当前位置:文档之家› 08微积分复习小结

08微积分复习小结

08微积分复习小结
08微积分复习小结

《微积分》(下)(赵树嫄)总结

第七章 无穷级数

一、内容提要:

1.常数项级数的概念 P271

(1) 级数的定义 级数 通项 部分和 余项 (2) 级数收敛的定义

2.常数项级数基本性质 P274

5条 和 k 倍 加减有限项 加括号 收敛的必有条件 3.几个重要的数项级数

1o 等比级数

1=n n aq 1

-,当q <1时收敛;当≥q 1时发散;

2o 调和级数

∑∞

1

=n n 1

发散; 3o p-级数

∑∞

1

1

=n p

n (p>0),当0

1时收敛。

4.正项级数审敛法

∑∞1

=n n

u 与∑∞

1

=n n

v

均为正项级数,

(1)

1

=n n

u 收敛 充要条件 {}n s 有界。P279 定理7.6

(2)比较审敛法 P279

1

=n n

u 收敛(发散)且)(n n n n v u u v ≤≤,则

1

=n n

v 收敛(发散)。

比较法的极限形式:P282推论

若)0(lim +∞<<=∞→l l v u n n

n ,则∑∞1=n n u 与∑∞

1

=n n v 同时收敛或同时发散; 当l =0时,可由

1

=n n

v 收敛推出

1

=n n

u 也收敛

当+∞=l 可由

1

=n n

v 发散推出

1

=n n

u 也发散。

(3)比值审敛法 P283

若l u u n

n n =+1

lim

∞→,

当l <1时,则

∑∞

1

=n n

u

收敛;当l >1时,则

∑∞

1

=n n

u

发散;当l =1时,待定。

5. 交错级数审敛法(莱布尼兹审敛法) P286

若交错级数

)0(,-1)(1

-n ≥=n n n u u ∑

1

满足①0lim =∞

→n n u ,且②)(1N n u u n n ∈≥+,则

1

1

-n -1)=n n u (收敛;且1u S ≤ 。

6.任意项级数审敛法

① 若0∞

→≠n n u lim ,则

1=n n

u 发散;

② 若

∑∞

1=n n

u

收敛,则

1=n n

u 绝对收敛;

③ 若

∑∞

1

=n n

u

发散,但

1

=n n

u 收敛,则

∑∞

1

=n n

u

条件收敛。

④ 任意项级数满足l u u n

n n =+∞→1

lim ,则当1l 级数发散。

7.幂级数

1o 幂级数 形如

∑∞

=+-++-+-+=-0

02021100)()()()(n n n n n

x x a x x a x x a a x x a

的无穷和式,叫幂级数。 当0x =0时,则为

∑∞

=+++++=0

2210n n n n n

x a x a x a a x a

2o 幂级数

∑∞

=n n n

x a

的收敛域是一个以原点为中心从-R 到R 的区间,这个区间叫做幂级

数的收敛区间,其中l

R 1

=

称为幂级数的收敛半径。当+∞<

3o 求收敛区间的步骤及定理 P292 4o 运算性质 P295

① 代数运算

∑∞

=n n

n

x a

与∑∞

=n n n x b 的收敛半径分别为R 与R '(R 与R '均大于零)则在

),(min R R x '<∞

内有

∑∑∞

=∞==±=±0

)(n n n n n n

n n n

n

x b a x b x a

∑∞

② 分析运算

设 在(-R ,R )内∑∞

==

n n n

x a

x s )(,则在(-R ,R )内:

(ⅰ)对幂级数可以逐项微分,即

∑∑∞

=∞==='='='0

)()()(n n n n n

n n n

n x na x a x a x s 1-∑∞

(ⅱ)对幂级数可以逐项积分,即

∑∑∑∞

∞0∞0=+==+===???

n n n n n

n x

n n

n x

x

x n a x a dx x a x s 1

1)()()(0

00

此处积分上限),(R R x -为内的任一点。

注意一 在收敛区间),(R R -内对幂级数逐项微分逐项积分后所得幂级数的收敛半径与原级数相同(即收敛半径不变),但是级数在收敛区间两端点处的敛散性可能改变。

8.将函数展开为幂级数

(ⅰ)间接法 P303

利用下列几个函数的展开式:

==0

!

n n

x

n x e (-∞,+∞) ∑

=++=012)!12((sin n n n x x n

-)

或∑∞

11212=n n n x )!

