当前位置:文档之家› 原子物理第五章 多电子原子

原子物理第五章 多电子原子

原子物理第五章 多电子原子
原子物理第五章 多电子原子

第五章 多电子原子

5.1 e H 原子的两个电子处在2p3d 电子组态。问可能组成哪几种原子态?用原子态的符号表示之。已知电子间是LS 耦合。

解:因为2

1,2,12121====s s l l ,

1

,2,3;1,0,,1,;

2121212121==∴-?-++=-+=L S l l l l l l L s s s s S ,或 所以可以有如下12个组态:

4

,3,23313,2,13212,1,0311,1,3,0,3,1,2,0,2,1,1,0,1F S L F S L D S L D S L P S L P S L ============

5.2 已知e H 原子的两个电子被分别激发到2p 和3d 轨道,器所构成的原子态为D 3,问这两电子的轨道角动量21l l p p 与之间的夹角,自旋角动量21s s p p 与之间的夹角分别为多少?

解:(1)已知原子态为D 3,电子组态为2p3d

2,1,1,221====∴l l S L

因此,

'

212

22

12

212

22

12

222111461063

212/)(cos cos 26)1(6)1(22)1(οθθθπ

=-

=--=∴++==+==+==+=L l l l l L L L

l l l l L L l l p p p p P p p p p P L L P l l p h

l l p

(2)

1212122S s s p p P ==∴=====

'

212

22

12

212

22

12

32703

12/)(cos cos 2οθθθ==

--=∴++=S s s s s S s s

s s s s S p p p p P p p p p P 5.3 锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s 。当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s 态;(2)它被激发到4p 态。试求出LS 耦合情况下这两种电子组态分别组成的原子状态。画出相应的能级图。从(1)和(2)情况形成的激发态向低能级跃迁分别发生几种光谱跃迁?

解:(1)组态为4s5s 时 2

1,02121====s s l l ,

1

301,1;1,001

,0,0S J S S L J S S L 三重态时单重态时,=======∴

根据洪特定则可画出相应的能级图,有选择定则能够判断出能级间可以发生的5种跃迁:

11123131313031311014445;45;45,45S P P S P S P S P S →→→→→

所以有5条光谱线。

(2)外层两个电子组态为4s4p 时:

2

1

,1,02121====s s l l , 1312,1,01,0,1

01,;1

;2,1,0,L S S J L P S J P ∴=======时,单重态时三重态

根据洪特定则可以画出能级图,根据选择定则可以看出,只能产生一种跃迁,011144S P →,因此只有一条光谱线。

5.4 试以两个价电子3221==l l 和为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态.

证明:(1)LS 耦合

L

J S L S ====;0,1,2,3,4,5;10时,

5个 L 值分别得出5个J 值,即5个单重态.

;1,,1;1-+==L L L J S 时

代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态:6,5,435,4,334,3,233,2,132,1,03;;;;H G F D P 因此,LS 耦合时共有20个可能的状态.

(2)jj 耦合:

21212121,...,25

27;2325;j j j j j j J j j s l j s l j -++===

-=+=或或或

将每个21j j 、合成J 得:

1

,2,3,42

5

230,1,2,3,4,525

252,3,4,527

231,2,3,4,5,627

252

12

12

121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和

共20个状态:1,2,3,40,1,2,3,4,52,3,4,51,2,3,4,5,6)2

5,23(;)2

5,25(;)2

7,23(,)2

7,25(

所以,对于相同的组态无论是LS 耦合还是jj 耦合,都会给出同样数目的可能状态.

5.5 利用LS 耦合、泡利原理和洪特定责来确定碳Z=6、氮Z=7的原子基态。

解:碳原子的两个价电子的组态2p2p,属于同科电子.这两个电子可能有的l m 值是1,0,-1;可能有2

1,2

1-值是s m ,两个电

子的主量子数和角量子数相同,根据泡利原理,它们的其余两个量子数s l m m 和至少要有一个不相同.它们的s l m m 和的可能配合如下表所示.

