当前位置:文档之家› 数列解答题常考题型训练

数列解答题常考题型训练

数列

1.已知等差数列的前项的和为,,.

(1)求数列的通项公式;

(2)设,记数列的前项和,求使得恒成立时的最小正整数.

2.已知数列的各项均为正数,且.

(1)求数列的通项公式;

(2)若,求数列的前项和.

3.已知数列为正项等比数列,满足,且构成等差数列,数列满足.

(Ⅰ)求数列,的通项公式;

(Ⅱ)若数列的前项和为,数列满足,求数列的前项和.

4.已知等差数列的前项和为,若,.

(1)求数列的通项公式;

(2)求数列的前项和.

5.设为数列的前n项和,已知,对任意,都有.(1)求数列的通项公式;

(2)令求数列的前n项和.

6.已知数列中,,且,,1成等差数列. (1)求数列的通项公式;

(2)若数列满足,数列的前项和为,求.

7.已知等差数列的公差为2,且成等比数列.

(1)求数列的通项公式;

(2)设,数列的前项和,求使成立的最大正整数的值.

8.已知等比数列是递增数列,其公比为,前项和为,并且满足

,是和的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,,求使成立的正整数的值.

9.已知等差数列的前项和为,满足.数列的前项和

为,满足.

(1)求数列和的通项公式;

(2)求数列的前项和.

10.已知数列满足,且.

(1)求证:数列是等差数列,并求出数列的通项公式;

(2)令,求数列的前项和.

11.已知数列满足,,设.

(Ⅰ)求,,;

(Ⅱ)判断数列是否为等差数到,并说明理由;

(Ⅲ)求数列的通项公式.

12.正项等差数列中,已知,,且,,构成等比数列的前三项.

(1)求数列,的通项公式;

(2)求数列的前项和.

13.已知数列满足(,),且,.(1)证明:数列是等比数列;

(2)求数列的前项和.

14.已知数列与满足:,且为正项等比数列,,.

(Ⅰ)求数列与的通项公式;

(Ⅱ)若数列满足,为数列的前项和,证明:.

15.记为各项为正数的等比数列的前项和,已知. (Ⅰ)求数列的通项公式;

(Ⅱ)令,求的前n项和.

16.数列中,,,().

(1)求数列的通项公式;

(2)设(),,是否存在最大的整数,使得任意的均有总成立?若存在,求出;若不存在,请说明理由.

17.已知正项等比数列中,,且成等差数列.

(1)求数列的通项公式;(2)若,求数列的前项和.

18.已知数列的前项和为,且.

(1)求数列的通项公式;

(2)若数列的前项和为,证明:.

19.已知数列是公差为2的等差数列,数列满足,

.

(1)求,的通项公式;

(2)求数列的前项和.

20.已知数列的前项和为,数列的前项和为,满足. (1)证明数列是等比数列,并求出数列的通项公式;

(2)设,求数列的前项和.

21.若数列 的前项和为,首项且().

(1)求数列的通项公式;

(2)若(),令,求数列的前项和.

22.已知等比数列为递增数列,且,,数列的前项和为,,,.

(1)求数列和的通项公式;

(2)设,求数列的前项和为.

数列参考答案

1.【解析】(1)设等差数列的公差为,因为,,所以

解得,所以数列的通项公式为.

(2)由(1)可知

,∴,∴,∴的最小正整数为1

2.【解析】(1)由得,所以或,又因为数列的各项均为正数,负值舍去,所以.

(2)由,所以①

②,由①-②得:

所以.

3.【解析】(Ⅰ)设等比数列的公比为q(q),由题意,得解得或(舍),又所以,

(Ⅱ).∴,

4.【解析】(1)设等差数列的公差为,则由,得,所以,①;由,得,所以,②;由①②,解得,,故.

(2)由(1),得,所以

.

5.【解析】(1)已知a1=3,对任意n∈N*,都有2S n-a n=na n①,当n≥2时,2S n-1-a n-1=(n-1)a n-1②,①-②得

化简整理得,所以,,……,,

左右两边分别相乘,可得,已知,所以

(2),

所以

6.【解析】(1),,成等差数列,

且,数列是等比数列,且公比

由得:,

(2)由(1)知,,

7.【解析】(1)由题意知,,即,解得,故,.

(2)由,得

,由,解得.

故所求的最大正整数为5.

【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个

数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 8.【解析】(Ⅰ)依题意,设等比数列的公比为,则,即

,解得.所以.于是有解得或

又是递增的,故,所以.