((--)-1

-n (-∞,+∞) ∑∞

022==n n n x x )!((cos n -)或∑∞

1

222=n n n x )!((--)2-1

-n (-∞,+∞) ∑∞

1

==+n n n x x 1

-n -)

()1ln( 或∑∞0

=++n n n x 1(1

n -) (-1,1) )1,1(111

2-+++++=- n x x x x

二、主要题型

1.判断级数的收敛性

(1)判断级数的敛散性 (正项级数);

(2)判断级数的敛散性若收敛是绝对收敛还是条件收敛 ;

2.求幂级数的收敛域

① 不缺项时:先求相邻两系数之比的绝对值的极限

l a a n

n n =+1∞→lim

,则收敛半径l R 1

=;

再验两端点,则收敛域= )(R -R,收敛的端点。

② 缺项时或)(0x -x 型:先求相邻两项之比的绝对值的极限,

)()()

(lim

x l x u x u n

n n =+1∞→解不等式1)(

再验两端点21x x 与,则收敛域= )(21x x ,收敛的端点。 (或用变量代换)

3.将函数展开为幂级数

一般间接展开 ,

注意 (1)恒等变形后用公式;(2)幂级数的展开点

第八章 多元函数微积分

一、内容提要 1.空间解析几何

直角坐标系 两点间的距离 2.二元函数的概念 P322

二元函数的定义;定义域;二元函数的极限与连续 3.二元函数偏导数定义 P327 高阶偏导数P330 5.二元函数全微分 P332 dy y

z dx x z dz ??+??=

6. 二元函数在一点连续,偏导数存在与可微的关系

偏导连续→可微→连续 ↘偏导存在

7.多元复合函数求导法则 P335 全导 P336 8.隐函数求导法则 (公式) P340 9.多元函数的极值 P340

(1) 定理8.4(必要条件)P341

(2) 定理8.5(充分条件)P342

(3) 条件极值 (拉格朗日乘数法P344 步骤 3条) 10.二重积分

(1)二重积分的定义 P349

(2)二重积分的性质 P350 7条

(3)直角坐标系计算二重积分 P353 公式8.15 公式8.16 (4)利用极坐标计算二重积分 P359 公式8.21 公式8.23 二、主要题型:

1.求函数的定义域;

2.求函数的偏导数(包括微分、二阶偏导数) 3.求复合函数的偏导数,(包括半抽象半具体函数) 4.求隐函数的偏导数

注意 :首先判断是那一种函数,再考虑用什么公式 5.求极值及条件极值

6.求二重积分 首先选择坐标,再选公式 7.交换积分次序

第九章 微分方程 一、主要内容:

1.微分方程的概念 P373 (定义,阶,解,通解,特解,) 2.一阶微分方程

(1)可分离变量方程 P375 (2)一阶线性微分方程 P380 3.二阶微分方程

(1)可降阶的微分方程

(a ))()(x f y n = P385

(b )),(y x f y '='' P385 令p y p y '=''='则, (c )),(y y f y '='' P386 令dy

dp p y p y =''='则, (2)二阶常系数线性微分方程

a) 二阶齐次线性微分方程 P388 解 P391 b) 二阶非齐次线性微分方程 P391

解 P395 )()(x P e x f m x λ=

待定系数法特解形式x m k e x Q x y λ)(*= 2,1,0=k

[]x a x a e x f x ββαsin cos )(21+= P395

待定系数法特解形式[]x A x A e

x y x

k

ββαsin cos *21+=

1,0=k

二、主要题型: 1.求方程的解

首先判断是一阶还是二阶微分方程,再判断是那一类 2. 方程应用

首先建立微分方程 (一般是求初值问题) 判断方程类型 求解方程

08微积分试卷分值分布

一、填充题(每题3分,共21分) 二、选择题(每题2分,共16分)

