当前位置:文档之家› 电路第10章---含有耦合电感的电路汇总

电路第10章---含有耦合电感的电路汇总

电路第10章---含有耦合电感的电路汇总
电路第10章---含有耦合电感的电路汇总

§10.1 互感

耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感

两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流

i 2 时,不仅在线圈2中产生磁通f 22,

同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链:

图 10.1

ψ12 = N 1φ12 ψ21 = N 2φ21

当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:

互感磁通链:

上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:

需要指出的是:

1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足

M12 =M21 =M

2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。

2. 耦合因数

工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义

一般有:

当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。

耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。

3. 耦合电感上的电压、电流关系

当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为:

即线圈两端的电压均包含自感电压和互感电压。

在正弦交流电路中,其相量形式的方程为

注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负:

(1)与电流的参考方向有关。

(2)与线圈的相对位置和绕向有关。

4. 互感线圈的同名端

由于产生互感电压的电流在另一线圈上,因此,要确定互感电压的符号,就必须知道两个线圈的绕向,这在电路分析中很不方便。为了解决这一问题引入同名端的概念。

同名端—当两个电流分别从两个线圈的对应端子同时流入或流出时,若产生的磁通相互增强,则这两个对应端子称为两互感线圈的同名端,用小圆点或星号等符号标记。

例如图10.2中线圈1和线圈2用小圆点标示的端子为同名端,当电流从这两端子同时流入或流出时,则互感起相助作用。同理,线圈1和线圈3用星号标示的端子为同名端。线圈2和线圈3用三角标示的端子为同名端。

注意:上述图示说明当有多个线圈之间存在互感作用时,同名端必须两两线圈分别标定。

图 10.2

根据同名端的定义可以得出确定同名端的方法为:

(1) 当两个线圈中电流同时流入或流出同名端时,两个电流产生的磁场将相互增强。

(2) 当随时间增大的时变电流从一线圈的一端流入时,将会引起另一线圈相应同名端的电位升高。

两线圈同名端的实验测定:

实验线路如图10.3所示,当开关S闭合时,线圈1中流入星号一端的电流i 增加,在线圈2的星号一端产生互感电压的正极,则电压表正偏。

图 10.3

有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画出同名端及电流和电压的参考方向即可,如图 10.4 所示。根据标定的同名端和电流、电压参考方向可知:

图 10.4 (a)图 10.4(b)

(a)图(b)图

例 10-1,例 10-2

例10-1 如图所示(a)、(b)、(c)、(d)四个互感线圈,已知同名端和各线圈上电压电流参考方向,试写出每一互感线圈上的电压电流关系。

例10-1图(a)例10-1图(b)

例10-1图(c)例10-1图(d)

解:(a)

(b)

(c)

(d)

例10-2 电路如图(a)所示,图(b)为电流源波形。

已知:,

例10-2 图(a)例10-2 图(b)解:根据电流源波形,写出其函数表示式为:

该电流在线圈 2 中引起互感电压:

对线圈 1 应用 KVL ,得电流源电压为:

§10.2 含有耦合电感电路的计算

含有耦合电感(简称互感)电路的计算要注意:

(1) 在正弦稳态情况下,有互感的电路的计算仍可应用前面介绍的相量分析方法。

(2) 注意互感线圈上的电压除自感电压外,还应包含互感电压。

(3) 一般采用支路法和回路法计算。因为耦合电感支路的电压不仅与本支路电流有关,还与其他某些支路电流有关,若列结点电压方程会遇到困难,要另行处理。

1. 耦合电感的串联

(1)

顺向串联

图 10.5

图10.5 所示电路为耦合电感的串联电路,由于互感起“增助”作用,称为顺向串联。 按图示电压、电流的参考方向,KVL 方程为:

根据上述方程可以给出图10.6所示的无互感等效电路。等效电路的参数为:

图 10.6

(2) 反向串联

图 10.7 所示的耦合电感的串联电路,由于互感起“削弱”作用,称为反向串联。

按图示电压、电流的参考方向,KVL 方程为:

图 10.7

根据上述方程也可以给出图10.6所示的无互感(去耦)等效电路。但等效电路的参数为:

在正弦稳态激励下,应用相量分析,图10.5和图10.7的相量模型如图10.8所示。

图 10.8 (a)图 10.8(b)

图(a)的 KVL 方程为:

输入阻抗为:

可以看出耦合电感顺向串联时,等效阻抗大于无互感时的阻抗。顺向串联时的相量图如图 10.9 所示。

图(b)的 KVL 方程为:

输入阻抗为:

可以看出耦合电感反向串联时,等效阻抗小于无互感时的阻抗。反向串联时的相量图如图 10.10 所示。

图 10.9

注意:

(1)互感不大于两个自感的算术平均值,整个电路仍呈感性,即满足关系:

(2)根据上述讨论可以给出测量互感系数的方法:把两线圈顺接一次,反接一次,则互感系数为:

图 10.10

2. 耦合电感的并联

(1)同侧并联

图 10.11 为耦合电感的并联电路,由于同名端连接在同一个结点上,称为同侧串联。

根据 KVL 得同侧并联电路的方程为:

由于i = i1 + i2

解得u , i 的关系:

图 10.11

根据上述方程可以给出图 10.12 所示的无互感等效电路,其等效电感为:

(2)异侧并联

图 10.12

图 10.13 中由于耦合电感的异名端连接在同一个结点上,故称为异侧并联。

此时电路的方程为:

考虑到:i = i1 + i2

解得u , i 的关系:

图 10.13

根据上述方程也可以给出图 10.12 所示的无互感等效电路,其等效电感为:

3. 耦合电感的 T 型去耦等效

如果耦合电感的2 条支路各有一端与第三条支路形成一个仅含三条支路的共同结点如图 10.14 所示,称为耦合电感的 T 型联接。显然耦合电感的

图 10.14 图 10.15

并联也属于 T 型联接。

(1)同名端为共端的T 型去耦等效

图10.14的电路为同名端为共端的 T 型联接。根据所标电压、电流的参考方向得:

由上述方程可得图 10.15 所示的无互感等效电路。

(2)异名端为共端的 T 型去耦等效

图 10.16 图 10.17

图 10.16 的电路为异名端为共端的 T 型联接。根据所标电压、电流的参考方向得:

由上述方程可得图 10.17 所示的无互感等效电路。

注意:T 型去耦等效电路中 3 条支路的等效电感分别为:

支路 3 :(同侧取“ + ”,异侧取“—”)

支路 1 :支路 2 :

例10-3 求图(a)、(b)所示电路的等效电感。

例10-3图(a)例10-3图(b)

解:(a)图中 4H 和 6H 电感为 T 型结构,应用 T 型去耦等效得图(c)电路。则等效电感为:

例10-3 图(c)例10-3图(d)

(b)图中5H和6H电感为同侧相接的T型结构,2H和3H电感为异侧相接的T型结构,应用T型去耦等效得图(d)电路。则等效电感为:

例10-4 图(a)为有耦合电感的电路,试列写电路的回路电流方程。

例10-4(a)例10-4(b)

解:设网孔电流如图(b)所示,为顺时针方向,则回路方程为:

注意:列写有互感电路的回路电流方程是,注意互感电压的极性和不要遗漏互感电压。例10-5 求图(a)所示电路的开路电压。

例10-5 图(a)例10-5 图(b)解法1:列方程求解。由于线圈2中无电流,线圈1和线圈3为反向串联,所以电流

则开路电压

解法2:作出去耦等效电路,消去耦合的过程如图(b)、(c)、(d)所示(一对一对消)。

例10-5 图(c)例10-5 图(d)

由图(d)的无互感电路得开路电压:

例10-6

图(a)为有互感的电路,若要使负载阻抗Z

中的电流i=0 ,问电源的角频率为多少?

例 10-6 (a)解:根据两线圈的绕向标定同名端如图(b)所示,应用T 型去耦等效,得无互感的电路如图(c)所示,显然当电容和 M 电感发生串联谐振时,负载阻抗 Z 中的电流为零。因此有:

例 10-6 (b)例 10-6 (c)

§10.3 空心变压器

变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载。变压器是通过互感来实现从一个电路向另一个电路传输能量或信号的器件。当变压器线圈的芯子为非铁磁材料时,称空心变压器。

1.空心变压器电路

图 10.18 为空心变压器的电路模型,与电源相接的回路称为原边回路(或初级回路),与负载相接的回路称为副边回路(或次级回路)。

图 10.18

2. 分析方法

(1)方程法分析

在正弦稳态情况下,图 10.18 电路的回路方程为:

令称为原边回路阻抗,称为副边回路阻抗

从上列方程可求得原边和副边电流:

(2)等效电路法分析

等效电路法实质上是在方程分析法的基础上找出求解的某些规律,归纳总结成公式,得出等效电路,再加以求解的方法。

首先讨论图10.18 的原边等效电路。令上述原边电流的分母为:

则原边电流为:

根据上式可以画出原边等效电路如图10.19 所示。上式

中的Z f 称为引入阻抗(或反映阻抗),是副边回路阻抗通过

互感反映到原边的等效阻抗,它体现了副边回路的存在对原

边回路电流的影响。从物理意义讲,虽然原、副边没有电的

联系,但由于互感作用使闭合的副边产生电流,反过来这个

电流又影响原边电流电压。

把引入阻抗Z f 展开得:图 10.19

上式表明:

(1)引入电阻

不仅与次级回路的电阻有关,而且与次级回路的电

抗及互感有关。

(2)引入电抗

的负号反映了引入电抗与付边电抗的性质相反。

可以证明引入电阻消耗的功率等于副边回路吸收的功率。根据副边回路方程得:

方程两边取模值的平方:

从中得:

应用同样的方法分析方程法得出的副边电流表达式。令

根据上式可以画出副边等效电路如图10.20所示。上式中的 Z 2f 称为原边回路对副边回路的引入阻抗,它与Z 1f 有相同的性质。应用戴维宁定理也可以求得空心变压器副边的等效电路。

(3) 去耦等效法分析

对空心变压器电路进行 T 型去耦等效,变为无互感的电路,再进行分析。

10.20

例10-7

图(a )为空心变压器电路,已知电源电压

U S =20V,原边引入阻抗Z l =10–j10Ω,

求:负载阻抗Z X 并求负载获得的有功功率。

例10-7图(a )

解:图(a )的原边等效电路如图(b )所示,引入阻抗为:

从中解得:

例10-7图(b )

此时负载获得的功率等于引入电阻消耗的功率,因此:

注意:电路实际处于最佳匹配状态,即

例10-8

已知图(a)空心变压器电路参数为:L1=3.6H,

L2=0.06H, M=0.465H,R1=20Ω,

R2=0.08Ω,R L=42Ω,ω=314rad/s,

求:原、副边电流。

例10-8 图(a)解法1:应用图(b)所示的原边等效电路,得:

例10-8 图(b)例10-8 图(c)

所以

解法2:应用图(c)所示的副边等效电路,得:

所以

例10-9 全耦合互感电路如图(a)所示,求电路初级端 ab 间的等效阻抗。

例10-图(a)例10-图(b)解法1:应用原边等效电路,因为:

所以

解法2:应用 T 型去耦等效电路如图(b)所示,则等效电感为:

例10-10

已知图(a )所示电路中,L 1=L 2=0.1mH ,

M =0.02mH , R 1=10Ω , C 1=C 2=0.01mF ,

ω=106rad/s,

,问:

R 2=?时

能吸收最大功率,并求最大功率。

解法 1:

例10-8

图(a )

因为

所以原边自阻抗为:

例10-8图(b

副边自阻抗为:

原边等效电路如图(b )所示,引入阻抗为:

因此当

即 R 2 =40Ω 时吸收最大功率,最大功率为:

解法2:应用图(c )所示的副边等效电路,得

例 10-8 图(c)

因此当时吸收最大功率,最大功率为:

例10-11 图示互感电路已处于稳态,t=0 时开关打开,求 t>0+ 时开路电压u2(t)。

例 10 — 11 图

解:副边开路,对原边回路无影响,开路电压u2(t) 中只有互感电压。先应用三要素法求电流i(t):

,时间常数为:

,有:

所以

例10-12

已知图(a)电路中

,问负载Z 为何值时其

上获得最大功率,并求出最大功率。

解:例 10-12 图(a)(1)首先判定互感线圈的同名端,如图(b)所示。

(2)做出去耦等效电路如图(c)所示。由于 LC 串联

支路发生谐振,可用短路线替代这条支路,如图(d)

所示,断开负载,得开路电压:

由图(e)得

等效阻抗

例10-12图(b)

例10-12图(c)例10-12图(d)

例10-12图(e)当

时,负载获取最大功率,最大功率为:

含有耦合电感的电路(学生用)

