当前位置:文档之家› 植物干细胞1

植物干细胞1

植物干细胞1
植物干细胞1

摘要:植物干细胞位于茎尖分生组织区和根尖分生组织区,是植物胚后发育中新的器官产生的源泉。近几年,在干细胞及其周围组织区发现了一些与干细胞稳态维持有关的基因,这些

基因产物与外源性信号(如生长素)一起组成复杂的调控网络控制植物的生长和发育。表观遗传修饰作为控制基因表达的一种方式也对植物干细胞有重要的影响。该文介绍近几年植物干

细胞分化调控的最新进展。关键词:植物干细胞;基因调控;生长素;表观遗传中图分类号:Q74动物干细胞因其在疾病治疗、组织修复和动物克隆等方面的广泛应用一直是研究人员和公众关注的焦点[1],相比之下,植物干细胞研究却门庭冷落。由于植物细胞具有全能性,植物干细胞的概念也一直存在争议。近几年的研究表明:在植物的茎尖分生组织(shoot apical meristem,.. SAM)和根尖分生组织(rootapical meristem,.. RAM)中,存在一群特殊的细胞,它们具有自我更新能力又能产生具有持续分裂能力的子细胞。这些特殊细胞是植物根、茎、叶和花等器官发生的源泉,因此被认为是植物干细胞[2,3]。与动物干细胞一样,植物干细胞的维持同样受到内源性信号和外源性信号的调控。

1. 植物干细胞的组织学特征

模式植物拟南芥的SAM 是一个半球状的穹型结构,由多个功能结构域组成[图1(A)]。干细胞位于分生组织的顶端中心区域,这个区域的细胞分裂不活跃。中心区域中干细胞分裂后产生两部分细胞,一部分仍然保留在中心区域的叫干细胞后裔(progeny ofstem cells),.. 保持多潜能性,始终留守在原来位置,继承干细胞的衣钵;分裂出来的另一部分叫子细胞(daughter cells),.. 随着干细胞的分裂逐渐脱离中心区域到分生组织周边区域(peripheral zone,PZ),.. 在周边它们快速分裂并进行分化,融入分生组织两侧的器官原基中[4]。由此可见,SAM是不断改变的动态结构,干细胞群的维持依赖于周围组织细胞提供的各种外源性和内源性信号分子。在拟南芥的根尖分生组织中心,也有一群分裂缓慢的细胞,称为静止中心(quiescent center,QC)[图1(B)]。在胚胎发生中,QC的建立不是来自胚体,而是来自胚柄最上部的细胞。QC 细胞通过不对称分裂产生子细胞,子细胞或者保留QC细胞功能,或者取代邻近细胞。实质上直接从QC 衍生出来的细胞就是干细胞,它们能够产生根部特定的组织类型。研究拟南芥根的发育表明,RAM 中干细胞的维持受位置信息的影响[5]。当QC被

切去后,邻近的细胞就发育成一个新的有功能的QC。QC释放信号分子以维持根尖干细胞局部微环境。

2. 植物干细胞调控的分子机制

2.1 WUS-CLV反馈调节环控制茎尖干细胞稳态1996 年Laux等[6]利用诱变技术发现,WUSCHEL(WUS)基因的编码产物是维持干细胞数量的内源性信号分子。WUS mRNA在干细胞组织中心区域表达,wus突变体花的数量明显减少且提前脱落,由此可见,在野生型植株中WUS 基因的功能是通过维持中心干细胞库以促进茎和花分生组织的活性。WUS 基因的异位表达诱导异位干细胞的形成,表明WUS表达区域必须受到严格的调控以维持干细胞的正确位置和数量。与WUS基因功能相反,CLAVATA(CLV)基因突变则产生过多的SAM细胞,形成膨大的分生组织,茎尖呈环型而不是尖型[7]。在突变植株的一生中,由于产生过多的干细胞,其结果是枝条粗大,产生较多的花分生组织。因此,从表型性状推测,在野生型植株中CLV的功能是限制分生区干细胞增殖。

研究表明,CLV表达区域位于WUS之上[8]。CLV3是干细胞分泌的小分子多肽,作为配体与CLV1-CLV2(在干细胞之下表达)组成的受体复合体相互作用。激活CLV 复合体启动下游信号事件,导致WUS 表达区域受到限制。在野生型拟南芥中,干细胞稳态受到正负信号的反馈调节。CLV3是一个负调控信号,控制WUS在分生组织中心很窄范围内表达。在CLV3 突变体中,WUS表达区域向两侧及向上扩展。转基因CLV3过表达的植株类似WUS 突变体,说明WUS基因的活性受到CLV信号通路的下行调节。WUS既是CLV负控信号的重要靶基因,又是促进干细胞数量的正调控基因。然而,诱导WUS 基因异位表达却能促进CLV3 基因转录,说明WUS 和CLV 组成了一个反馈调节环[4,8]。当干细胞后裔脱离干细胞区域,成为器官原基的一部分后,

干细胞数量减少引起CLV3信号水平降低。负控信号水平降低引起WUS表达区域扩展,通过这个正调控途径使干细胞数量增加。干细胞数量增加到一定程度时反馈激活CLV3信号表达,限制WUS表达区域进一步扩大,保持干细胞数量的恒定。

2.2 SHR-SCR 信号通路对根尖干细胞的调控作用SCARECROW(SCR)和SHORTROOT(SHR)属于GRAS 家族的转录因子,对根尖分生区的维持起关键作用[9]。SCR在QC、内皮层/皮层初始区和已分化的内皮层表达,其功能缺失导致初始区及QC干细胞的连续性丧失。SHR在根尖中柱组织表达,其蛋白质转运到邻近细胞层(包括QC)。SHR功能缺失导致QC的结构不规则,缺乏QC特异性标志分子和根部停止生长等表型。在内皮层/皮层初始区,SHR激活SCR,促进干细胞的不对称分裂。SHR 和SCR 都是维持QC 功能必需的,因为在shr突变体中,SCR在QC区域表达并不能挽救QC 缺失[10]。最近研究发现,PLETHORA (PLT1/2)基因对胚胎发生中干细胞群的形成和胚后发育中干细胞数量的维持亦至关重要[11]。PLT基因在QC和周围干细胞区域表达,与SCR分布区域重叠,说明它们共同为干细胞微环境提供信号。PLT基因异位表达诱导茎尖分生区形成异位的根尖干细胞微环境,因为SHR和SCR基因在此茎尖组织表达。上述研究说明,根尖干细胞微环境的形成依靠SHR 和SCR 提供信号分子。

2.3 生长素对植物干细胞的调控作用生长素(auxin)对植物的生长、发育具有重要的调控作用,是熟知的影响干细胞微环境的外源性信号[12]。生长素在PIN蛋白(生长素运输辅助因子家族蛋白)协助下长距离极性运输,在这个过程中建立生长素梯度效应。在胚后的根尖分生区,最高的生长素梯度位于QC 下的远端干细胞。生长素最高梯度效应参与根尖干细胞微环境的位置特化,干扰生长素效应或者极性运输诱导分生区组织结构紊乱,形成异位的QC和干细胞[13]。Aida等[11]报道,PLT基因表达受生长素效应调节,但PLT基因突变不影响生长素在根尖分布和初级生长素效应,说明PLT在生长素下游发挥作用。Pin基因突变影响QC 在胚后根尖中的位置及PLT基因表达模式,进一步说明生长素对干细胞区域化的影响是通过PLT基因介导的[13]。此外,3个PIN基因的表达受到PLT基因调节。上述研究表明,生长素启动胚根发育,调节PLT 基因表达使干细胞位置特化;PLT 基因又反馈调节PIN基因表达,通过稳定生长素最高梯度效应进一步使根尖干细胞微环境区域化[9]。此外,生长素的另外一个重要作用是控制茎尖干细胞分化、促进器官原基形成[14]。生长素向顶端分生组织运输,控制该区域的细胞参与两侧器官发生。器官原基总是在分生组织的高生长素浓度区域形成,一旦形成器官原基,它像海绵一样吸取周围细胞中的生长素。新的原基器官的出现除效应于高生长素浓度外,还是KNOX 基因下调表达的结果。在玉米中,通过抑制生长素运输实验表明:生长素积累抑制Ⅰ型KNOX基因,如SHOOT MERISTEMLESS(STM)基因,在PZ区域表达[15]; 反之,亦有研究表明,KNOX基因的表达调节生长素的极性运输。生长素和KNOX基因是否通过相互作用建立一个自动调节环,这个问题尚需继续探索。