三、求下列函数的偏导数或重积分(每题6分,共30分) 四、解答题 (共33分)(5题)

模拟试题

1

.z =

的定义域为{}1),(22>+y x y x ;

2.00

x y →→=6

1; 3.设()y x z 2ln 2+=,则x z '=

y x x 222+;y z '=y

x 22

2

+; 4.已知y e z x cos sin =,则=dz )sin cos (cos sin ydy ydx x e x -; 5.??2

110xdy dx =2

1;

6.若级数1(4)n n u ∞

=-∑收敛,则lim n n u →∞

= 4 ; 7、幂级数∑∞

=0

3n n n x 的收敛半径=R 3

1;

二、单选题 (5×3'=51') 1.点(1,-1,1)在曲面( A )上 A 0222=-+z y x B z y x =-22 C z y x 322=+ D )ln(22y x z +=

2.下列级数中,绝对收敛的级数为( A ) A.1

211(1)

n n n

-=-?∑ B.

11

(1)1

n n n n ∞

-=-?

+∑ C.1

1

(1)3n n

n ∞-=-?∑

D.11

(1)n n ∞

-=-∑

3.设()2

,y x

y x f =

,则()2,1-'y f =( D ) A. 1 B. 2

1 C. 3

1 D. 4

1 4.变换积分次序1

100(,)x

dx f x y dy -=??( D ) A.11

00(,)x

dy f x y dx -?? B.1

100(,)x

dy f x y dx -?? C.1

1

00(,)dy f x y dx ?? D.1

100(,)y

dy f x y dx -??

5.函数c e y x +=是微分方程x e y y 2='+''的( D ). A 通解 B 特解 C 不是解 D 解

三、求下列函数的偏导数(2×6'=21') (1)2ln ,z u v =而,32,x u v x y y

==-求

,z z x y

???? 解:

2

222

2

3223ln(32)(32)22ln(32)(32)

z z u z v x x x y x u x v x y y x y z z u z v x x x y y u y v y y y x y ?????=+=-+?????-?????=+=---?????-

(2).求由方程122=-xyz z 所确定的隐函数()y x f z ,=的导数x

z ??,y

z

??

解:12),,(2--=xyz z z y x F 令

xy z z

F

xz y F yz x F 22,2,2-=??-=??-=??

xy z xz z

F y F y

z xy z yz

z

F x F x

z -=????-=??-=

????-=??,所以 四、求(6),D

x y d σ+??其中D 是由,5,1y x y x x ===所围成的区域(6') 解: 1

5076

(6)(6)3

x

x D

x y d dx x y dy σ+=+=

????

五.交换累次积分次序:()dx y x f dy dx y x f dy y

y

????-+20

2

1010),(, (6')

解: ()dx y x f dy dx y x f dy y

y

????-+202

101

0),(, ??

-=1

2),(x x

dy y x f dx

六.求函数326125z y x x y =-+-+的极值 (6')

解: 由

0123,0622=-=??=+-=??y y

z

x x z ,得驻点

(3,2),(3,-2) 再由2,0,6xx xy yy z z z y ''''''=-==,得(,)12P x y y =

因为(3,2)240 P =>,所以(3,2)不是极值点

因为(3,2)240 , (3,2) =20xx P z ''-=-<--<

所以在点(3,2)-处函数有极大值(3,2)30z -=

七、判断级数2)11()1(2

1

n

n n

n

n +-∑∞

=是否收敛,若收敛是绝对收敛,还是条件收敛

解:

11

)1(lim )11(lim

lim ,,)

11(2

2

1

2

22

<=+=+=+=∞→∞→∞

→∞

=∑e

n

n n n u u n

n u n n

n n

n n n n n n n n n 因为

考虑正项级数令

6'

)