为了决定合成的光谱项,最好从∑=li L m M 的最高数值开始,因为这就等于L 出现的最高数值。现在,L M 得最高数值是2,因此可以得出一个D 项。又因为这个L M 只与0=S M 相

伴发生,因此这光谱项是D 1项。除了2=L M 以外,2

,1,0,1--+=L M 也属于这一光谱项,它们都是0=S

M 。这些谱项在表中以L M 的

数字右上角的记号“。”表示。共有两项是0,1=±=S L M M ;有

三项是0,0==S

L M M 。在寻找光谱项的过程中,把它们的哪一

项选作D 1项的分项并不特别重要。类似地可以看出有九个组

态属于P3项,在表中以

M的

L

碳原子

氮原子

数字右上角的记号“*”表示。剩下一个组态0,0==S

L M M ,

它们只能给出一个S 1项。因此,碳原子的光谱项是D 1、P 3

和S 1,

而没有其它的项。

因为在碳原子中P 3项的S 为最大,根据同科电子的洪特定则可知,碳原子的P 3项应最低。碳原子两个价电子皆在p

次壳层,p 次壳层的满额电子数是6,因此碳原子的能级是正常次序,03P 是它的基态谱项。

氮原子的三个价电子的组态是p p p 222,亦属同科电子。它们之间满足泡利原理的可能配合如下表所示。

表中删节号表示还有其它一些配合,相当于此表下半部给出的s m 间以及l m 间发生交换。由于电子的全同性,那些配合并不改变原子的状态,即不产生新的项。

由表容易判断,氮原子只有D 2、P 2和S 4。根据同科电子的洪特定则,断定氮原子的基态谱项应为2/34S 。

5.6 已知氦原子的一个电子被激发到2p 轨道,而另一个电子还在1s 轨道。试作出能级跃迁图来说明可能出现哪些光谱线跃迁?

解:1;1,0;2/1,1,02121======L S s s l l 对于1,0===L J S ,单态1

P 1 对于0,1,2,1==J S ,三重态3

P 2,1,0

根据选择定则,可能出现5条谱线,它们分别由下列跃迁产生:21P 1→11S 0;21P 1→21

S 0

23

P 0→23

S 1;23

P 1

1s2s

1s1s

5.7 Ca 原子的能级是单层和三重结构,三重结构中J 的的能级高。其锐线系的三重线的频率012v v v >>,其频率间隔为122011,v v v v v v -=?-=?。试求其频率间隔比值

1

2v v ??。

解:Ca 原子处基态时两个价电子的组态为s s 44。Ca 的锐线系是电子由激发的s 能级向p 4能级跃迁产生的光谱线。与氦的情况类似,对p s 44组态可以形成0,1,2311P P 和的原子态,也就是说对L=1可以有4个能级。电子由诸激发S 3能级上跃迁到

0,1,23

P 能级上则产生锐线系三重线。

根据朗德间隔定则,在多重结构中能级的二相邻间隔

122011,v v v v v v -=?-=?同有关的

J 值中较大的那一个成正比,因

此,1,221∝?∝?v v ,所以

2

1

12=??v v 。 5.8 Pb 原子基态的两个价电子都在p 6轨道。若其中一个价电子被激发到s 7轨道,而其价电子间相互作用属于jj 耦合。问此时Pb 原子可能有哪些状态?

解:激发后铅原子的电子组态是s p 76。

12

1

21.

1,221

2321

;21232

1,21;0,12121212121,合成和合成和或或========

∴-+=====J j j J j j j j s l s l j s s l l 因此,激发后Pb 原子可能有四种状态:

01122

1

21212121232123),,(),,(),,(),(。 5.9 根据LS 耦合写出在下列情况下内量子数J 的可能值 (1)2,3==S L ,(2)2

7,3==S L ,(3)2

3,3==S L

解:(1)因为S L S L S L J --++=,.....,1, 所以1,2,3,4,5=J ,共2S+1=5个值。

(2)类似地,2

1,211,212,2

13,2

14,2

15,2

16=J 共有7个值。这里L

其个数等于2L+1。

(3)同样地,可得:2

1,211,212,2

13=J 。

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

原子物理知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

原子物理第五章习题教案资料

原子物理第五章习题

精品文档 第五章习题 1,2 参考答案 5-1 氦原子中电子的结合能为 24.5eV ,试问:欲使这个原子的两个 电子逐一电离,外界必须提供多少能量? 解 : 第一 个 电 子 电 离 是 所 需 的 能 量 为 电 子 的 结 合 能,即: E 1 = 24.5eV 第二个电子电离过程 ,可以认为是类氢离子的电离,需要的能量为 : 1 1 ∞ = Rhcz 2 = 22 ?13.6eV = 54.4eV E 2 = hv = 1 n ∞ 所以 两 个 电 子 逐 一 电 离 时 外 界 提 供 的 能 量 为 : E = E 1 + E 2 = 24.5eV + 54.4eV = 78.9eV 5-2 计算 4 D 3/2 态的 L ·S .(参阅 4.4.205) 分析要点:L 与 S 的点积,是两矢量的点积,可以用矢量三角形的方法,用其他矢量的模来表示;也可以求出两矢量模再乘其夹角的余弦. 解:依题意知,L =2,S =3/2,J =3/2 J =S +L J 2 =S 2 +L 2 +2S ·L 据: 5-3 对于 S =1/2,和 L =2,试计算 L ·S 的可能值。要点分析:矢量点积解法同 5-2. 解:依题意知,L =2,S =1/2 可求出 J =L ±1/2=2±1/2=3/2,5/2 有两个值。因此当 J =3/2 时有:

精品文档 1 收集于网络,如有侵权请联系管理员删

= 1 [J (J +1) ? S (S +1) ? L (L +1)]?2 L ? S 3 2 2 = 1 [ 3 ( 3 +1) ? 1 ( 1 +1) ? 2(2 +1)]? 2 据: 2 2 2 2 2 = ? 3 ? 2 2 而当 J =5/2 时有: = 1 [J (J +1) ? S (S +1) ? L (L +1)]?2 L ? S 5 2 2 = 1 [ 5 ( 5 +1) ? 1 ( 1 +1) ? 2(2 +1)]? 2 据: 2 2 2 2 2 = ?2 3 ?2 故可能值有两个 ? ? 2 , 2 5-4 试求 3 F 2 态的总角动量和轨道角动量之间的夹角。(参阅 4.3.302) 解: 总角动量 P J = J ( J +1)? (1) P L = ? 轨道角动量 L (L +1) (2) P S = ? 自旋角动量 S (S +1) (3) 三者构成矢量三角形,可得: P S 2 = P L 2 + P J 2 ? 2 P L P J cos(P L ? P J ) ? cos(P P ) = P 2 + P 2 ? P 2 L J S (4) L J 2 P L P J 把(1) (2) (3) 式代人(4)式: 得 cos(P L P J ) = L (L + 1)? 2 + J ( J + 1)? 2 ? S (S +1)? 2 2 L (L +1)? J (J +1)? 对 3 F 2 态 S =1 L =3 J =2 代人上式得: ? θ = 19 ? 28' cos(P L P J ) = 0.9428 5-5 在氢、氦、锂、铍、钠、镁、钾和钙中,哪些原子会出现正 2

川师大学物理期末必考课后习题总结

13–6 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ] A.传播的路程相等,走过的光程相等 B.传播的路程相等,走过的光程不相等 C.传播的路程不相等,走过的光程相等 D.传播的路程不相等,走过的光程不相等 13–11 在杨氏干涉实验中,双缝间距为0.6mm双缝到屏的距离为1.5m,实验测得条纹间距为1.5mm求光波波长。 解:已知:d=0.6mm,D=1.5m,1.5mmx 14-1 波长为600nm的单色平行光,垂直入射到缝宽为a=0.60mm的单缝上,缝后有一焦距f’=60cm的透镜,在透镜焦平面上观察衍射图案。则,中央明纹的宽度为1.2mm, 两个第三级暗纹之间的距离为3.6m m . 14-7 在单缝弗朗和费衍射实验中,波成为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为30度的方向,单缝处波正面可分成的半波带数目[ B ] A.2个 B.4个 C.6个 D.8个 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I,求它们在O点处的磁感应强度B。 (1)高为h的等边三角形载流回路在三角形的中心O处的磁感应强度大小为,方向垂直于纸面向外。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R的圆弧形,圆心O点的磁感应强度大小为 ,方向垂直纸面向里。 11–2 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B。 11–5 如图11-5所示,真空中有两圆形电流I1 和 I2 以及三个环路L1 L2 L3,则安培环路定理的表达式为