2.4 表观遗传机制对植物干细胞的调节与动物干细胞一样,植物干细胞也受到染色质活性变化的调节。研究表明,染色质装配因子FAS1 和FAS2 限制WUS 和SCR 基因的活性,且在FAS1 或FAS2 突变植株中观察到WUS 基因异位表达现象,说明WUS 是FAS1和FAS2的靶基因[16]。BRU1,一个稳定复制后染色质结构的蛋白质,与WUS基因的正调控有关[5]。最近研究发现,WUS 是染色质重塑因子SYD 的直接靶基因。SYD 属于ATP 酶家族蛋白,使DNA 模板易于形成转录复合体从而促进转录[17]。Syd突变植株SAM提前进入终端分化与WUS表达水平降低的表型一致。染色质免疫沉淀证明SYD 结合到WUS 启动子区域,说明SYD是WUS基因的上游调控因子[17]。在动物中,PcG蛋白家族通过组蛋白甲基化和组蛋白去乙酰基化关闭与

干细胞分化有关的基因,使干细胞保持未分化状态[3]。在植物中,研究表明干细胞全能性丧失与PcG介导的基因沉默有关。Katz等[18]研究表明,FIE和CLF蛋白(分别与PcG家族蛋白Eed和Ezh2同源)抑制STM基因表达。STM 基因的主要功能是抑制分生组织中细胞的分化,保证分生组织内细胞的扩增,从而能有足够数量的细胞成为器官原基。上述研究表明,染色质修饰对植物干细胞和动物干细胞的调控具有相似的分子机制。在动物中,AGO(ARGONAUTE)蛋白与干细胞自我更新有关[3]。在拟南芥胚胎发生中,AGO家族蛋白ZLL对建立稳定的茎尖干细胞群非常关键。在zll突变体中,种子萌发后不久茎尖分生区就进行终端分化,只产生一个或少数几个花器官[19]。ZLL异位表达诱导细胞过度分裂和形成异位分生组织,说明该蛋白质在建立干细胞群中发挥作用。研究已证实,AGO家族蛋白的功能是通过siRNA 和miRNA 控制mRNA 稳定性或者抑制mRNA 翻译[20]。除控制mRNA 翻译外,在裂殖酵母和拟南芥中还发现,AGO 蛋白参与miRNA 介导的组蛋白甲基化过程[3]。尽管miRNA和染色质失活之间机制尚待阐明,但众多的研究表明它们对干细胞的自我更新和分化有重要影响。

3. 总结

在过去几年里,植物干细胞的研究取得了很大进展,研究人员发现了一些与干细胞数量维持和分化有关的基因,这些基因与外源性信号一起组成复杂的网络控制植物的生长和分化。尤其重要的是,人们逐渐发现植物干细胞和动物干细胞尽

管形态和功能各异,干细胞稳态的维持却具有相似分子机制。调控染色质活性变化的PcG 蛋白家族和通过miRNA 发挥作用的AGO蛋白家族在动、植物干细胞共同存在,这一现象进一步激发研究人员的兴趣。因此,这些领域的研究必将促进人们对干细胞生物学特性的了解。

研究幹細胞的應用叫再生醫學,再生醫學是未來人類持久保持健康長壽的支柱。

甚麼是幹細胞:

幹細胞是一群尚未完全分化的原始母細胞,它具有自我更新及分化的潛能。在一定條件下,幹細胞可以分化為多種特定功能的組織細胞。從胚胎發育到成人的過程中,幹細胞扮演最關鍵的角色,它能分裂及發育成為多細胞的組織及器官,並擔負著個體的各個組織及器官的修復再生等重大責任。

幹細胞的分類:

幹細胞共分為六類,而其中兩類被現今視為最重要的研究分別是胚胎幹細胞及成體幹細胞。

研究幹細胞的應用叫再生醫學,再生醫學是未來人類持久保持健康長壽的支柱。

幹細胞的儲存

由於幹細胞在醫療上之應用將會愈來愈廣泛,包括治療疾病、抗衰老、改善生活素質以及還未發現的潛在用途上;所以近年來有大量提供幹細胞儲存的公司在世界各地,例如歐美、日本、韓國、新加坡、台灣、以至中國內地紛紛成立。

幹細胞之儲存是利用超低溫冷凍法,細胞放置在液態氮氣的煙霧裹,永久儲存在–196℃中。在此低溫情況下,細胞內之所有生物性反應停頓。當客人有需要使用所儲存之幹細胞時,被冷凍之細胞便會被逐步解凍及重新回復其生物活性,最後返回剛儲存時之狀態以供使用。

現時,幹細胞之儲存技術已十分成熟。嚴格的監控,精確的溫度調節,及不斷進步之生物技術,令被保存之細胞的活性可保持不少於十五年或更長之年期。讓被儲存的幹細胞可於有需要時發揮其應有作用。

1931年——多利的诞生,人类进入了复制时代;

1999年美国国家健康协会在8位诺贝尔奖获得者的提议下,致书当时总统克林顿,宣导人类干细胞研究;

1999年末,“干细胞研究的新发现”成为当年世界10大科技新闻,人类抗衰老进入了一个崭新的时代。2003年,美国财富杂志预测,未来20年,干细胞技术的应用将全面进入家庭。例:生物克隆羊,克隆猪,植物仿生克隆,大豆,水稻等。永保青春不是梦?

什么是干细胞?干细胞是人体自有的一种再生细胞,是具有自我复制和多向化潜能的原始细胞,使机体的起源细胞,人类个体的发育过程实质就是干细胞的自我更新和增值分化过程。干细胞提取,科学家们把生物体的胚胎中提取或是人体脐带血,胚胎,骨髓,血液中提取的,广泛运用于医学领域,如:白血病,肾脏移植。等被称为万用细胞,具有再生,修复,延缓衰老的能力。"

我们的干细胞全新植物干细胞基因克隆技术及SFE(二氧化碳超临界低温萃取和仿纳米技术,超浓缩地萃取了新鲜健康植物胚胎中高达99.9%的干细胞酶类成分。这些酶类成分具有最原始的活性和强烈的生长性。健康新鲜干细胞酶类物质进入人体后,可激活人体细胞,促进细胞新陈代谢优化整体生理系统,遏制、延缓人体细胞衰老,促进细胞代谢和更新,从整体上恢复到青春、健康的状态。

解读干细胞临床应用标准与规则

(2010-03-17 20:40:48)

转载

标签:

分类:干细胞

解读

干细胞

临床应用

标准

规则

股票

来源:健康报

国际上最大最权威的干细胞研究组织——国际干细胞研究协会

(International Society for Stem Cell Research,简称ISSCR)于2008年12月3日正式发布了“干细胞临床转化指导规则”以及“告患者书”。这一指导规则是由来自13个国家的干细胞研究者、临床医生、伦理学家以及管理官员组成的专家组历时两年完成的,标志着干细胞科学界为干细胞应用的标准化与有效管理提出了可供依据的科学意见。北京大学干细胞研究中心主任李凌松教授是其中的中国委员。这一规则不仅对干细胞科学研究者、参与干细胞应用的临床医务人员以及有关政府管理机构具有权威性的参考价值,而且也兼顾了为广大消费者提供一个可以参照的程序,用来判断某种干细胞治疗是否符合科学以及管理的要求。因此,有必要就这一规则向广大科学家、临床工作者、消费者以及政府相关管理部门做一介绍。

研究者应遵守哪些规则

干细胞有关的标准和规则大部分仍在讨论和制定过程中,基本上可以归为几大类。一类是干细胞科学研究的标准。其目的是为了使不同实验室研究胚胎干细胞采用的方法和标准能够一致。另一类是关于干细胞产品临床试验的标准以及临床技术应用的标准。实验室研究出的干细胞产品在正式应用于临床之前,需要经过严格的临床前及临床试验,以保证安全性、疗效以及一些技术指标。这一类称做“临床应用转化”,指从实验室向临床应用的必要转化过程。第三类是临床准入标准,包括实施干细胞治疗的医院的资质、医生的资质、医院干细胞设施的标准等。另外,干细胞产品的生产工艺与过程,也需要相应的标准与规则。而干细胞产品还有可能作为商品跨国交易,因此也需要相应的国际规则来管理。更主要的是由什么机构来制定标准,由哪些机构来制定与监督执行管理规则。