所以绝对收敛. 八.将

1

4x

-展开成为2x -的幂级数,并求收敛区间 (6')

解:因为 20

11, (11)1n

n n x x x x x x ∞

==+++++=-<<-∑

(2)1111

42(2)21x x x -==?---- 所以 14x -100121

=()(2), (04) 222

n n n n n x x x ∞∞+==-=-<<∑∑

九.求下列微分方程的通解(2×6'=21') (1)

32(1)1dy y

x dx x -=++ 解:201

dy y

dx x -

=+的通解为2(1)y c x =+ 由常数变易可设原方程的通解为2()(1)y u x x =+,代入原方程得

()1u x x '=+,则 21()(1)2u x x c =++

所以原方程的通解为 221

[(1)](1)2y x c x =+++

421

(1)(1)2

x c x =+++ (c 为任意常数)

(2)0)(2='-''y y y

解: 设),(y p y ='则dy

dp p

y ='' 代入原方程有: 02=-?p dy

dp

p

y 即 dy y

dp p 11=

从而y c p 1=,即

y c dx

dy

1= 则x c e c y 1

2= (21,c c 为任意常数)

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求 ∞∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分.

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

matlab数值微积分与方程数值求解

电子一班王申江 实验九数值微积分与方程数值求解 一、实验目的 1、掌握求数值导数和数值积分的方法 2、掌握代数方程数值求解的方法 3、掌握常微分方程数值求解的方法 二、实验内容 1、求函数在指定点的数值导数。 () 23 2 123,1,2,3 026 x x x f x x x x x == >>syms x >>f=[x x^2 x^3;1 2*x 3*x^2;0 2 6*x]; >>F=det(f) F=2*x^3 >>h=0.1 >>x=[0:h:4]; >>f=2*x^3; >>[dy,dx]=diff_ctr(f,h,1); >>y1=dy(dx==1) y1=6.0000 >>y2=dy(dx==2)

y2=24.0000 >>y3=dy(dx==3) y3=54.0000 2、用数值方法求定积分。 (1) 210I π =?的近似值 a=inline('sqrt(cos(t.^2)+4*sin((2*t).^2)+1)'); I=quadl(a,0,2*pi) I = 6.7992 + 3.1526i (2)()1 202ln 11x I dx x +=+? b=inline('log(1+x)./(1+x.^2)'); I=quadl(b,0,1) I = 0.2722 3、分别用3种不同的数值方法解线性方程组。 6525494133422139211 x y z u x y z u x y z u x y u +-+=-??-+-=??++-=??-+=? A=[6,5,-2,5;9,-1,4,-1;3,4,2,-2;3,-9,0,2]; b=[-4,13,1,11]'; x=A\b

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

微积分下册期末试卷附答案

中南民族大学06、07微积分(下)试卷 及参考答案 06年A 卷 评分 阅卷人 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 0 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则= ')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 评分 阅卷人 6 知dx e x p ?∞ +- 0 )1(与?-e p x x dx 1 1 ln 均收敛, 则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >

7 数???? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8、若 2 2223 11 1x y I x y dxdy +≤= --?? ,22223212 1x y I x y dxdy ≤+≤=--??, 2 2223 324 1x y I x y dxdy ≤+≤=--?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分) 评分 评分 评阅人 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.

微积分2期末复习提纲答案

2015年6月微积分2期末复习提纲 1、 本学期期末考试考察的知识点如下: 第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接 展开以 1 ,,ln(1)1x e x x +-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则 D d σ=??4π。(表示求解积分区域D 的面积——圆) ● 或D :9122≤+≤y x ,则 ??=D dxdy 8π。(表示求解积分区域D 的面积——圆环) ● 或2 2 :4D x y y +≤,将 dxdy y D ??化为极坐标系下的累次积分4sin 20 sin d r dr π θ θθ? ? . (判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入) 7.3极坐标系下二重积分的计算 2、交换积分次序 1 1 (,)y dy f x y dx = ? ?1 (,)x dx f x y dy ? ?。 (依题得:010<