第十章 含有耦合电感的电路 §1. 耦合电感器与互感电压 一、耦合电感器 ──如果电感器L 1,L 2之间有公共磁通相交链,这两个电感器就构成一个耦合电感器。 1、11φ21φ1L φ 电感器2与1的互感(mutual inductance ) 1 21 212121i N i M φψ=? 注2,21φ的方向与电感器2导线的绕向无关。 2 2’

1=k ──全耦合电感器(相当于021==L L φφ无漏磁通) 实际中: 当双线并绕时,耦合最强,1→k 。 当两个耦合电感器相距甚远,或彼此垂直时,其间耦合较弱,0→k 。

? ??><称强耦合时称弱耦合时,5.0,5.0k k 1ψ2ψ 1ψ13331333Mi i L -=-=ψψψ 表明:在这种绕线方式中,互感磁链与自感磁链方向相反,称为互感的“削弱”作用。 ΦΦ3’ 3

问题:在电路分析中,在确定互感电压时,是否一定要知道耦合电感器的实际绕向呢? 同名端──在耦合电感器各自一个端钮上通进电流,如果它们产生的互感磁通同方向,这两个端钮就称为同名端。在同名端上打上标记“。”、“.”、“*”或“?”均可。 标有同名端,并用参数表示的耦合电感器的电路符号为: 3. 21i i 、为时变函数时: dt di M dt di L dt Mi i L d dt d u 2 1121111)(+=+==ψ dt di M dt di L dt Mi i L d dt d u 1 2212222)(+=+==ψ

当21i i 、为同频率正弦量时,在正弦稳态情况下: 2 111I M j I L j U ωω+=? 1 222I M j I L j U ωω+=? M ω──互感抗

含有耦合电感的电路

第十章 含有耦合电感的电路 本章重点: 1.互感及互感电压 2.互感线圈的串并联 3.理想变压器的变换作用 本章难点:空心变压器的等效电路 本章内容 §10-1 互感 1、概念:互感、总磁链、同名端。 2、耦合线圈的电压、电流关系) 设,u i 为关联参考方向: (1) 121111u u L u +=±== dt di M dt di dt d 211ψ 222122u u L u +=+±== dt di dt di M dt d 212ψ 式中:u 11=L 1 dt di 1 ,u 22=L 2dt di 2称为自感电压; u 22=±M dt di 1,u 12=±M dt di 2称为互感电压(互感电压的正负,决定于互感电压“+”极性端子,与产生它的电流流进的端子为一对同名端,则互感电压为“+”号). (2) 相量式 1212111j L L M U I j M I jX I J Z I ωω? ? ? ? ? =±=+ 1221222j L L M U M I j I jX I J Z I ωω? ? ? ? ? =±+=+ 式中M Z j M ω=为互感抗。 3、耦合因数: 1def k == =≤ §10-2 含有耦合电感电路的计算 1、耦合电感的串联 (1)反向串联:把两个线圈的同名端相连称为反接。由(a)图知:

111 11(L -M )=(L -M)di di di u R i R i dt dt dt =++ 22222(L -M )=(L -M)di di di u R i R i dt dt dt =++ 122212()(L +L -2M)di u u u R R i dt =+=++ 其相量式为(b 图去耦等效电路) 12 12()(L +L -2M)U R R I j I ω=++&&& 1212()(L +L -2M)Z R R j ω=++ (2)顺向串联;把两个线圈的异名端相连,称为顺接。 1212()(L +L +2M)Z R R j ω=++ 2、耦合电感线圈并联 (1)同侧并联电路:把两个耦合电感的同名端连在同一个结点上,称为同侧并联电路,由(a) 图得: ? ? ? 1211( )U R j L I j M I ωω=++; ? ? ? 1222 ()U j M I R j ML I ωω=++ i + ?? R 1 R 2 L 1 L 2 + + — — —U 1 U 2 i + R 1 R 2 L 1-M L 2-M + + — — U 1 U 2 — (a) (b) i ? + — ???U &j M ω1j L ω2 j L ω3I &1I &2 I &1R 20 ? + — ?U &3 j L ω() 1 j L M ω-() 2 j L M ω-3I &1 I & 2 I &1R 2 R 0 (a ) (b ) ① ① 1'

第十章含耦合电感的电路习题解答.doc

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去 t i d d 2 得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 A )cos(29 ) cos(18 1t t i ω=ω= 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 A )cos(612t ni i ω== 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。