从应用的角度而言,上述各种标准与规则中,关于临床应用转化的标准处于核心的地位。这也是国际干细胞研究协会出台“干细胞临床转化指导规则”的现实意义。该指导规则首先表明了国际干细胞研究协会坚决反对任何以牟利为目的的、未经证实的干细胞治疗。强调干细胞研究者、研究机构以及管理机构有责任阻止这类损害患者经济与健康利益,并有可能对干细胞研究带来极大负面影响的行为。该指导规则随后提出了干细胞研究者应当遵守的相应的职业道德和操守,着重强调严格的、独立的同行科学评审与监管机制的执行。而与临床应用直接相关的内容包括三部分,即用于移植的细胞的制备与生产所应该遵守的标准与规则、动物的前临床实验规则、人体的临床试验的规则。这些规则对于研究人员、临床医生和制定规则的政府部门具有指导性的意义(感兴趣的读者请参阅将正式发表的完整文件)。

必须承认的是,某些特殊情况下,新技术的临床应用可能先于上述严格的程序,这叫做“医疗创新”或“创新式医疗应用”,医学史上有不少这样的例子。但同样必须强调的是,这种医疗创新绝不等于毫无准备与规则的滥用,而是建立在必要的科学预测与基本数据之上的谨慎尝试,而且这种尝试同样要受到严格的规则限制。比如,并非任何人都有资格进行这样的尝试,也不可以根据随意想象来尝试。再者,“创新医疗方法”应有助于严格的临床研究,而不是单纯出于某种侥幸心理。在尚不存在严格成形的科学标准和管理规则之前,这一点是非常重要的。

患者如何辨析治疗是否规范

那么,对于公众而言,对于潜在的消费者而言,在干细胞科学研究尚在进行、临床应用条件尚未成熟以及管理规则还有待制定的情况下,如何采取必要的措施保护自身的健康与经济利益,如何配合科学界与管理机构监督干细胞治疗的规范性,避免被不正当的商业手段所蒙骗,是一个值得认真考虑的问题。这方面,干细胞科学家与临床工作者有责任提供必要的信息,教育公众。因此,国际干细胞研究协会的“干细胞临床转化指导规则”出台的同时,专门发表了一部“告患者书”,配合指导标准,就公众和潜在消费者如何寻求干细胞治疗的专门信息提供了一套完整的方案。下面概括为几个方面。

第一,消费者必须明确的是,目前比较成熟的干细胞治疗主要还是骨髓干细胞治疗血液系统疾病,例如白血病和一些免疫疾病。某些皮肤疾病也可以由特定的干细胞治疗获得疗效。其他所有的干细胞治疗,都仍处在实验阶段,还没有达到成熟临床技术的程度。例如,如何生产足够的干细胞用于治疗仍是一个重大技术问题;哪些细胞用于哪种疾病,如何把这些细胞送达疾病部位等仍在探索中;而且,干细胞移植体内后会长期存在,是否会由此引发各种副作用,仍有待观察研究。这是消费者对目前的干细胞治疗必须有的基本认识。

第二,任何接受实验性治疗的患者都应当得到“患者知情同意书”,用患者可以理解的语言详细介绍治疗的内容,强调说明治疗本身的实验性质,明确患者选择是否接受治疗的权利,说明治疗中可能出现的风险,规范患者要做的事情和担负的责任等。“患者知情同意书”必须由患者本人和提供治疗的主治医生签署,并由患者掌握一份。

具体而言,一份临床试验的知情同意书应当包括下列内容:研究的内容以及为什么要进行该项研究;治疗的内容是什么;是否随机试验;接受安慰剂或替代治疗的几率是多少;相关的医疗选择有哪些;

研究实际操作有哪些,如抽血等;研究者信息;研究持续时间;保护患者权利的独立机构及其指定联系人的详细联系信息;作为被试者的责任与义务,谁将能够接触关于你的研究/医疗数据,你的保密性权益;获得新的、可能影响你是否继续参与该项研究的信息的权利;可以退出该项试验的各种情况;可以不承担任何后果地退出试验的权利及多少患者参与该项研究等。

第三,评判某种干细胞治疗是否合乎规则的主要指标如下:前临床研究结果是否已经发表,并得到本领域其他专家的评审与重复;是否通过了研究机构的独立评审;所提供的治疗是否获得了国家或区域性管理机构的批准。

第四,接受干细胞治疗应当警惕的关键问题:对疗效的描述往往迎合患者心理,宣称同一种细胞能够治疗多种疾病,细胞的来源或治疗的途径没有明确说明,没有提供详细的治疗方案,治疗方案没有得到相应机构的批准,宣称该治疗没有任何风险,治疗费用昂贵或有隐藏的费用,医疗保险信息不明确等。

第五,一些相关的技术问题:干细胞的来源是什么;干细胞是如何鉴定、分离和生长的;这些干细胞是否在治疗前已分化为专门的细胞;这些细胞是如何给到身体的正确部位的;如果所移植的细胞不是自己的,如何保证免疫系统不对外来细胞做出反应。

第六,安全性与紧急情况:如果发生副作用将会采取什么措施;发生紧急情况时联系人是谁;谁将提供急诊处理;该医疗机构是否能够有效处理紧急情况,如严重的过敏反应;有哪些随访治疗,多长时间;我需要做什么;谁是该治疗的主管医生;该医生受过哪些专门的训练;其他相关的医生和技术支持人员是否具有良好的训练。

第七,患者权利:作为一个临床研究参与者的权利有哪些,如保密性、获得新出现情况的信息的权利、退出研究的权利。在参与研究过程中受到伤害时有权获得哪些赔偿与补偿等。

第八,治疗的费用是多少;覆盖了哪些内容;有无其他的费用;谁提供紧急医疗以及谁负担紧急医疗的费用;参加异地治疗时所需的旅行费用以及健康保险等费用如何处理。

遵照上面的程序,消费者可以对如何寻求合格的干细胞治疗有一个大概的了解。需要提醒的是,“干细胞临床转化指导规则”以及“告患者书”都将正式出版,这里只是一个简要的介绍。

细胞生物学试题整理

细胞生物学与细胞工程试题 一:填空题(共40小题,每小题分,共20分) 1:现在生物学“三大基石”是:_,__。 2:细胞的物质组成中,_,_,_,_四种。 3:膜脂主要包括:_,_,_三种类型。 4:膜蛋白的分子流动主要有_扩散和_扩散两种运动方式。 5:细菌视紫红质蛋白结构的中部有几个能够吸光的_基因,又称发色基因。6:受体是位于膜上的能够石碑和选择性结合某种配体的_。 7:信号肽一般位于新合成肽链的_端,有的可位于中部。 8:次级溶酶体是正在进行或完成消化作用的溶酶体,可分为_,_,及_。 9狭义的细胞骨架(指细胞质骨架)包括_,_,_,_及_。 10:高等动物中,根据等电点分为3类:α肌动蛋白分布于_;β和γ肌动蛋白分布于所有的_和_。 11:染色质的化学组成_,_,_,少量_。 12:随体是指位于染色体末端的球形染色体节段,通过_与_相连。 13:弹性蛋白的结构肽链可分为两个区域:富含_,_,_区段。 14:细胞周期可分为G1期,S期,G2期,G2期主要合成_,_,_等。 二:名词解释(每个1分,共20小题) 1:支原体 2:组成型胞吐作用 3:多肽核糖体 4:信号斑 5:溶酶体 6:微管 7:染色单体 8:细胞表面 9:锚定连接 10:信号分子 11:荧光漂白技术

12:离子载体 13:受体 14:细胞凋亡 15:全能性 16:常染色质 17:联会复合体 18组织干细胞 19:分子伴侣 20:E位点 三:选择题(每题一分,共20小题) 1:细胞中含有DNA的细胞器有() A:线粒体B叶绿体C细胞核D质粒 2:细细胞核主要由()组成 A:核纤层与核骨架B:核小体C:染色质和核仁 3:在内质网上合成的蛋白质主要有() A:需要与其他细胞组分严格分开的蛋白B:膜蛋白C:分泌性蛋白 D:需要进行修饰的pro 4:细胞内进行蛋白修饰和分选的细胞器有() A:线粒体 B:叶绿体 C:内质网 D:高尔基体5微体中含有() A:氧化酶 B:酸性磷酸酶 C:琥珀酸脱氢酶 D:过氧化氢酶6:各种水解酶之所以能够选择性的进入溶酶体是因为它们具有()A:M6P标志 B:导肽 C:信号肽 D:特殊氨基序列7:溶酶体的功能有() A:细胞内消化 B:细胞自溶 C:细胞防御 D:自体吞噬8:线粒体内膜的标志酶是() A:苹果酸脱氢酶 B:细胞色素 C:氧化酶 D:单胺氧化酶9:染色质由以下成分构成() A:组蛋白 B:非组蛋白 C:DNA D:少量RNA