12–11 关于由变化的磁场所产生的感生电场(涡旋电场),下列说法正确的是[ B ]。 A.感生电场的电场线起于正电荷,终止于负电荷 B.感生电场的电场线是一组闭合曲线 C.感生电场为保守场 D.感生电场的场强Ek沿闭合回路的线积分为零 9 2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+P1和P2与两带电线 共面,其位置如图9-3所示,取向右为坐标x正向,则1 PE= , 2PE= 。 9 5 如9-7图,在点电荷q的电场中,选取以q为中心、R为半径的球面上一点A处为电势零点,则离 点电荷q为r的B处的电势为 97 关于高斯定理的理解有下面几种说法,其中正确的是[ D ]。 A.如高斯面上E处处为零,则该面内必无电荷 B.如高斯面内无电荷,则高斯面上E处处为零 C.如高斯面上E处处不为零,则高斯面内必有电荷 D.如高斯面内有净电荷,则通过高斯面的电通量必不为零 E.高斯定理对变化电场不适用 9–18 (1)设匀强电场的电场强度E与半径为R的半球面的轴线平行,如图9-23(a)所示,试计算通过此半球面的电场强度通量。 (2)/6,如图9-23(b)所示,试计算通过此半球面的电场强度通量

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

大学物理下期末知识点重点总结(考试专用)