(Ⅱ),

①;则②;②-①,得

,即数列的前项和,则

,即,解得.

9.【解析】解:(1)由,得,解得.由

,解得或.若,则,所以.所以

,故不合题意,舍去.所以等差数列的公差

故.数列对任意正整数,满足.当时,,解得;当时,,

所以.所以是以首项,公比的等比数列,

故数列的通项公式为.

(2)由(1)知,所以,①;所以

,②;①-②,得

,所以. 10.【解析】(1),且,∴,即,∴,数列是首项为,公差为1的等差数列.∴,∴,∴

(2)由(1)知,∴

11.【解析】(Ⅰ)将代入得,又,所以,将代入得,所以;从而,,.

(Ⅱ)数列是以1为首项,公差为2的等差数列.由条件,将

两边同时除以得:,

化简,即,所以数列是以1为首项,公差为2的等差数列. (Ⅲ)由(Ⅱ)可得,

.

12.【解析】(1)设等差数列的公差为,则由已知得:,即,又,解得或(舍去),,

所以,又,,所以,所以.

(2)因为,

,两式相减得

,则.

13.【解析】(Ⅰ)证明:∵当时,,∴.∴,.∴数列是以2为首项,公比为2的等比数列.

(Ⅱ)解:,∵,①,∴,② ,① ②:

,∴

14.【解析】(1)由……①;时,

……②;①-②可得:;

,,设公比为;

(2)证明:由已知:,

当时,

,即:

15.【解析】(Ⅰ)=,,=

或-4(舍去),故,,.(Ⅱ),--

故.

【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法

中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法

需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。

16.【解析】(1)∵,∴(),∴等差数列.设公差为,又,,∴,∴. (2),∴

,假设存在整数满足总成立,又

,∴数列是单调递增的,∴的最小值,故,即

又,∴适合条件的的最大值为7.

【点睛】本题主要考查递推公式求通项的应用,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难

点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2)

;(3);(4)

.

17.【解析】(1)设等比数列的公比为,因为成等差数列,所以

,得,又,则,即

,所以,所以,所以

,所以,显然,所以,解得,故数列的通项公式

(2)由(1)知,

所以,则

18.【解析】(1)当时,,即,当时,

①,②,,得

,即,所以,且,所以数列为常数列,,即 .

(2)由(1)得,所以,

所以,

19.【解析】(1)依题意得,又数列为公差为2的等差数列,

所以,所以.因为

所以,两式相减得:,,

所以,,又不满足上式,所以.

(2)当时,,所以

,又当时,满足上式,所以.

【点睛】(1)求数列的通项公式时要根据所给条件选择合适的方法,常见例类型有:已知数列类型求通项,累加(乘)求通项,已知数列和的形式求通项、构造法求通项等.

(2)用裂项相消法求数列的和时要注意从第几项开始进行列项,另外裂项相消后所剩项具有前后对称的特点,即前面剩几项后面就剩几项,前面剩第几项后面就剩第几项.20.【解析】(1)由得:,解得,

由,解得.

当时,,即:

,①;②

由②- ①得,∴,又,

所以数列是以为首项,2为公比的等比数列,∴,

即.

(2)∵,

所以

.

记③,

④,

由③④得:,所以. 所以.