干细胞分泌因子

干细胞分泌因子五大功效以及他的运用 【干细胞分泌因子作用范围,造应症】 1.抗衰老美容治疗:衰老及亚健康导致的人体整体机能退化,再造肝脏,肾脏,心脏,肠胃,胰岛的脏器功能.修复皮肤损伤,调节肌体细胞线粒体功能,提高皮肤抗氧化能力、防辐射能力、抗过敏能力,内外整体年轻化。 2.内分泌,组织器官功能再生治疗:肝脏、肾脏、心脏、肠胃、胰岛功能再生。辅助治疗脂肪肝、肝硬化、肾炎、肾功能衰竭 3.神经系统再生修复治疗:帕金森病,老年痴呆,脑血管意外,脊髓外 伤的治疗和恢复. 4.造血及免疫功能再生治疗:抑制人体肿瘤细胞和防止肿瘤转移,扩散,造应血功能及免疫功能低下者,如肿瘤,放疗,化疗术后病人. 5.肌肉及骨骼修复再生治疗皮肤,肌肉(包括心肌),骨骼的修复再生。 【主要有以下干细胞的分泌因子】 造血干细胞分泌因子 皮肤干细胞分泌因子 神经干细胞分泌因子 肌肉干细胞分泌因子 脏器多能干细胞分泌因子 主要因子成分:

肝细胞生长因子(HGF)——促进肝实质细胞等各组织细胞的增殖。神经细胞生长因子(NGF)——促进神经细胞(知觉、交感神经节细胞)的增殖。 上皮细胞生长因子(EGF)——皮肤、肺、角膜、气管上皮细胞的增殖。 成纤维细胞生长因子(FGF)——促进人成纤维细胞、胶质细胞、血管内皮细胞的增殖。 胰岛素样生长因子(IGF)——软骨细胞、平滑肌细胞的增殖。 集落形成刺激因子(CSF)——负责免疫细胞的粒细胞、巨噬细胞等干细胞的增殖。 各类白介素(LL—1—19)——促进免疫细胞(T细胞、B细胞、NK 细胞) 以及胸腺细胞的增殖、分化,促进淋巴细胞活素产生 【干细胞分泌因子对人体的作用周期】: 第一阶段 干细胞分泌因子经血液循环进入细胞组织,开始迅速补充细胞新陈代谢所需的全部营养,使人体老化的细胞及过氧化物等代谢垃圾开始代谢排泄。同时,干细胞分泌因子开始耙向激活休眠的干细胞。 此阶段表现为:身体局部有退皮现象,皮肤斑痕初步淡化,皱纹变浅,

植物干细胞1

摘要:植物干细胞位于茎尖分生组织区和根尖分生组织区,是植物胚后发育中新的器官产生的源泉。近几年,在干细胞及其周围组织区发现了一些与干细胞稳态维持有关的基因,这些 基因产物与外源性信号(如生长素)一起组成复杂的调控网络控制植物的生长和发育。表观遗传修饰作为控制基因表达的一种方式也对植物干细胞有重要的影响。该文介绍近几年植物干 细胞分化调控的最新进展。关键词:植物干细胞;基因调控;生长素;表观遗传中图分类号:Q74动物干细胞因其在疾病治疗、组织修复和动物克隆等方面的广泛应用一直是研究人员和公众关注的焦点[1],相比之下,植物干细胞研究却门庭冷落。由于植物细胞具有全能性,植物干细胞的概念也一直存在争议。近几年的研究表明:在植物的茎尖分生组织(shoot apical meristem,.. SAM)和根尖分生组织(rootapical meristem,.. RAM)中,存在一群特殊的细胞,它们具有自我更新能力又能产生具有持续分裂能力的子细胞。这些特殊细胞是植物根、茎、叶和花等器官发生的源泉,因此被认为是植物干细胞[2,3]。与动物干细胞一样,植物干细胞的维持同样受到内源性信号和外源性信号的调控。 1. 植物干细胞的组织学特征 模式植物拟南芥的SAM 是一个半球状的穹型结构,由多个功能结构域组成[图1(A)]。干细胞位于分生组织的顶端中心区域,这个区域的细胞分裂不活跃。中心区域中干细胞分裂后产生两部分细胞,一部分仍然保留在中心区域的叫干细胞后裔(progeny ofstem cells),.. 保持多潜能性,始终留守在原来位置,继承干细胞的衣钵;分裂出来的另一部分叫子细胞(daughter cells),.. 随着干细胞的分裂逐渐脱离中心区域到分生组织周边区域(peripheral zone,PZ),.. 在周边它们快速分裂并进行分化,融入分生组织两侧的器官原基中[4]。由此可见,SAM是不断改变的动态结构,干细胞群的维持依赖于周围组织细胞提供的各种外源性和内源性信号分子。在拟南芥的根尖分生组织中心,也有一群分裂缓慢的细胞,称为静止中心(quiescent center,QC)[图1(B)]。在胚胎发生中,QC的建立不是来自胚体,而是来自胚柄最上部的细胞。QC 细胞通过不对称分裂产生子细胞,子细胞或者保留QC细胞功能,或者取代邻近细胞。实质上直接从QC 衍生出来的细胞就是干细胞,它们能够产生根部特定的组织类型。研究拟南芥根的发育表明,RAM 中干细胞的维持受位置信息的影响[5]。当QC被 切去后,邻近的细胞就发育成一个新的有功能的QC。QC释放信号分子以维持根尖干细胞局部微环境。 2. 植物干细胞调控的分子机制 2.1 WUS-CLV反馈调节环控制茎尖干细胞稳态1996 年Laux等[6]利用诱变技术发现,WUSCHEL(WUS)基因的编码产物是维持干细胞数量的内源性信号分子。WUS mRNA在干细胞组织中心区域表达,wus突变体花的数量明显减少且提前脱落,由此可见,在野生型植株中WUS 基因的功能是通过维持中心干细胞库以促进茎和花分生组织的活性。WUS 基因的异位表达诱导异位干细胞的形成,表明WUS表达区域必须受到严格的调控以维持干细胞的正确位置和数量。与WUS基因功能相反,CLAVATA(CLV)基因突变则产生过多的SAM细胞,形成膨大的分生组织,茎尖呈环型而不是尖型[7]。在突变植株的一生中,由于产生过多的干细胞,其结果是枝条粗大,产生较多的花分生组织。因此,从表型性状推测,在野生型植株中CLV的功能是限制分生区干细胞增殖。 研究表明,CLV表达区域位于WUS之上[8]。CLV3是干细胞分泌的小分子多肽,作为配体与CLV1-CLV2(在干细胞之下表达)组成的受体复合体相互作用。激活CLV 复合体启动下游信号事件,导致WUS 表达区域受到限制。在野生型拟南芥中,干细胞稳态受到正负信号的反馈调节。CLV3是一个负调控信号,控制WUS在分生组织中心很窄范围内表达。在CLV3 突变体中,WUS表达区域向两侧及向上扩展。转基因CLV3过表达的植株类似WUS 突变体,说明WUS基因的活性受到CLV信号通路的下行调节。WUS既是CLV负控信号的重要靶基因,又是促进干细胞数量的正调控基因。然而,诱导WUS 基因异位表达却能促进CLV3 基因转录,说明WUS 和CLV 组成了一个反馈调节环[4,8]。当干细胞后裔脱离干细胞区域,成为器官原基的一部分后, 干细胞数量减少引起CLV3信号水平降低。负控信号水平降低引起WUS表达区域扩展,通过这个正调控途径使干细胞数量增加。干细胞数量增加到一定程度时反馈激活CLV3信号表达,限制WUS表达区域进一步扩大,保持干细胞数量的恒定。