1.相对论 1、力学相对性原理和伽利略坐标变换。(1)牛顿力学的一切规律在伽利略变换下其形式保持不变,亦即力学规律对于一切惯性参考系都是等价的。(2)伽利略坐标换算。 2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。 3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。 4、光的多普勒效应。 当光源相对于观察者运动时,观察者接受到的频率不等于光源实际发出的频率。 5、狭义相对论揭示出电现象和磁现象并不是互相独立的,即表现为统一的电磁场。 2.气体动理论 一.理想气体状态方程: 112212 PV PV PV C =→=; m PV R T M ' = ; P nkT = 8.31J R k mol = ;231.3810J k k -=?; 2316.02210A N mol -=?;A R N k = 二. 理想气体压强公式 2 3kt p n ε= 分子平均平动动能 1 2kt m ε= 三. 理想气体温度公式 1322kt m kT ε== 四.能均分原理 自由度:确定一个物体在空间位置所需要的独立坐标数目。 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等, 其值为1kT 4.一个分子的平均动能为:k i kT ε= 五. 理想气体的内能(所有分子热运动动能 之和) 1.1m ol 理想气体i E R T = 一定量理想气体 ()2i m E R T M ν ν' == 3.热力学 一.准静态过程(平衡过程) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。 二.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体2 1 V V W Pdv = ? 2.,,Q E W ?符号规定 3. 2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 V m i C R = 三.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 210()V m W Q E C T T ν=?? ? =?=-?? 2. 等压过程 212121()()()p m W p V V R T T Q E W C T T νν=-=-?? ? =?+=-?? C 2 ,1 2C p m p m V m V m i C C R R γ+=+=> 热容比= 3.等温过程 212211 0T T E E m V m p Q W R T ln R T ln M V M p -=? ? ''? ===?? 绝热过程 210()V m Q W E C T T ν=?? ? =-?=--?? 绝热方程1P V C γ =, -1 2V T C γ= , 13P T C γγ--= 。 四.循环过程 特点:系统经历一个循环后,0E ?= 系 统 经 历 一 个 循 环 后 Q W =(代数和)(代数和) 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 热机效率: 122111 1Q Q Q W Q Q Q η-= ==- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放 出的热量和; 12W Q Q =-------在一个循环中,系统对外 做的功(代数和)。 卡诺热机效率: 2 1 1c T η=- 式中: 1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 22 12 Q = Q -Q = 定义:Q e W 卡诺制冷机的制冷系数:22 1212 Q T e Q Q T T == -- 五. 热力学第二定律 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效 率为100%是不可能的)。 克劳修斯表述:热量不能自动地从低温物体传到高温物体。 两种表述是等价的. 4.机械振动 一. 简谐运动 振动:描述物质运动状态的物理量在某一数值附近作周期性变化。 机械振动:物体在某一位置附近作周期性的往复运动。 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2 a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐 振动物体 的速度 : () sin dx v A t w w j ==-+ 加速度() 2 2cos d x a A t w w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 振幅A : A 取决于振动系统的能量。 角(圆)频率 w :22T p w pn ==,取决于振动 系统的性质 对于弹簧振子 w 、对于单摆 ω相位——t w j +,它决定了振动系统的运动 状态(,x v ) 0t =的相位—初相 arc v tg x j w -= 四.简谐振动的能量 以弹簧振子为例: 222221111 k p E E E mv kx m A kA ω=+= +== 五.同方向同频率的谐振动的合成 设 ()111cos x A t ω?=+ ()222cos x A t ω?=+ 12cos()x x x A t ω?=+=+ 合成振动振幅与两分振动振幅关系为: A A 1 122 1122cos cos tg A A ???=+ 合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。 () 20 12k k ?π?==±± 12A A A + )12 ??± 12A A A - 一21可以取任意值 1212 A A A A A -<<+ 5.机械波 一.波动的基本概念 1.机械波:机械振动在弹性介质中的传播。 2. 波线——沿波传播方向的有向线段。 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。 波长λ:振动的相位在一个周期内传播的距离。 波速u:振动相位传播的速度。波速与介质的性质有关 二. 简谐波 沿ox 轴正方向传播的平面简谐波的波动方 程 质点的振动速度 ] )(sin[?ωω+--=??=u x t A t y v 质点的振动加速度 2cos[()]v x a A t t u ωω??= =--+? 这是沿ox 轴负方向传播的平面简谐波的波 动 方 程 。 c o s [ ()]c o s [2()] x t x y A t A u T ω?π ? = -+=-+ cos 2()t x y A T π?λ?? =++???? 三.波的干涉 两列波 频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。 两列相干波加强和减弱的条件: (1) ()π π ???k r r 221 212±=---=?) ,2,1,0(???=k 时, 2 1A A A += (振幅最大,即振动加强) ()()π λ π???1221212+±=---=?k r r ) ,2,1,0(???