大学微积分知识点总结

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1 (α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7 )[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 数乘运算 加减运算 线性运算 (8)

①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 释义:函数 对应:y=f(u) 说明: (11)分段函数的积分 例题说明:{}dx x? ?2,1 max (12)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分

微积分下册期末试卷及答案[1]

1、已知22 (,)f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,则常数p 的取值范围是( c ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数 ?? ?? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( b ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8 、若2 211 x y I +≤= ?? ,2 2 212x y I ≤+≤= ?? , 2 2 324x y I ≤+≤= ?? ,则下列关 系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( d ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分) 1、2(1)1x y y -+. 2 3、) 32 ,31(-. 4、1. 5、"6'0y y y -+=. 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解: 32 y x =的函数为

《微积分》期末复习指导

《微积分》期末复习指导 一、复习要求和重点 函数 ⒈理解函数概念,了解函数的两要素 定义域和对应关系,会判断两函数是否相同。 ⒉掌握求函数定义域的方法,会求函数值,会确定函数的值域。 ⒊了解函数的属性,掌握函数奇偶性的判别,知道它的几何特点。 ⒋了解复合函数概念,会对复合函数进行分解,知道初等函数的概念。 ⒌了解分段函数概念,掌握求分段函数定义域和函数值的方法。 ⒍知道初等函数的概念,理解常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)。 ⒎了解需求、供给、成本、平均成本、收入和利润等经济分析中常见的函数。 ⒏会列简单应用问题的函数关系式。 本章重点:函数概念,函数的奇偶性,几类基本初等函数。 一元函数微分学 ⒈知道极限概念(数列极限、函数极限、左右极限),知道极限存在的充分必要条件: 且 ⒉了解无穷小量概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质,如有界变量乘无穷小量仍为无穷小量,即。 ⒊掌握极限的四则运算法则,掌握两个重要极限,掌握求极限的一般方法。 两个重要极限的一般形式是: , ⒋了解函数在一点连续的概念,知道左连续和右连续的概念。知道函数在一点间断的概念,会求函数的间断点。 ⒌理解导数定义,会求曲线的切线。知道可导与连续的关系。 ⒍熟练掌握导数基本公式、导数的四则运算法则、复合函数求导法则,掌握求简单隐函数的导数。 ⒎了解微分概念,即。会求函数的微分。 ⒏知道高阶导数概念,会求函数的二阶导数。 本章重点:导数概念,极限、导数和微分的计算。 导数的应用 ⒈掌握函数单调性的判别方法,会求函数的单调区间。 ⒉了解函数极值的概念,知道极值存在的必要条件,掌握极值点的判别方法。知道函数的极值点与驻点的区别与联系,会求函数的极值。

微积分(下册)期末试卷与答案

中南民族大学06、07微积分(下)试 卷及参考答案 06年A 卷 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=' )0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,

则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数?? ?? ?=+≠++=0 ,0 0 ,4),(222 222y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8 、若 2211 x y I +≤= ?? , 22212 x y I ≤+≤= ?? , 22324 x y I ≤+≤= ?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分)

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

微积分心得体会范文

微积分心得体会范文 学好微积分的意义有如下几点: 1 重要性 西方分析权威 R. 柯朗说 :" 微积分 , 或者数学分析 , 是人类思维的伟大成果之一 . 它处于自然科学与人文科学之间的地位 , 使它成为高等教育的一种特别有效的工具 . 微积分是人类智力的伟大结晶 . 它给出一整套的科学方法 , 开创了科学的 __ , 并因此加强与加深了数学的作用 . 恩格斯说 :" 在一切理论成就中 , 未必再有什么像 17 世纪下半叶微积分的发现那样被看作人类精神的最高胜利了 . 微积分已成为现代人的基本素养之一 , 微积分将教会你在运动和变化中把握世界 , 它具有将复杂问题化归为简单规律和算法的能力 . 没有微积分很难理解现代社会正在发生的变化 , 很难跟上时代的脚步 . 2 牛顿革命 牛顿把他的书定名为《自然哲学的数学原理》 , 目的在于向世人昭示他将原理数学化的过程 , 即他构造了一种自然哲学 , 而不是一般的哲学 . 牛顿的《自然哲学的数学原理》 , 不仅在原理的发展上 , 在命题的证明和应用上是数学的。在哲学上引出了 " 决定论