2020年(生物科技行业)生命科学专业普通生物学名词解释

(生物科技行业)生命科学专业普通生物学名词解释

普通生物学名词解释 湿地生态系统:它处于陆地生态系统(如森林和草地)和水生生态系统(如深水湖和海洋)之间。换言之,湿地是陆生生态系统和水生生态系统之间的过渡带 细胞学说: 1、所有生物都是由细胞和细胞产物所构成; 2、新细胞总是由原来的细胞分裂产生; 3、所有细胞都具有基本上相同的化学组成和代谢活性; 4、生物体总的活性能够见成是组成生物体的各相关细胞的相互作用和集体活动的总和。 变性:当天然蛋白质分子受到某些物理因素(热、紫外线照射、高压和表面张力等)或化学因素(有机溶剂、酸碱、重金属盐等)的影响时,其生物活性丧失、溶解度降低、不对称性增高以及其他物理化学常数发生改变的现象。 胞质溶胶:细胞匀浆经超速离心除去所有细胞器和颗粒后的上清液部分。 微丝:又称肌动蛋白丝,参和形成肌原纤维、应力纤维和微绒毛,引起胞质流动或细胞的运动 微管:由微管蛋白组成的管状结构,起支架作用、胞内运输作用和形成纺锤体。对低温、高压和秋水仙素敏感。 中间纤维:直径10nm左右,最稳定的细胞骨架成分,围绕核成束成网分布,且扩展到细胞质膜,和质膜相连结,起支持和运动功能。 细胞连接:细胞紧密靠拢的组织中,细胞膜在相邻细胞之间分化而成特定的连接。胞间连丝:植物相邻细胞的细胞膜穿过细胞壁上的孔,彼此相连,俩细胞的光面内质网也彼此相通,即成胞间连丝。直径约20~40nm。功能上和间隙连接类似,在相邻细胞间起通讯作用。

共质体:植物细胞的原生质体通过胞间连丝彼此连成壹片,称为共质体。 质外体:细胞壁连成壹片,称为质外体。 生物膜:各种细胞器的膜和核膜、质膜在分子结构上壹样. 酶:生物体内壹类具有催化活性的生物大分子,其中绝大多数是蛋白质,少数是RNA。 辅助因子:酶分子中的非蛋白质部分,按和酶蛋白结合的松紧程度不同,分为辅酶(松弛)和辅基(紧密)。 酶的抑制剂:能使酶分子上的某些重要基团发生变化,引起酶分子活力降低或丧失的物质。 不可逆的抑制作用:抑制剂和酶的必需基团以共价结合,不能用透析等物理方法使酶复活。 可逆抑制作用:抑制剂和酶以非共价结合,能用透析等物理方法除去抑制剂使酶复活。 同工酶:?催化相同的化学反应,但其蛋白质分子结构、理化性质和免疫性能等方面都存在明显差异的壹组酶。 核酶:具有催化功能的RNA分子。又称核酸类酶、酶RNA、类酶RNA。 扩散:分子从相对高浓度的区域移到低浓度的区域 渗透:水分子从高浓度壹侧穿过膜而进入低浓度壹侧的扩散。 主动运输:分子从低浓度区域向高浓度区域的运输过程。 吞噬作用:细胞吞噬较大的固体颗粒,如细菌、细胞碎片等的作用。 光反应:发生水的光解、O2的释放和ATP及NADPH的生成。 暗反应:利用光反应形成的ATP和NADPH,将CO2仍原为糖。

苏州大学细胞生物学常考15大题

1、简述钠钾泵的本质和工作原理。 答:钠钾泵是膜上的一种能够同时运输Na+和K+的ATP酶,本身就是Na+、K+-ATP酶,具有载体和酶的双重活性。它由大、小两个亚基组成,大亚基为贯穿膜全层的脂蛋白,为催化部分;小亚基为细胞膜外侧半嵌的糖蛋白。在Na+和K+存在时,Na+、K+-ATP酶分解1个分子ATP,产生的能量通过Na+-K+泵的构象变化,运送3个Na+从细胞内低浓度侧运到细胞外高浓度侧,同时把两个K+从细胞外低浓度侧运到细胞内高浓度侧。基本过程:1.膜内侧Na+、Mg+与酶结合;2.酶被激活,ATP分解,产生的高能磷酸根使酶发生磷酸化;3.酶构象改变,Na+结合位点暴露到外侧,酶与Na+亲合力变低;4. Na+被释放到细胞外,酶和K+亲合力变高,K+结合到酶上;5.酶发生去磷酸化;6.酶构象复原,K+被释放到细胞内侧; 7.恢复至初始状态。如此反复进行。 2、蛋白质进入内质网的机制(信号假说)? 答:1.核糖体上信号肽合成;2.胞质中信号识别颗粒(SRP)识别信号肽,形成SRP-核糖体复合体,蛋白质合成暂停;3.核糖体与ER膜结合,形成SRP-SRP受体-核糖体复合体;4.SRP 脱离并参加再循环,核糖体蛋白质合成继续进行;5.信号肽被切除;6.合成继续进行;7.核糖体在分离因子作用下被分离;8.成熟的蛋白质合成暂停。 3、如何理解高尔基体在蛋白质分选中的枢纽作用? 答:在ER合成的蛋白质,通过转运小泡运输到GC,这种转运小泡被COPⅡ所包绕;蛋白质在GC内进行加工和修饰,再被分拣送往细胞的相关部位。反面GC网络(TGN)执行分拣功能,包装到不同类型的小泡,并运送到目的地, ,包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。因此GC在蛋白质分选中具有枢纽作用。 4、G蛋白的结构特点和作用机制? 答:G蛋白是指任何可与鸟苷酸结合的蛋白质的总称,位于细胞膜胞液面的外周蛋白。由α、β、γ3个不同的亚单位构成,具有结合GTP或GDP的能力,并具有GTP酶的活性。G蛋白有两种构象,一种以αβγ三聚体存在并与GDP结合,为非活化型,另一种构象是α亚基与GTP结合并导致βγ二聚体脱落,为活化型。作用机制:静息状态下,G蛋白以异三聚体的形式存在于细胞膜上,并与GDP结合,而与受体呈分离状态。当配体与相应受体结合时,触发了受体蛋白分子发生空间构象的改变,α亚单位转而与GTP结合,与βγ二聚体分离,具有了GTP酶活性,使GTP分解释放磷酸根,生成GDP,诱导α亚单位构象改变,使之与GDP亲合力增强,最后与βγ二聚体结合,回到静息状态。β亚单位的浓度越高,越趋向于形成静息状态的G蛋白异三聚体,G蛋白的作用就越小。 5、G蛋白耦联受体介导的cAMP信号途径? 答:激素、神经递质等第一信使与相应的膜受体结合后,可以激活G蛋白,并活化位于细胞膜上的G蛋白效应蛋白——腺苷酸环化酶,使ATP转化生成第二信使cAMP,cAMP可进一步分别引起相应底物的磷酸化级联反应、离子通道活化等效应,参与调节细胞代谢、增殖、分化等不同生理过程。绝大多数细胞中cAMP进一步特异地活化cAMP依赖性蛋白激酶(PKA)来调节细胞的新陈代谢。对于不同的腺苷酸环化酶,影响其活性的因素也不一样。 6、G蛋白耦联受体介导的PIP2信号途径?