电路第10章---含有耦合电感的电路汇总

§10.1 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流 i 2 时,不仅在线圈2中产生磁通f 22, 同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链: 图 10.1 ψ12 = N 1φ12 ψ21 = N 2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足

M12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义 一般有: 当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。 耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。 3. 耦合电感上的电压、电流关系 当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为: 即线圈两端的电压均包含自感电压和互感电压。 在正弦交流电路中,其相量形式的方程为 注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负: (1)与电流的参考方向有关。

天津理工电路习题及答案第十章含耦合电感电路

第十章 耦合电感和变压器电路分析 一 内容概述 1 互感的概念及VCR :互感、同名端、互感的VCR 。 2 互感电路的分析方法: ①直接列写方程:支路法或回路法; ②将互感转化为受控源; ③互感消去法。 3 理想变压器: ①理想变压器的模型及VCR ; ②理想变压器的条件; ③理想变压器的阻抗变换特性。 本章的难点是互感电压的方向。具体地说就是在列方程时,如何正确的计入互感电压并确定“+、-”符号。 耦合电感 1)耦合电感的伏安关系 耦合电感是具有磁耦合的多个线圈 的电路模型,如图10-1(a)所示,其中L 1、 L 2分别是线圈1、2的自感,M 是两线圈之 间的互感,“.”号表示两线圈的同名端。 设线圈中耦合电感两线圈电压、电流 选择关联参考,如图10-1所示,则有: dt di M dt di L )t (u dt di M dt di L )t (u 1 2222 11 1±=±= 若电路工作在正弦稳态,则其相量形式为: . 1 . 2. 2. 2. 1. 1I M j I L j U I M j I L j U ωωωω±=±= 其中自感电压、互感电压前正、负号可由以下规则确定:若耦合电感的线圈电压与电流的参考方向为关联参考时,则该线圈的自感电压前取正号(如图10-l (a)中所示)t (u 1的自感电压),否则取负号;若耦合电感线圈的线圈电压的正极端与该线圈中产生互感电压的另一线圈的 图10-1

电流的流入端子为同名端时,则该线圈的互感电压前取正号(如图10-l (a)所示中)t (u 1的互感电压),否则取负号(如图10-1(b)中所示)t (u 1的互感电压)。 2)同名端 当线圈电流同时流人(或流出)该对端钮时,各线圈中的自磁链与互磁链的参考方向一致。 2 耦合电感的联接及去耦等效 1)耦合电感的串联等效 两线圈串联如图10-2所示时的等效电感为: M 2L L L 2 1eq ±+= (10-1) (10-1)式中M 前正号对应于顺串,负号对应于反串。 2)耦合电感的三端联接 将耦合电感的两个线圈各取一端联接起来就成了耦合电感的三端联接电路。这种三端联接的电路也可用3个无耦合的电感构成的T 型电路来等效,如图10-3所示 图10-2 图10-3

含有耦合电感的电路

第5章 含有耦合电感的电路 内容提要 本章主要介绍耦合电感的基本概念和基本特性,同时介绍同名端的概念及使用方法,重点介绍采用消耦法求解含有耦合电感电路的分析计算方法,最后介绍空心变压器及理想变压器的工作原理,特性方法式及其分析计算方法。 §5.1 互感 当一个线圈通过电流时,在线圈的周围建立磁场,如果这个线圈邻近还有其它线圈,则载流线圈产生的磁通不仅和自身交链,而且也和位于它附近的线圈交链,则称这两线圈之间具有磁的耦合或说存在互感。载流线圈的磁通与自身线圈交链的部分称为自感磁通,与其它线圈交链的部分称为互感磁通。 5.1.1互感及互感电压 如图5-1所示,两组相邻线圈分别为线圈I 和线圈Ⅱ,线圈I 的匝数为1N ,线圈Ⅱ的匝数为2N 。设电流1i 自线圈I 的“1”端流入,按右手螺旋定律确定磁通正方向如图5-1所示,由1i 产生磁通11?全部交链线圈I 的1N 匝线圈,而其中一部分21?,不仅交链线圈I 而且交链线圈Ⅱ的2N 匝线圈,我们定义11?是线圈I 的自感磁通,21?是线圈I 对线圈Ⅱ的互感磁通。这里的线圈I 通过电流1i 产生了磁通,我们将这种通有电流的线圈称为载流线圈或施感线圈,流经线圈的电流称为施感电流。同理如果在线圈Ⅱ中通入电流2i ,由电流2i 也会产生线圈Ⅱ的自感磁通22?和线圈Ⅱ对线圈I 的互感磁通12?。 说明:磁通(链)下标的第一个数字表示该磁通链所在线圈的编号,第二个数字表示产生该磁通(链)的施感电流的编号,接下来研究的使用双下标符号的物理量,其双下标的含义均同上。 当载流线圈中的施感电流随着时间变化时,其产生的磁通链也随之变化。根据法拉第电磁感应定律,这种时变磁通在载流线圈内将会产生感应电压。 设通过线圈I 的总磁通为1?,则有 12111???+= (5-1) 其中自感磁通11?与1N 匝线圈交链,对于线性电感则有自感磁通链11ψ为 1111111N L i ψφ== (5-2) 式(5-2)中,1L 称为线圈I 的自感系数,简称自感,单位为亨利简称亨(H )。