" 的世界观 . 那就是 , 大自然有规律 , 我们能够发现它们 . 对这一世界观表达最清楚的是数学家拉普拉斯 . 在他的《概率的哲学导论》中 , 他雄辩地指出 ," 假设有一位智者 , 在任意给定的时刻 , 他都能洞见所有支配自然界的力和组成自然界的存在物的相互位置 , 假使这一智者的智慧巨大到足以使自然界的数据得到分析 , 他就能将宇宙中最大的天体和最小的原子的运动统统纳入单一的公式之中。 " 3 微积分产生的主要因素 当代著名数学家哈尔莫斯说 , 问题是数学的心脏 . 那么促使微积分产生的主要问题是什么呢微积分的创立首先是为了处理下列四类问题 . 1) 已知物体运动的路程与时间的关系 , 求物体在任意时刻的速度和加速度 . 反过来 , 已知物体运动的加速度与速度 , 求物体在任意时刻的速度与路程 . 困难在于 17 世纪所涉及的速度和加速度每时每刻都在变化 . 计算平均速度可用运动的时间去除运动的距离 . 但对瞬时速度 , 运动的距离和时间都是 0, 这就碰到了 0/0 的问题 . 这是人类第一次碰到这样微妙而费解的问题 .

2019最新高等数学(下册)期末考试试题(含答案)ABI

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为R == 设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2.求下列线性微分方程满足所给初始条件的特解: πd 11(1)sin ,1d x y y x y x x x =+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -??????==+=-+?????? ?? 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x =--. 2311(2)(23)1,0x y x y y x ='+-== . 解:2 2323d 3ln x x x x c x --=--+? 2 2 223323d 23 +3ln d 3ln e e e d e d x x x x x x x x x x y x c x c -------??????∴==++???????? 2223311e .e e 22x x x x x c c ----????=?=++ ? ????? 以x =1,y =0代入上式,得12e c =-. 故所求特解为 2311e 22e x y x -??=- ??? . 3.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =??=?,t :0→π2

MATLAB数值微积分

4.1数值微积分 4.1.1近似数值极限及导数 Matlab 数值计算中,没有求极限指令,也没有求导指令,而是利用差分指令: 用一个简单矩阵表现diff和gradient指令计算方式。 差分: Dx=diff(X) 对向量: Dx=X(2:n)-X(1:n-1) 对矩阵: DX=X(2:n,:)-X(1:n-1,:) 长度小1. DIFF(X), for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]. DIFF(X), for a matrix X, is the matrix of row differences, (结果缺少一行) [X(2:n,:) - X(1:n-1,:)]. DIFF(X,N,DIM) is the Nth difference function along dimension DIM. If N >= size(X,DIM), DIFF returns an empty array (N阶差分)

梯度: FX=gradient(F) Fx(1)=Fx(2)-Fx(1); F=[1,2,3;4,5,6;7,8,9] Dx=diff(F) (按行) Dx_2=diff(F,1,2) (按列) [FX,FY]=gradient(F) Fx(1)=Fx(2)-Fx(1), Fx(end)=F(end)-F(end-1) FX与F维数相同。 [FX_2,FY_2]=gradient(F,0.5) %采样间隔0.5 即: Fx(1)=(Fx(2)-Fx(1))/2 F = 1 2 3 4 5 6 7 8 9 Dx = 3 3 3 3 3 3 Dx_2 = 1 1 1 1 1 1 FX = 1 1 1