=k 时, 2 1A A A -= (振幅最小,即振动减弱) (2)若12??=(波源初相相同)时,取 21r r δ=-称为波程差。 212r r k δλ =-=±) ,2,1,0(???=k 时, 2 1A A A +=(振动加强) () 1212λ δ+±=-=k r r ) ,2,1,0(???=k 时, 2 1A A A -=(振动减弱); 其他情况合振幅的数值在最大值12 A A +和最小值 12A A -之间。 6.光学 杨氏双缝干涉(分波阵面法干涉) 1、 x d d d r ===-=θθδtan sin r 12波程差 2、明纹位置: λ k D x d ± =),2,1,0k ( = 3、暗纹位置: 2 ) 12(λd D k x +±=),2,1,0( =k 4、相邻明(暗)纹间距 λd D x = ? 4、若用白光照射,则除了中央明纹(k=0级)是白色之外,其余明纹为彩色。 二、分振幅法干涉 1、薄膜干涉(若两束反射光中有一束发生半波损失,则光程差δ在原来的基础上再加上 2 λ ;若两束光都有半波损失或都没有,则无 需加上λ )以下结果发生在入射光垂直入射时 ?? ???=+==+ -=)(),2,1,0(12) (),2,1(2 sin 222122暗纹)(明纹 k k k k i n n d λλλ δ 2、劈尖干涉(出现的是平行直条纹) 1)明、暗条纹的条件: ?? ? ??=+==+=) (),2,1,0(2)12() (),2,1(2 2暗纹明纹 k k k k nd λλλδ 2)相邻明纹对应劈尖膜的厚度差为n 2e 1λ=-=??+k k k d d d )(图中为 3)相邻明(暗)纹间距为θλθ λn n L 2sin 2≈ = 3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉) 1)明环和暗环的半径: ) () ,2,1,0()(),2,1(2)12(暗环明环 == =-=k n kR r k n R k r λ λ ③相邻明环、暗环所对应的膜厚度差为 n 21λ= -=?+k k k d d d 。 三、迈克尔逊干涉仪 1)可移动反射镜移动距离d 与通过某一参考点条纹数目N 的关系为 2 λ N d = 2)在某一光路中插入一折射率n,厚d 的透明介质薄片时,移动条纹数N 与n 、d 的关系为 21n λN d =-)( 五、夫琅禾费衍射 1、明纹条件:????? =+±==),2,1(2)12(sin 0 k k a λ??(中央明纹) 2、暗纹条件: ),2,1(sin =±=k k a λ? 3、中央明纹宽度(为1±级暗纹间距离): a 2sin 2tan 20f f f l λ??≈ == 其它暗纹宽度: 2 sin sin tan tan 111o k k k k k k l a f f f f f x x l == -=-=-=+++????? 4、半波带数: 明纹(又叫极大)为(2k+1);暗纹(又叫极小)为(2k )。 六、衍射光栅 1、光栅常数d=a(透光宽度)+b (不透光宽度)=单位长度内刻痕(夹缝)数的倒数 2、光栅方程 ) ,2,1,0(sin ) =±=+k k b a λ?( 明纹(满足光栅方程的明纹称为主极大明纹) k=0、1、2、3 称为0级、1级、2级、 3级 明纹 3、缺级 条 件 ??? ????±±±==+±±±==+±±±==++=????±=±=+主极大消失 、、如果、、如果、、如果( 1284449633364222k sin sin )k k a b a k k a b a k k a b a k b a k a k b a λ?λ?七、光的偏振 1、马吕斯定律α2 cos I =I ( α为入射偏振 光的振动方向与偏振片的偏振化方向间的夹角) 2、布儒斯特定律1 20an n n i t = , 0i 称为布儒斯特 角或起偏角。 当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。 7.量子力学 光电效应 光电效应方程W m h m += 2 1 νγ(式中γ表示光子 的频率,W 表示逸出功) 02 U 1e m m =ν(0U 表示遏止电压) h γ=W ( 0γ表示入射光最低频率/红限频率) 说明了光具有粒子性。 光的波粒二象性 能量: γεh = 动量:22c h m mc γ ε= = 光子动量: λγh c h mc p == = 二、康普顿效应 1、散射公式 2sin 22sin 22200θλθλλλc c m h == -=? 2、说明了光具有粒子性。 四、实物粒子的波粒二象性 1、德布罗意波 h = λ 测不准关系 2 ≥ ???x P x (一定的数值) 2、波函数 1)归一化波函数 x n a x n π ψsin 2)(= ( a x <<0) 概率密度为2 )(x n ψ? =a n dx x 0 2 1 )(ψ 粒子能 量 ) 321(2 2 、、== n h n E n 2)标准化条件 单值性,有限性,连续性

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型-—核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型。 2。物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D 。α粒子穿过金箔时都有较大的偏转。 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。其中一个 α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________。 ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n =。其中n 称为量子数,只能取正整数。E 1=-13。6eV ,r 1=0。53×10-10 m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 原子的较高能量状态称为_______,对应电子在离核较远的轨道上运动. 4.氢原子核外的电子绕核运动的轨道与其能量相对应 核外电子绕核做圆周运动的向心力,来源于库仑力(量子化的卫星运动模型) 由r v m r e k F 222 ==库得动能r ke mv E k 2 22121==, 即r 越大时,动能________。 又因为12r n r n =,21 n E E n = 即量子数n 越大时,动能_______,势能______,总能量_______. 5.用玻尔量子理论讨论原子跃迁时释放光子的频率种数 氢原子处于n=k 能级向较低激发态或基态跃迁时,可能产生的光谱线条数的计算公式为:2 ) 1(2 -= =k k C N k 例1:氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中 ( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 图1-1 c 原子核 α粒子

相关主题
文本预览
相关文档 最新文档