21.(1)当时,,则

当时,,

即或

∴或

(2)由,∴,

22.【解析】(1)对于数列,

即或注意到为递增数列,则∴

对于数列,由得

相减得

又∵∴为定值

∴数列和都是以4为公差的等差数列

又∵∴在中令得

∴,

∴,

(2)由(1)得∴

第六章_时间数列练习题及解答

《时间序列》练习题及解答 一、单项选择题 从下列各题所给的4个备选答案中选出1个正确答案,并将其编号(A、B、C、D)填入题干后面的括号内。 1、构成时间数列的两个基本要素是()。 A、主词和宾词 B、变量和次数 C、时间和指标数值 D、时间和次数 2、最基本的时间数列是()。 A、时点数列 B、绝对数数列 C、相对数数列 D、平均数数列 3、时间数列中,各项指标数值可以相加的是()。 A、相对数数列 B、时期数列 C、平均数数列 D、时点数列 4、时间数列中的发展水平()。 A、只能是总量指标 B、只能是相对指标 C、只能是平均指标 D、上述三种指标均可以 5、对时间数列进行动态分析的基础指标是()。 A、发展水平 B、平均发展水平 C、发展速度 D、平均发展速度 6、由间断时点数列计算序时平均数,其假定条件是研究现象在相邻两个时点之间的变动为()。 A、连续的 B、间断的 C、稳定的 D、均匀的 7、序时平均数与一般平均数的共同点是()。 A、两者均是反映同一总体的一般水平 B、都是反映现象的一般水平 C、两者均可消除现象波动的影响 D、共同反映同质总体在不同时间上的一般水平 8、时间序列最基本的速度指标是()。 A、发展速度 B、平均发展速度 C、增长速度 D、平均增长速度 9、根据采用的对比基期不同,发展速度有()。 A、环比发展速度与定基发展速度 B、环比发展速度与累积发展速度 C、逐期发展速度与累积发展速度 D、累积发展速度与定基发展速度 10、如果时间序列逐期增长量大体相等,则宜配合()。 A、直线模型 B、抛物线模型 C、曲线模型 D、指数曲线模型 该商场第二季度平均完成计划为()。 A、100%124%104% 108.6% 3 ++ = B、 506278 108.6% 506278 100%124%104% ++ = ++ C、 506278 100%124%104%92.1% 506278 ++ = ++ D、50100%62124%78104% 109.5% 506278 ?+?+? = ++ 12、增长速度的计算公式为()。 A、=增长量 增长速度 基期水平B、= 增长量增长速度 期初水平

高三理科数学数列解答题专项训练

高三理科数学数列解答题专项训练 为成等比数列,,且,满足数列已知公差不为零的等差n n S a a a a a a a 1751531,,12}{.1=++项和的前n a n }{。 的值成立的最大正整数)求使得的通项公式;(求数列n a s a n n n 52}{)1(< 121,1...11)3(121<≤+++= -+n n n n n b a a a b 证明:设 的等差中项是,且的前项和设数列3211,42}{.2a a a a a s a n n n +-= 的通项公式求数列}{)1(n a 221}{)2(<≤n n n T T n a n ,求证:项和的前求数列 *),2(),2(2,3}{.311N n n n a a a a n n n ∈≥-+==-中,在数列 的通项公式 是等比数列,并求证明:数列}{}{)1(n n a n a + n s n 项和的前求数列}{a )2(n *)(,23,3,1}{.41221N n a a a a a a n n n n ∈-===++满足已知数列 是等比数列;证明:数列}{)1(1n n a a -+ 2 1}{2)2(11<=+-n n n n n n n T n b T a a b 项和,证明:的前是数列,设

7,}{1}{.53=s a s a n n n 已知的前项和为数列的等比数列,是公比大于设 构成等差数列且4,3,3321++a a a n n n n n T n b n a b a 项和的前求数列,)令的通项公式;(求数列}{,...2,1ln 2}{)1(13==+ n n n n a a a a 23,1}{.611+==+满足数列 2 31...112}2{)1(21<++++n n n a a a n a ,有 )对一切正整数是等比数列;(求证:数列 *),2(,221}{.711N n n a a a a n n n n ∈≥+==-,且满足已知数列 的最大项,试求数列设求的前项和)设数列(的通项公式; 求数列}{a 3 3)3(,}{2}{)1(n n n n n n n n s b s s a a -= 的取值范围)求(与)求(,且公比为的各项均为正数,,等比数列项和为其前中,在等差数列n n n n n n s s s b a b s q s b q b b s n a a 1...1121,12,1}{,3}{.821222211+++= =+== 321...1131)3(21<+++≤n s s s 证明:

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

等差等比数列专项练习题(精较版)

等差数列、等比数列同步练习题 等差数列 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、-101 C、101 D、-89 2、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为 A、4 B、5 C、6 D、不存在 4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于() A、720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么a:b等于() A、1 4B、 1 3C、 1 3或 1 D、 1 2 6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3 B、C n= 8n - 1 C、C n= 4n - 5 D、C n= 8n - 9

7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有() A、6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为() A、0 B、100 C、10000 D、505000 二、填空题 9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。 10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。 11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是 ______ 。 12、已知等差数列 110,116,122,……,则大于450而不大于602的各项之和为 ______ 。 13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 = 14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 = 15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 = 16、已知{a n}为等差数列,a1 + a3 + a5 = 105,a2 +a4 + a6 = 99,则a20 =

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

数列专项练习及答案

(二)数列专项练习 1. (本小题满分12分)已知数列{}n a 满足() 12111,3,32,2n n n a a a a a n N n *+-===-∈≥, (I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()2 42log 1n n b a =+,证明:对一切正整数222 121111 ,1112 n n b b b ++???+<---有 . 2.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列 {}n b 对任意N n *∈,总有123 12n n n b b b b b a -???=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记2 4(1)(21)n n n n b c n ?=-+,求数列{}n c 的前n 项和n T .