微积分(下)期末复习题完整版

期末复习题 一、填空题 1、=?→x t t x x 0 20 d cos lim . 2、若)(x f 在],[b a 上连续, 则=?b x x x f x 2d )(d d . 3、已知)(x F 是)(x f 的原函数,则?>+x x t a t f t )0( d )(1 等于 . 4、若2 e x -是)(x f 的一个原函数,则 ='? 10 d )(x x f . 5、 =++?-112d 1| |x x x x . 6、已知2 1)(x x x f +=,则)(x f 在]2,0[上的平均值为 . 7、设 ? =+π0 ),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f . 8、设曲线k x y =(0,0>>x k )与直线1=y 及y 轴围成的图形面积为3 1 ,则=k . 9、设y x y y x y x f arcsin )1()2(),(22---=,则 =??) 1,0(y f . 10、设y x z 2e =,则 =???y x z 2 . 11、交换积分次序 =? ?x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =? ? ---x x y y x f x 11 1 2 2d ),(d . 13、交换积分次序 ? ?-2 210 d ),(d y y x y x f y = . 二、选择题 1、极限x t t x x cos 1d )1ln(lim 2sin 0 -+?→等于( ) (A )1 (B )2 (C )4 (D )8 2、设x x t t f x e d )(d d e 0=?-,则=)(x f ( ) (A) 2 1x (B) 21x - (C) x 2e - (D) x 2e -- 3、设)(x f 是连续函数,且C x F x x f +=?)(d )(,则必有( )B (A ))(d )(x F t t f x a =? (B ))(]d )([x F t t F x a ='? (C ) )(d )(x f t t F x a ='? (D ))()(]d )([a f x f t t F x a -=''?

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

微积分下册期末试卷及答案剖析

1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 0 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分 ) 6 知dx e x p ?∞ +- 0 )1(与?-e p x x dx 1 1ln 均收敛, 则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数?? ?? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义

(D) 在原点二重极限存在,但不等于函数值 8、若 2 211 x y I +≤= ?? ,22212 x y I ≤+≤=??, 22324 x y I ≤+≤= ?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分) 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.

微积分初步课程BBS讨论小结

微积分初步课程BBS讨论小结 2014年06月26日 2014年06月26日19:00至21:00,理工部组织了微积分初步课程期末复习BBS实时讨论,现将讨论情况小结如下: 主持教师:杨芳 讨论时间:2014年06月26日19:00至21:00 讨论主题:微积分初步课程期末复习 参加分校:长沙电大、邵阳电大、永州分校、郴州电大、湘西电大、怀化电大、衡阳电大等7所分校教学点 参加人数:43人 发帖总数:208条 讨论情况:本次实时讨论的课程是计算机类高等专科和数控技术等专业的必修课程《微积分初步》,讨论的主题为:微积分初步课程期末复习,引导学生进行《微积分初步》课程的内容复习,学习方法指导。参与讨论的学生比往年多,就复习中的重难点进行了交流。下面就一些重点问题总结如下: 考核形式与考核成绩确定,考核形式:作业考核和期末考试相结合。 考核成绩:满分为100分,60分为及格,其中平时作业成绩占考核成绩的30%,期末考试成绩占考核成绩的70% 在考题中为学生提供导数与积分的基本公式。 一、函数、极限与连续考核要求 1.了解常量和变量的概念;理解函数的概念;了解初等函数和分段函数的概念.熟练掌握求函数的定义域、函数值的方法;掌握将复合函数分解成较简单函数的方法。