干细胞生物特性及其应用

子抗体相关性研究[J ]1中国男科学杂志,2006,20(2):57~591 [7] Berger RE 1Eti ol ogy manifestati ons ang therapy of therapy of acute ep i 2 didy m itis:Pr os pective study of 50cases [J ]1J U r ol ogy,1979,750:754~7611 [8] Hales RB ,D ie mer T,Hales KH 1Role of cyt okine in tesicular functi on [J ]1Endocrine,1999,10(1):201~2071 [9] 朱应武,卢芳国,伍参荣等1解脲脲原体感染对精子质量的影响 [J ]1实用预防医学,2003,12(10):931~9331 [10]史海军,常永超1支原体感染与男性不育症患者精液质量状况分 析[J ]1中国皮肤性病学杂志,2005,19(6):358~3591 [11]Nunez CR,Caballer o P,Redondo C,et al 1U reap las ma U realyticum re 2 duces motility and induces me mbrane alterati ons in human s per mat o 2z oa [J ]1Hum Rep r od,1998,13(10):2756~27611 [12]林成楚,许恩赐,汪志伟等1解脲脲原体感染与精子凋亡的关系 [J ]1中国人兽共患病杂志,2005,21(4):3661 [13]ZiniA,FischerMA,Sharir S,et al 1Prevalence of abnor mal s per m P NA denaturati on in fertile and infertile men [J ]1U r ol ogy,2002,60(6):1069~72 [14]徐 晨1解脲支原体引起男性不育的机理研究I 1精子形态学观 察[J ]1男性学杂志,1992,6(2):661 [15]徐 晨,王一飞1支原体与男性不育的研究进展[J ]1男性学杂 志,1992,6(1):541 [16]石建莉,鲁梅格,王一飞1溶脲脲原体与人精子膜蛋白交叉反应 性抗原的研究[J ]1生殖与避孕,2003,23(3):153~1571 [17]Desil Va 1Patticja A Q 1Localizati on of endogenous activity of phos pho 2 li pases A and C in ureap las ma urealyticum [J ]1Jchn M icr obi ol,1991,29:14981 [18]胡 涛,王海燕,高美华1沙眼衣原体、溶脲脲原体感染致精浆 T NF 2a,Il 26升高在男女不育发病中的意义[J ]1生殖与避孕,1999,19(2):80~841 [19]王光荣,周曾娣,郭争鸣1精子凋亡与男性不育关系的初探[J ]1 中华男科学,2002,8(1):25~271 [20]Dousset B,Hussenet F 1Cyt olines in the human se men 1A ne w ap 2 p r oach t o male fertility [J ]1Presse Med,1997,26(1):24~291[21]Forrest VJ,Kang YH,Mcclain DE,et al .Oxidative stress 2induced ap 2 op t osis p revented by Tr ol ox [J ]1Free Radic B i olMed,1994,16(6):675~6841 [22]Halli w ell B,Gutteridge Jm,Role of free radicals and cataiytic metal 2 li ons in human disease:an overvie w methods [J ]1Enzy mol ogy,1990,186(1):1~31 [23]杨 欣,王 琦1溶脲脲原体感染与精液不液化症的相关性研究 [J ]1中国男科学杂志,1998,12(4):222~2241 [24]逯 越,陈国卫1解脲脲原体感染对附睾上皮分泌功能影响的研 究[J ]1解剖学研究,2003,25(4):277~2781 [25]马春杰,唐立新,蒋 敏1供精者解脲脲原体感染与精液参数的 相关性研究[J ]1广东医学,2006,27(1):59~611 [26]W ang Y,L iang CL,W u JQ,et al 1Do U reap las ma urealyticum infec 2 ti ons in the genital tract affect se men quality [J ].A sian J Andr ol,2006,8(5):562~568. [27]ReichartM,Levi B ,Kahane I,et al 1Dual energy metabotis m 2depend 2 ent effect of ureap las ma urealyticum infecti on on s per m activity [J ]1J Andr ol,2001,22(3):404~4121 (收稿日期:2008210206) 作者简介:余文静,泸州医学院2006级研究生 △ 通讯作者:李著华(指导老师) 干细胞生物特性及其应用 余文静  综述,李著华△  审校(泸州医学院病理生理教研室,四川泸州646000) 【摘要】 近年来人们对干细胞的认识逐渐增加,当知道干细胞具有独特的分化潜能,能治愈组织难以自愈的创伤,能治疗临床上难以治愈的疾病,甚至可以使人返老还童,让青春永驻时,人们便开始企盼着干细胞时代的到来。本文就干细胞近年来在其生物学特性及应用方面进展做一综述。 【关键词】 干细胞;生物特性;应用 【中图分类号】 R 392-33 【文献标识码】 A 【文章编号】 167227193(2009)0120094203 近年来人们对干细胞的认识逐渐增加,当知道干细胞具有独特的分化潜能,能治愈组织难以自愈的创伤,能治疗临床上难以治愈的疾病,甚至可以使人返老还童,让青春永驻时,人们便开始企盼着于细胞时代的到来。本文就干细胞近年来在其生物学特性及应用方面进展做一综述。 1 干细胞的概念 干细胞是一种具有自我复制功能和多分化潜能的早期未 分化细胞,医学界称之为“万用细胞”。按照干细胞的分化潜能,分化层次及其所具有的功能,大致可分为三种类型:胚胎干细胞、组织干细胞和专能干细胞。胚胎干细胞又称全能干细胞,是从哺乳动物包括人的早期胚胎分离培养出来的。其分化潜能大、增殖能力强,既是胚胎发育的基础,又是机体各种细胞最早的祖先,由它可形成完整的生物个体,如早期的卵裂球细胞、胚泡中的内细胞群中的细胞、早期生殖嵴的胚芽细胞等。从某种意义上说受精卵也可视为特殊的全能干细胞。胚胎干 ? 49?

干细胞培养

造血干细胞的特性与应用 姓名: 学号: xx大学生命科学学院,2010生物科学 摘要: 关键词: 造血干细胞;生物学特性;应用 1造血干细胞的来源 胚胎造血与出生后的较单一、固定的骨髓造血不同,它伴随着生长发育而不断变换造血部位。一般认为,随着胚胎发育过程中造血中心的转移,其造血过程相继分为三个阶段,即胚胎外造血期——卵黄囊造血期(人胚第13~16天)、胎肝造血期(人胚第6周至第5个月)和骨髓造血期(胚胎第四4个月开始至终生)。但有学者认为成体造血干细胞来源于胚胎的背主动脉区,因为能够重建成体各系造血的造血干细胞最早出现在鼠胚第10天的主动脉-性腺-中肾(AGM)区。 而卵黄囊只是一种一过性的造血组织,不是胚胎发育过程中的第一个造血中心。至于骨髓造血干细胞,有人认为其来源于胎肝造血干细胞的迁移,也有人认为其来源于上述的AGM区,目前尚无定论。 2造血干细胞的特性与鉴定 2.1造血干细胞的生物学特性 2.1.1造血干细胞的活化 1986年Lemischka等通过对移植小鼠血液细胞DNA分析所做的克隆研究发现,在小鼠接受移植后的造血恢复期,植入的造血干细胞不是被平均使用,一部分克隆逐渐消退;以移植小鼠的骨髓做二次移植后,二次移植的小鼠造血由在

一次移植中与造血无关的另一部分克隆来维持。结果提示,造血干细胞并非全部处于增殖分化周期中。一般情况下,大部分造血干细胞处于静止期,在必要时才进入细胞周期进行细胞分裂。造血干细胞分裂后,其子代细胞一个通过自我复制维持造血干细胞的特性,另一个则通过分化成为多能性造血祖细胞。造血干细胞的活化机制尚不明确,但至少其中一个机制是通过各种细胞因子来调节。人们推测,造血干细胞的活化,需要多种刺激因子的协同作用。在细胞刺激因子之外,细胞抑制因子也能调节造血干细胞的活化。 2.1.2造血干细胞的自我更新 造血干细胞最为基本的生物学特征是其具有高度的自我更新能力(Self-re-newal),即它能通过自我复制方式使子代细胞与亲代细胞具有完全相同的特征。造血干细胞的这种高度的自我更新能力,在维持机体一生的造血过程中具有重要意义。因为,造血干细胞如果不能通过自我复制进行自我更新,随细胞的增殖分化成熟,干细胞池即会被耗尽而导致难以维持造血。大量研究证实,造血干细胞经分裂后其子代细胞基本上能够保持与亲代细胞完全相同的特性。但也有学者认为,即使是造血干细胞,只要行分裂,从严格的意义上来讲,就不存在完全的自我复制,而已进入了分化阶段。造血干细胞是否确实能够进行完全的自我复制,尚存争议。但具有长期体内外造血重建能力这一特征是造血干细胞所必备的。 2.1.3造血干细胞的多向分化 通过放射线照射,诱导细胞产生染色体异常,然后将具有这种染色体异常的造血干细胞移植给小鼠,在小鼠体内可以看到含淋巴细胞在内的所有血液细胞均具有相同的染色体异常,说明造血干细胞可以形成含淋巴细胞在内的各种血液细胞。现已明确,造血干细胞向成熟细胞分化过程中受到多种正负造血因子的作用,形成一种较为复杂的调控网络。在综合因素作用下,造血干细胞可以分化形成红系、髓系、巨核系成熟血液细胞,也是淋巴系干细胞的来源。除造血系细胞外,近年还发现造血干细胞可以分化形成一些非造血细胞,如破骨细胞、表皮生发层细胞等。新近在一例作异性间骨髓移植后的病人,发现受者肝细胞具有供者的染色体核型,提示其来源于供者的造血干细胞。 而近