3.(本小题满分12分)已知数列{} n a 是递增的等比数列,149a a +=,238a a =. (Ⅰ)求数列{} n a 的通项公式; (Ⅱ)若2log n n n b a a =? ,求数列{} n b 的前n 项和n T . 4.已知双曲线=1的一个焦点为,一条渐近线方程为y=x ,其中{a n }是以4 为首项的正数数列. (Ⅰ)求数列{c n }的通项公式; (Ⅱ)若不等式对一切正常整数n 恒成立,求实数x 的取 值范围.

5.已知正项数列{a n },其前n 项和Sn 满足,且a 2是a 1和a 7的等比中项. (Ⅰ)求数列 的通项公式; (Ⅱ)符号[x]表示不超过实数x 的最大整数,记,求. 6.(本小题满分12分)单调递增数列{}n a 的前行项和为 n S ,且满足 2 44n n S a n =+. (I)求数列{}n a 的通项公式; (Ⅱ)数列 {}n b 满足: 1221 log log 2 n n n a b a ++=。求数列{}n b 的前n 项和 n T 。

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

数列解答题专练(含答案版)

数列高考真题汇编 1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14n a n a n +1 ,求数列{b n }的前n 项和T n . 解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,(3分) 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1. 所以a n =2n -1.(5分) (2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1) =(-1)n -1? ?? ??12n -1+12n +1.(6分) 当n 为偶数时, T n =? ????1+13-? ????13+15+…+? ????12n -3+12n -1-? ?? ??12n -1+12n +1=1-12n +1=2n 2n +1 . 当n 为奇数时, T n =? ????1+13-? ????13+15+…-? ????12n -3+12n -1+? ?? ??12n -1+12n +1=1+12n +1=2n +22n +1 .(10分) 2.已知数列{a n }的前n 项和S n =n 2+n 2 ,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2 =n . 故数列{a n }的通项公式为a n =n .

数列解答题练习答案

13-14学年度上学期高三理数综合练习 高三理科数学寒假作业 数列答案 1.在等差数列{a n}中,a3+a4+a5=84,a9=73. (1)求数列{a n}的通项公式; (2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求 数列{b m}的前m项和S m. 解(1)因为{a n}是一个等差数列, 所以a3+a4+a5=3a4=84,即a4=28. 设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9. 由a4=a1+3d得28=a1+3×9,即a1=1. 所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*). (2)对m∈N*,若9m<a n<92m, 则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1, 故得b m=92m-1-9m-1. 于是S m=b1+b2+b3+…+b m =(9+93+…+92m-1)-(1+9+…+9m-1) =9×(1-81m) 1-81 - 1-9m 1-9 =92m+1-10×9m+1 80. 2.已知两个等比数列{a n},{b n},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{a n}的通项公式; (2)若数列{a n}唯一,求a的值. 解(1)设数列{a n}的公比为q,则b1=1+a=2,b2=2+aq=2+q,b3=3+aq2=3+q2,由b1,b2,b3成等比数列得(2+q)2=2(3+q2). 即q2-4q+2=0,解得q1=2+2,q2=2- 2. 所以数列{a n}的通项公式为a n=(2+2)n-1或a n=(2-2)n-1. (2)设数列{a n}的公比为q,则由(2+aq)2=(1+a)(3+aq2),得aq2-4aq+3a -1=0(*), 由a>0得Δ=4a2+4a>0,故方程(*)有两个不同的实根. 由数列{a n}唯一,知方程(*)必有一根为0, 代入(*)得a=1 3. 3.在等比数列{a n}中,a2=6,a3=18,(1)求数列{a n}的通项公式;

数学高考大题题型归纳必考

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题 1数学高考大题题型有哪些 必做题: 1.三角函数或数列(必修4,必修5) 2.立体几何(必修2) 3.统计与概率(必修3和选修2-3) 4.解析几何(选修2-1) 5.函数与导数(必修1和选修2-2) 选做题: 1.平面几何证明(选修4-1) 2.坐标系与参数方程(选修4-4) 3.不等式(选修4-5) 2数学高考大题题型归纳 一、三角函数或数列 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 二、立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步