耦合电感的去耦等效方法

耦合电感的去耦等效方法的讨论 王胤旭5090309291 琦然5090309306 衎 5090309 摘要:本文主要讨论有公共连接点的两个耦合电感的简单去耦等效方法以及由此衍生的两个特例--耦合电感的串联和并联。并讨论多重耦合电感的去耦相对独立性以及某些含有复杂耦合电感电路的快速去耦等效方法。 1.有公共连接点的耦合电感的去耦等效 图示电路中, 耦合电感L1和L2 有一公共连接点 N, 根据耦合电感的性质, 可得如下方程: ?????+=+=2 21211I I L j MI j U MI j L j U BC AC ωωωω 对于节点N 有KCL 方程:0321=++I I I 上面两式整理得:2 2113 223 11)()()()(I M L j I M L j U U U MI j I M L j U MI j I M L j U BC AC AB BC AC ---=-=--=--=ωωωωωω 故可得其等效去耦电路如图2所示。 图1 耦合电感

图2 等效去耦后的电感 上述去耦过程可以用文字表述如下: 1)设互感为M 的两耦合电感具有公共的连接点(假设其同名端相连)且连接点处仅含 有三条支路, 则其去耦规则为: 含有耦合电感的两条支路各增加一个电感量为- M 的附 加电感; 不含耦合电感的另一条支路增加一个电感量为- M 的附加电感。 若为非同名端连接,只需将上述电感量M 改变符号即可。 2)若连接处含有多条支路, 则可以通过节点分裂, 化成一个在形式上仅含三条支路的节 点。 2.两个特例----耦合电感的串联和并联 2. 1 两耦合电感串联 1)若同名端连接于同一节点(即电流从异名端流入), 则构成反接串联,计算公式: M L L L eq 221-+=; 2)若非同名端连接于同一节点(即电流从同名端流入), 则构成顺接串联,计算公式: M L L L eq 221++=; 2. 2 两耦合电感的并联 1)若同名端连接于同一节点, 则构成同侧并联,计算公式:M L L M L L L eq 2212 21-+-=; 2)若非同名端连接于同一节点, 则构成异侧并联,计算公式:M L L M L L L eq 2212 21++-=;

(含耦合电感的电路)习题解答

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去t i d d 2得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。 4.图10—4所示电路中,=i Z B 。 A .Ω2j ; B.Ωj1; C.Ωj3; D.Ωj8 解:将图10—4去耦后的等效电路如图10—4(a ),由图10—4(a )得 因此,该题选B。 5.在图10—5所示电路中,=i Z D 。 A .Ωj8; B.Ωj6; C.Ωj12; D.Ωj4 解:图中的耦合电感反向串联,其等效阻抗为 所以此题选D 。 6.互感系数M 与下列哪个因素无关 D A .两线圈形状和结构; B.两线圈几何位置; C.空间煤质; D.两线圈电压电流参考方向 7.理想变压器主要特性不包括 C A .变换电压; B.变换电流; C.变换功率; D.变换阻抗 8.对于图10-6所示电路中,下列电压、电流的关系叙述中,正确的是:D A. 12121122,di di di di u L M u M L dt dt dt dt =--=--; B.12121122,di di di di u L M u M L dt dt dt dt =-=-+;

相关主题
文本预览
相关文档 最新文档