2.了解极限概念,会求简单极限。 3.了解函数连续的概念,会判断函数的连续性,并会求函数的间断点。 二、导数与微分部分考核要求 1.了解导数概念,会求曲线的切线方程. 2.熟练掌握求导数的方法(导数基本公式、导数的四则运算法则、复合函数求导法则),会求简单的隐函数的导数. 3.了解微分的概念,掌握求微分的方法. 4.了解高阶导数的概念,掌握求显函数的二阶导数的方法. 三、导数应用考核要求 1.掌握函数单调性的判别方法. 2.了解极值概念和极值存在的必要条件,掌握极值判别的方法. 3.掌握求函数最大值和最小值的方法. 四、一元函数积分考核要求 1.理解原函数与不定积分的概念、性质,掌握积分基本公式,掌握用直接积分法、第一换元积分法和分部积分法求不定积分的方法. 2.了解定积分的概念、性质,会计算一些简单的定积分. 3.了解广义积分的概念,会计算简单的无穷限积分。 五、积分应用考核要求 1.会用定积分计算简单的平面曲线围成图形的面积(直角坐标系)和绕坐标轴旋转生成的旋转体体积. 2.了解微分方程的几个概念,掌握变量可分离的微分方程和一阶线性微分方程的解法. 试题类型分为单项选择题、填空题、计算题和应用题。单项选择题的形式为四选一,即在每题的四个备选答案中选出一个正确答案;填空题只要求直接填写结果,不必写出计算过程和推理过程;计算题和应用题要求写出演算步骤。三种题型分数的百分比为:单项选择题20%,填空题20%,计算题44%,应用题16%。 期末考试采用闭卷笔试形式,卷面满分为100分,考试时间为90分钟。 考试时不得携带除书写用具以外的任何其它用具。 祝同学们成功!希望大家取得好成绩!

第数值微积分

第五章数值微积分 一、内容分析与教学建议 本意内容是数值微积分。数值微分包括:用插值多项式求数值微分、用三次样条函数求数值微分和用Richardson外推法求数值微分。数值积分包括:常见的Newton-Cotes求积公式,如:梯形公式、Simpson公式和Cotes公式;复化求积公式;Romberg求积公式和Gauss型求积公式等内容。 (一)数值微分 1、利用Taylor展开式建立数值微分公式,实际上是利用导数的离散化,即用差商近似代替导数,在由Taylor公式的余项估计误差;由于当步长h很小时,回出现两个非常接近的数相减,因此,在实际运用中往往采用事后估计的方法来估计误差。 2、用插值多项式求数值微分,主要是求插值节点处的导数的近似值。借助第二章的Lagrange插值公式及其余项公式,确定插值节点处的导数的近似值及其误差。常用的有三点公式和五点公式。 3、阐明用三次样条函数s(x)求数值微分的优点:由第三章的三次样条函数s(x)的性质知:只要f(x)的4阶导数连续,则当步长h 0时,s(x)收敛到f (x) , s(x)收敛到f (x) , s (x) 收敛到f (x).因此,用三次样条函数s(x)求数值微分,效果是很好的。指出其缺点是:需要解方程组,当h很小时,计算量较大。 4、讲解用Richardson外推法求数值微分时,首先阐明方法的理论基础是导数的离散化,即用差商近似代替导数;然后重点讲解外推法的思想和推导过程,因为这种方法和思路在后面的数值积分和微分方程数值解中还要用到。

(二)数值积分的一般概念 1、由定积分的几何意义引入数值积分的思想,介绍求积公式、求积节点、求积系数、余项等基本概念。 2、重点介绍代数精度以及如何求一个判定积公式的代数精度,并举例说明。 3、介绍插值型求积公式以及插值型求积公式的代数精度的特点。 (三)等距节点的求积公式 1、简单介绍一般的等距节点的插值型求积公式--- Newton-Cotes公式以及Cotes系数。 2、重点介绍几种常用的Newton-Cotes公式:梯形公式、Simpson公式和Cotes公式。要求学生掌握上述三种求积公式的表达式,并了解三种求积公式各自的余项。 3、以Simpson公式为例,求出它的代数精度是3;并要求学生课后自己求出梯形公式和Cotes公式的代数精度。 (四)复化求积公式 1、结合分段插值的思想阐明复化求积公式的思想。 2、重点介绍复化梯形公式、复化Simpson公式和复化Cotes公式以及它们各自的余项,并举一、两个例子加以说明。 3、简介事后估计和自适应Simpson方法。 (五)Romberg求积法 1、Romberg求积法是一种逐步分半加速法,它是以复化梯形公式为基础构造高精度求

相关主题
文本预览
相关文档 最新文档