数列大题专题训练)

数列大题专题训练 1.已知数列{a n}、{b n}满足:a^- ,a n b n = 1,b n d. 4 1 -a. (1) 求b-,b2,b3,b4; (2) 求数列{b n}的通项公式; (3) 设S n = a£2 ■玄2玄3 ■玄3玄4 ' ... ' a.a n 1 ,求实数a为何值时4aS n

(t 0,n -2,3, ) (1) 求证:数列{a n }是等比数列; 1 (2) 设数列{a n }得公比为 f(t),作数列{b n },使 b i =1,b n 二 f( ),n =(2,3-),求 b b n_1 (3) 求 b i b 2 - b 2b 3 ' b 3b 4 - b 4 b 5 b 2nJ b 2n b 2n b 2n 1 的值。 5 ?设数列{a n }的前n 项和为S n ,且S n =(1 ) - a,其中,=-1,0 ; (1 )证明:数列{a n }是等比数列; 1 水 (2)设数列{a n }的公比 q = f ('),数列{b n }满足b 1 二?,b n 二 f (b nj )(n ? N *,n _ 2) 求数列{b n }的通项公式; 6. 已知定义在 R 上的单调函数 y=f(x),当x<0时,f(x)>1,且对任意的实数 x 、y € R ,有 f(x+y)= f(x)f(y), (I)求f(0),并写出适合条件的函数 f(x )的一个解析式; 1 (n)数列{a n }满足 a 1=f(0)且f(a n 1) (n ? N *), f(-2-a .) ①求通项公式a n 的表达式; 试比较S 与4Tn 的大小,并加以证明 1 a ②令 b n=(?)n ,S n ^b 1 b 2 b n , T n a 〔 a 2 a 2 a 3 1 a n a n 1

高二数学数列专题练习题含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+001 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

数列j经典大题讲解与训练(详细答案)

数列——大题训练 1.已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2a 4=64,a 1+a 5=18. (1)若10,所以a 2

高考数学——数列解答题专项试题练习

1 / 4 高考数学数列解答题专项试题练习 1、已知公比大于1的等比数列{}n a 满足24320,8a a a +==、 (1)求{}n a 的通项公式; (2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S 、 2、已知公比大于1的等比数列{}n a 满足24320,8a a a +==、 (1)求{}n a 的通项公式; (2)求1 12231(1)n n n a a a a a a -+-+?+- 3、已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-、 (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:( )2 * 21n n n S S S n ++<∈N ; (Ⅲ)对任意的正整数n ,设()2 11 32,,,.n n n n n n n a b n a a c a n b +-+?-? ?=????为奇数为偶数求数列{}n c 的前2n 项和、

2 / 4 4、已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N 、 (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d ++ +<+ 、*()n N ∈ 模拟试题 1、已知等比数列{}n a 是首项为1的递减数列,且3456a a a +=. (1)求数列{}n a 的通项公式; (2)若n n b na =,求数列{}n b 的前n 项和n T 2、等比数列{}n a 的各项均为正数,且2 12326231,9a a a a a +==. (1)求数列{}n a 的通项公式; (2)设 31323log log ......log n n b a a a =+++,求数列1n b ?? ???? 的前n 项和n T 3、已知等比数列{}n a 的前n 项和为n S ,2 2743a a a =,且3-,4S ,39a 成等差数列. (1)求数列{}n a 的通项公式; (2)设()() 1 11n n n b a n n =-+ +,求数列{}n b 的前n 项和n T

2018高考数学专题---数列大题训练(附答案)

2018高考数学专题---数列大题训练(附答案) 1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+. (1)求{n a }的通项公式; (2)求和T n = 12 111 23(1)n a a n a +++ +. 2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线012 1 =+- y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1 111)(321≥∈++++++++= n N n a n a n a n a n n f n 且 ,求函数)(n f 最小值. 3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,8 1)和Q (4,8) (1) 求函数)(x f 的解析式; (2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15. 求n S =f (1)+f (2)+…+f (n )的表达式. 5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数. (1)求证: {}n a 为等比数列; (2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23 n n b b f b n N n -==∈≥,试写出1n b ?? ???? 的通项公式,并求12231n n b b b b b b -++ +的结果. 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线, 且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ; (2)设a 1=a ,b 1=-a ,且12

数列经典题目集锦--答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *. (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且*1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后 能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++ 1 32 46n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值范围.

相关主题
文本预览
相关文档 最新文档