植物干细胞维持与分化的分子机理研究-中国科学院植物研究所

植物所简报 2007年第85期 中国科学院植物研究所2007年11月27日 重大科学研究计划项目“植物干细胞维持与分化的分子机理研究”项目启动会召开 11月24日,由植物所承担的“十一五”重大科学研究计划—“植物干细胞维持与分化的分子机理研究”项目启动会植物所召开。出席会议的领导和专家有中国科学院副院长李家洋院士,河北师范大学孙大业院士,中科院生物局副局长苏荣辉、生物医药处处长韩华等,来自植物研究所、遗传与发育生物学研究所、首都师范大学、华南农业大学、清华大学、山东大学、山东农业大学以及厦门大学的项目各课题组负责人也出席了会议。 植物所副所长种康研究员主持了启动会。马克平所长代表项目第一承担单位对到会嘉宾表示热烈欢迎,并对项目的实施表示衷心地祝贺。生物局苏荣辉副局长在随后的讲话中对该项目给予了高度评价,并希望科学家们努力工作,争取做出好成绩。接着,项目首席科学家胡玉欣研究员介绍了项目的研究目标、任务和参加单位的

情况,各课题负责人分别汇报了各自的研究进展及计划及进度安排。李家洋副院长在听取汇报后发表讲话,对该项目的研究内容和目标给予了充分的肯定,同时对本项目的顺利实施寄予了厚望,他鼓励大家切实地加强交流,在创新性成果上多下功夫,不要仅局限在发表文章上。 下午,与会人员围绕研究方向的凝聚和具体研究方案的实施展开了认真协商与讨论,并就项目的研究内容、分工协作及定期交流机制等方面充分发表了意见。与会专家就如何紧密围绕科学问题、如何实现各课题协作攻关等问题提出了建设性意见,生物局韩华处长对项目的管理、执行以及如何加强与动物干细胞研究领域科学家的交流等方面提出了具体的建议。会议决定建立相关研究小组,实行定期碰头制度,做到明确方向、共享资源,并通过项目的实施,力争使我国的植物干细胞的研究领域取得突破性进展。 2006年发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》明确提出了蛋白质研究、量子调控研究、纳米研究、发育与生殖研究四个重大科学研究计划。为落实《规划纲要》的部署,2006-2007年,科技部已批准82个重大项目立项,其中“发育与生殖研究”重大科学研究计划21项,“植物干细胞维持和分化的分子机理研究”是其中之一,项目首席科学家为植物所胡玉欣研究员,该项目于2007年批准,前两年的经费为1187万元,计划于2011年8月结题。 (信号中心供稿)

细胞生物学知识点

第一章医学细胞生物学绪论 名词解释:生物学,细胞生物学 解答题:细胞对生命活动的意义,细胞的共同属性 易考点:首次命名植物细胞的人,发现无丝分裂、减数分裂的事件,提出DNA 双螺旋模型 第二章细胞生物学研究方法 名词解释:分辨率,电子显微镜,酶细胞化学技术,流式细胞技术,细胞培养,细胞系,细胞株,细胞融合,干细胞 解答题:细胞培养的基本条件,光学显微镜技术的原理 易考点:分辨率的计算公式及各个字母代表的意思,光镜的分辨极限,暗视野显微镜观察的是细胞轮廓以及观察的范围,透射显微镜观察的是细胞内部的细微结构,扫描电子显微镜观察的是三维立体形貌。 第四章细胞膜 名词解释:生物膜,细胞膜 解答题:流动镶嵌模型,细胞膜的特性,耦联运输 易考点:功能复杂的膜中所占蛋白质的比例大,三种膜蛋白的存在形式,影响膜脂流动性的因素,细胞膜的物质转运功能(选择题形式),糖萼的本质 第六章内膜系统 名词解释:内膜系统,细胞质 解答题:信号假说的主要内容,高尔基复合体的功能,滑面内质网的功能,溶酶体的形成过程,溶酶体的功能 易考点:内质网的标志酶,高尔基复合体的形态(形成面,成熟面),溶酶体的标志酶 第七章线粒体 名词解释:三羧酸循环,氧化磷酸化,底物水平磷酸化,呼吸链,分子伴侣,导肽 解答题:描述线粒体的结构 易考点:光镜下线粒体的结构,线粒体各部位的标志酶,呼吸链的复合体中每个复合体有哪些物质,线粒体疾病的特点,化学渗透学说主要知道氧化放能

第八章细胞骨架 名词解释:细胞骨架,中间纤维结合蛋白 解答题:微管的体外装配,影响微管装配的因素,微管的功能(简单描述),微丝的组装过程,影响微丝组装的因素,微丝的功能,中间纤维结合蛋白的功能,中间纤维的组装的控制以及影响因素,中间纤维的功能 第九章细胞核 名词解释:核型,核纤层,细胞骨架,核基质, 解答题:简述细胞核的基本结构,核孔复合体的结构,常染色质和异染色质的异同点,核仁的光镜和电镜结构。 易考点:核基质的功能,人体哪几号染色体上有核仁组织区。 第十一章细胞生长与增殖 名词解释:细胞增殖,细胞周期蛋白依赖性激酶抑制物CDKI。解答题:简述有丝分裂过程及各过程标志,减数分裂过程。易考点:有丝分裂、无丝分裂、减数分裂的英文,细胞周期调控的起主要作用的物质。 第十三章细胞分化 名词解释:细胞分化,细胞决定,管家基因,奢侈基因。易考点:细胞分化实质,细胞分化特点。第十五章:名词解释:干细胞。易考点:干细胞的分类,干细胞的来源。 第十四章细胞衰老与死亡 名词解释:细胞衰老。解答题:细胞凋亡与细胞坏死的主要区别。易考点:细胞衰老的表现,细胞凋亡的特征。 第十五章:名词解释:干细胞。

生物科技有限公司专业专门提供各种细胞原代细胞肿瘤细胞肿瘤

韵涵生物科技有限公司专业专门提供各种细胞、原代细胞、肿瘤细胞、肿瘤耐药细胞、正常遗传变异细胞。配套专业培养基:上皮细胞、内皮细胞、平滑肌细胞、微血管、神经元细胞、系膜细胞、胶质细胞、成纤维细胞、心肌细胞、低血清无血清无动物成分细胞培养基等等;传统的常用培养基:DMEM、IMDM、M199、CMRL、BME、MEM等等;以及细胞培养用的相关试剂:赖氨酸、血清、胎牛血清、细胞冻存培养基、消化液、中和液等等。 一、原代细胞 第一篇:人正常细胞 https://www.doczj.com/doc/a011541182.html,S Cell System 1000 HBMEC (Human Brain Microvascular Endothelial Cells) 人脑微血管内皮细胞 1100 HBVSMC (Human Brain Vascular Smooth Muscle Cells) 人脑血管平滑肌细胞 1200 HBVP (Human Brain Vascular Pericytes) 人脑血管周边细胞 1300 HCPEC (Human Choroid Plexus Endothelial Cells) 人脉络丛内皮细胞 1310 HCPEpiC (Human Choroid Plexus Epithelial Cells) 人脉络丛上皮细胞 1320 HCPF (Human Choroid Plexus Fibroblasts) 人脉络丛纤维原细胞 1400 HMC (Human Meningeal Cells) 人脑膜细胞 1520 HN (Human Neurons) 人神经元细胞 1530 HCGC (Human Cerebellar Granule Cells) 人小脑颗粒细胞 1600 HOPC (Human Oligodendrocyte Precursor Cells) 人少突先驱胶质细胞 1610 HOPC-os (Human Oligodendrocyte Precursor Cell-oligospheres) 人少突先驱胶质细胞(状态:球形) 1800 HA (Human Astrocytes) 人星形胶质细胞 1810 HAc (Human Astrocytes-cerebellar) 人小脑星形胶质细胞 1900 HM (Human Microglia) 人小胶质细胞 2.PNS Cell System700 HSC (Human Schwann Cells) 人雪旺细胞 1710 HPNC (Human Perineurial Cells) 人周神经细胞 3.Cardiac Cell System 6000 HCMEC (Human Cardiac Microvascular Endothelial Cells) 人心脏微血管内皮细胞 6100 HAEC (Human Aortic Endothelial Cells) 人大动脉内皮细胞 6110 HASMC (Human Aortic Smooth Muscle Cells) 人大动脉平滑肌细胞 6200 HCM (Human Cardiac Myocytes) 人心肌细胞 6210 HCMa (Human Cardiac Myocytes-adult) 成人心肌细胞 6300 HCF (Human Cardiac Fibroblasts) 人心脏纤维原细胞 6310 HCFav (Human Cardiac Fibroblasts-adult ventrical) 人心脏纤维原细胞(来源:成人心室)6320 HCFaa (Human Cardiac Fibroblasts-adult atrial) 人心脏纤维原细胞(来源:成人心房)Coming Soon:HCVSMC (Human Cardiac Vascular Smooth Muscle Cells)! 人心血管平滑肌细胞4.Pulmonary Cell System(肺部) 3000 HPMEC (Human Pulmonary Microvascular Endothelial Cells) 人肺微血管内皮细胞 3100 HPAEC (Human Pulmonary Artery Endothelial Cells) 人肺动脉内皮细胞 3110 HPASMC (Human Pulmonary Artery Smooth Muscle Cells) 人肺动脉平滑肌细胞 3120 HPAF (Human Pulmonary Artery Fibroblasts) 人肺动脉纤维原细胞 3200 HPAEpiC (Human Pulmonary Alveolar Epithelial Cells) 人肺齿槽上皮细胞 3210 HBEpiC (Human Bronchial Epithelial Cells) 人支气管上皮细胞 3300 HPF (Human Pulmonary Fibroblasts) 人肺纤维原细胞

