z h e E n ?-=εμ .....),,n ()eV (n Z .E n 3215951322 =?-= 2、 角量子数l )n .....,,,l (h )l (l M 1321021-=? ? ? ??+=π e l l βμ)1(+= 3、磁量子数 )l ,......,,m (,h m M z ±±±==2102π )l ,......,,m (,m e z ±±±=-=210βμ 4、自旋运动 )s (h )s (s M s 2 1 21= ? ?? ??+=π )m (,h m M s sz 2 12±==π e e s )s (s g βμ1+= e s e sz m g βμ-= 5、 总量子数 π 21h ) j (j M j += s l ,......s l ,s l j --++=1 π 2h m M j jx = j ,......,,,m j ±±±±=2 5 2321 6、径向分布 第二部分 本节课授课内容:

1、多电子原子的Schrodinger 方程及其近似解 2、原子轨道能和电子结合能 3、电子互斥能 4、原子的电离能和电子亲和能 引言:由单电子体系转移到多电子体系 第四节 多电子原子的Schrodinger 方程及其近似解 一、原子单位 下面引入原子单位(自然单位)来描述方程 自然单位中所有的物理量都用符号au 或是a.u.来表示,但对于不同的物理量,它的物理意义与数值大小是不一样的,如 长度:m .a au 110102917751-?== 质量:kg .m au e 31101191-?== 电荷:C .e au 1910611-?-== 能量:eV .a e au 227410 02== πε,能量的自然单位也经常写作hartree (2个电子相距Bohr 半径时的势能) 从中也可得出:04πε=1au 角动量:s J .h au ??==-34100546121π 例:对于氢原子及类氢离子体系,它的1s 和2s 波函数为: ??? ? ??-??? ? ??=r a z s e a z 0 2 1303 1πψ ???? ? ? -???? ? ?-??? ? ????? ??=r a 2z s e r a z a z 002 1303 22241πψ 所以,上二式根据自然单位可以写成: ()zr s e z -??? ? ??=2 13 1πψ

高中物理原子结构电子教师用书教科版

1.电子 学 习目标知识脉络 1.知道阴极射线的概念, 了解汤姆孙对阴极射线的 研究方法及电子发现的意 义.(重点) 2.知道比荷的概念,知道 电子是原子的组成部 分.(重点) 3.知道电子的电荷量的测 量方法——密立根油滴实 验,知道电子的电荷 量.(重点) 带负电的微粒 [先填空] 1.阴极射线 由阴极发出撞击到玻璃壁上产生荧光的射线,称为阴极射线. 2.汤姆孙实验结论 实验表明:阴极射线在磁场和电场中产生偏转,说明阴极射线是带负电的粒子流.[再判断] 1.阴极射线是由真空玻璃管中的感应圈发出的.(×) 2.阴极射线撞击玻璃管壁会发出荧光.(√) 3.阴极射线在真空中沿直线传播.(√) [后思考] 产生阴极射线的玻璃管为什么是真空的? 【提示】在高度真空的放电管中,阴极射线中的粒子主要来自阴极,对于真空度不高的放电管,粒子还有可能来自管中的气体,为了使射线主要来自阴极,一定要把玻璃管抽成

真空. 1.阴极射线带电性质的判断方法 (1)方法一:在阴极射线所经区域加磁场,根据射线的偏转情况确定其带电的性质. (2)方法二:在阴极射线所经区域加一电场,根据射线的偏转情况确定其带电的性质. 2.结论 根据阴极射线在磁场中和电场中的偏转情况,判断出阴极射线是带负电的粒子流. 1.如图2-1-1所示,在阴极射线管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流方向水平向右,则阴极射线将会向________偏转. 图2-1-1 【解析】阴极射线方向水平向右,说明其等效电流的方向水平向左,与导线中的电流方向相反,由左手定则,两者相互排斥,阴极射线向上偏转. 【答案】上 2.如图2-1-2是电子射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,可采用加磁场或电场的方法. 【导学号:11010016】 图2-1-2 若加一磁场,磁场方向沿________方向,若加一电场,电场方向沿________方向.【解析】若加磁场,由左手定则可判定其方向应沿y轴正方向;若加电场,根据受力情况可知其方向应沿z轴正方向. 【答案】y轴正z轴正 注意阴极射线电子从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.

相关主题
文本预览
相关文档 最新文档