2020年(生物科技行业)基础生物学作业

(生物科技行业)基础生物 学作业

摘要:随着生物技术的不断发展和成熟,基因遗传学领域研究的深入,基因治疗这壹新的医学手段走进了我们的生活。它能够纠正和补偿因基因缺陷和异常引起的疾病,以人体的靶细胞为工程载体,对其基因进行基因置换或增补,使其在体内表达达到治疗目的。基因治疗能够治疗许多以往医学不能解决的问题,为癌症等绝症的治疗开辟了新天地。 关键字:生物技术;基因治疗;研究;靶细胞;癌症; 一、什么是基因治疗 1.基因治疗的定义 狭义的概念: 指用具有正常功能的基因置换或增补患者体内有缺陷的基因,因而达到治疗疾病的目的。广义的概念: 指把某些遗传物质转移到患者体内,使其在体内表达,最终达到治疗某种疾病的方法。 基因治疗(genetherapy)是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异常引起的疾病,以达到治疗目的。也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病。从广义说,基因治疗仍可包括从DNA水平采取的治疗某些疾病的措施和新技术。 2.遗传病的基因治疗的定义 遗传病的基因治疗(genetherapy)是指应用基因工程技术将正常基因引入患者细胞内,以纠正致病基因的缺陷而根治遗传病。纠正的途径既能够是原位修复有缺陷的基因,也能够是用有功能的正常基因转入细胞基因组的某壹部位,以替代缺陷基因来发挥作用。基因是携带生物遗传信息的基本功能单位,是位于染色体上的壹段特定序列。将外源的基因导入生物细胞内必须借助壹定的技术方法或载体,目前基因转移的方法分为生物学方法、物理方法和化学方法。腺病毒载体是目前基因治疗最为常用的病毒载体之壹。基因治疗目前主要是治疗那些对人类健康威胁严重的疾病,包括:遗传病(如血友病、囊性纤维病、家庭性高胆固醇血症等)、恶性肿瘤、心血管疾病、感染性疾病(如艾滋病、类风湿等)。

干细胞生物技术专利信息情报初步分析

QianRen Biology 千人·生物, 2015, 2(4), 53-59 Published Online November 2015 in Hans. https://www.doczj.com/doc/a011541182.html,/journal/qrb https://www.doczj.com/doc/a011541182.html,/10.12677/qrb.2015.24007 文章引用: 姜铁竹, 刘书朋, 李苗, 张永娟, 陈成材, 孙瑞阳, 陈恒. 干细胞生物技术专利信息情报初步分析[J]. 千 Preliminary Information Analysis of the Stem Cell Biotechnology Patents Tiezhu Jiang 1, Shupeng Liu 1, Miao Li 1, Yongjuan Zhang 2, Chengcai Chen 2, Ruiyang Sun 3*, Heng Chen 2* 1 Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai 2Information Center of Shanghai Life School, Chinese Academy of Sciences, Shanghai 3Beijing East Linden Company Limited, Beijing Received: Dec. 9th , 2015; accepted: Dec. 25th , 2015; published: Dec. 30th , 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/a011541182.html,/licenses/by/4.0/ Abstract This paper focused on the effective search, collection and classification of domestic and interna-tional stem cell biotechnology patents. Furthermore, deep analysis and statistics of the stem cell biotechnology patents were performed. The results show that the stem cell biotechnology patents in China were about 830 items and the international stem cell biotechnology patents were about 4260 items. American, Japan and South Korea, as several countries with the most number of pa-tents applications, have gone ahead of China in stem cell biotechnology research field. Therefore, China must continue to reinforce the stem cell biotechnology researches and the related patents applications, and also urgently to promote the industrial development of the stem cell biotech-nology field simultaneously. Keywords Stem Cell, Biotechnological Patent, Information Statistics, Information Analysis 干细胞生物技术专利信息情报初步分析 姜铁竹1,刘书朋1,李 苗1,张永娟2,陈成材2,孙瑞阳3*,陈 恒2* 1 上海大学通信与信息工程学院,生物医学工程研究所,上海 *通讯作者。

(完整版)北师大细胞生物学历年考研真题.doc

1990 年 试题 一、名词解释 : (每题 6 分,共 30 分) 1.cDNA library 以 mRNA 为模板,经反转录酶合成互补DNA 构建而成的基因库 是以特定的组织或细胞mRNA 为模板,逆转录形成的互补DNA ( cDNA )与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌形成重组DNA 克隆群,这样包含着细胞全部 mRNA 信息的 cDNA 克隆集合称为该组织或细胞的cDNA 文库 2.Aritotic apparatus 3.跨膜信号 transmembrane signal 4.促有丝分裂原 mitogen 5.Nuclear lamina 二.论述题 : (每题 30 分,共 120 分) 1.细胞有丝分裂后期染色体分离趋向两极的机理是如何证明的? 2. Kinetochore 是由哪几种主要蛋白组成,用什么方法研究其定位、分子量及机能? 3. 举例说明oncogene、 growth factors 及受体之间的联系 4.试述横纹肌、细胞内粗细丝两分子的结构、各种主要蛋白成分在肌肉收缩中的作用。

1991 年试题一、名词解释 : 1.着丝点与着丝粒用 6.蛋白印迹法二、论述题 : 2.核纤层 3.多线染色体 (western blotting) 7.2G 4. cdc2 (cell Division) 5. 受体介导的内吞作 蛋白 8.同源盒 9.原位杂交 10.原癌基因 1.简述细胞连接的儿种类型及共功能 2.简述微管、微丝组装的动力学不稳定模型 1992 年试题 1.胞内体 2.信号肽与导肽 3.跨细胞转运 4.微管组织中心 5.踏车行为 6.核纤层 7.驱动蛋白 8.成 虫盘 9.桥粒和半桥粒 10.周期素二、论述题: 1.膜离子通道的类型及其调节机制 2.糖蛋白的加工部位及其转运 4.细胞有丝分裂过程中染色体的运动及其机理 5.以果蝇举例说明动物体节分化的基因调节 6.核仁组成结构与功能的分子学基础 1993 年试题 二、论述题: 1细胞质膜的主要功能 2.试述鉴别动物细胞各周期时相群体的方法 3.试述非肌肉细胞中肌球蛋白和肌动蛋白相互作用的调节机制 4.如何用实验证明细胞被决定 5.缁类激素调节基因表达的机制 1994 年试题 一、名词解释: 1. 荧光原位杂交 2.内含子、外显子、原初转录体的关系 3.southwestern( blotting ) 4. 编程性细胞死亡 5.中心体 6.受体介导的胞吞作用 7.小核糖核蛋白颗粒(snRNPs) 8. 同源异形突变 9.联会复合体10.转基因动物 二、论述题: 1. 试述高尔基体对蛋白质的加工及分选功能 2.粘合斑的结构与功能 3.细胞周期中G1 至 S 期、 G2 至 M 期调控事件 4.亲脂类和肽类外信号分子细胞信号传导的异同

相关主题
文本预览
相关文档 最新文档