当前位置:文档之家› 材料科学基础习题及答案

材料科学基础习题及答案

材料科学基础习题及答案
材料科学基础习题及答案

第一章 材料科学基础

1.作图表示立方晶体的()()()421,210,123晶面及[][

][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3

Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:

1)当CN=4时,其半径为多少?2)当CN=8时,其半径为多少?

6.试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?

7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的(100),

(110)及(111)平面上12mm 中各有多少个原子。

8.石英()2SiO 的密度为2.653Mg/m 。试问: 1)13

m 中有多少个硅原子(与氧原子)?

2)当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?

9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在

900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?

2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。

12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑移面垂直。位错的柏氏矢量b 与de 平行而与ef 垂直。试问:1)欲使de 段位错在ABCD 滑移面上运动而ef 不动,应对晶体施加怎样的应力?2)在上述应力作用下de 位错线如何运动?晶体外形如何变化?

13.设面心立方晶体中的)111(为滑移面,位错滑移后的滑移矢量为[]1012a 。

1)在晶胞中画出柏氏矢量b 的方向并计算出其大小。

2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。

14. 判断下列位错反应能否进行。 1)];111[3]211[6]110[2a a a →+2) ];110[2]101[2]100[a a a +→ 3) ];111[6]111[2]112[3a a a →+4) ].111[2]111[2]100[a a a +→

15. 若面心立方晶体中有b =]011[2a 的单位位错及b =]112[6a 的不全位错,此二位

错相遇产生位错反应。1)问此反应能否进行?为什么?2)写出合成位错的柏氏矢量,并说明合成位错的类型。

16.若已知某晶体中位错密度376cm /cm 10~10=ρ。1)由实验测得F-R 位错源的

平均长度为cm 104-,求位错网络中F-R 位错源的数目。2)计算具有这种F-R 位

错源的镍晶体发生滑移时所需要的切应力。已知Ni 的10109.7?=G Pa ,

nm 350.0=a 。

17.已知柏氏矢量b=0.25nm ,如果对称倾侧晶界的取向差θ=1°及10°,求晶界上位错之间的距离。从计算结果可得到什么结论?

18. 由n 个刃型位错组成亚晶界,其晶界取向差为0.057°。设在形成亚晶界之前位错间无交互作用,试问形成亚晶界后,畸变能是原来的多少倍(设

;10,10804--===b r R 形成亚晶界后,

θb

D R ≈=)? 19. 用位错理论证明小角度晶界的晶界能γ与位向差θ的关系为()θθγγln 0-=A 。式中0γ和A 为常数。

20.简单回答下列各题。

1)空间点阵与晶体点阵有何区别?

2)金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?

3)原子半径与晶体结构有关。当晶体结构的配位数降低时原子半径如何变化?

4)在晶体中插入柱状半原子面时能否形成位错环?

5)计算位错运动受力的表达式为b f τ=,其中τ是指什么?

6)位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向应是什么方向?

7)位错线上的割阶一般如何形成?

8)界面能最低的界面是什么界面?

9)“小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?

答案

1.有关晶面及晶向附图2.1所示。

2.见附图2.2所示。

3. {100}=(100)十(010)+(001),共3个等价面。

{110}=(110)十(101)+(101)+(011)+(011)+(110),共6个等价面。 {111}=(111)+(111)+(111)+(111),共4个等价面。

)121()112()112()211()112()121( )

211()121()211()211()121()112(}112{+++++++++++=共12个等价面。

4.单位晶胞的体积为V Cu =0.14 nm 3(或1.4×10-28m 3)

5.(1)0.088 nm ;(2)0.100 nm 。

6.Cu 原子的线密度为2.77×106个原子/mm 。Fe 原子的线密度为3.50×106个原子/mm 。

7.1.6l ×l013个原子/mm 2;1.14X1013个原子/mm 2;1.86×1013个原子/mm 2。

8.(1) 5.29×1028个矽原子/m 3; (2) 0.33。

9.9. 0.4×10-18/个原子。

10.1.06×1014倍。

11.(1) 这种看法不正确。在位错环运动移出晶体后,滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。位错环的柏氏矢量为b ,故其相对滑移了一个b 的距离。(2) A'B'为右螺型位错,C'D'为左螺型位错;B'C'为正刃型位错,D'A'为负刃型位错。位错运动移出晶体后滑移方向及滑移量如附图2.3所示。

12(。1)应沿滑移面上、下两部分晶体施加一切应力τ0,的方向应与de 位错

线平行。(2)在上述切应力作用下,位错线de 将向左(或右)移动,即沿着与

位错线de 垂直的方向(且在滑移面上)移动。在位错线沿滑移面旋转360°后,在晶体表面沿柏氏矢量方向产生宽度为一个b 的台阶。

13.(1)]101[2a b =,其大小为

a b 22||=,其方向见附图2.4所示。 (2) 位错线方向及指数如附图2.4所示。

14.(1) 能。几何条件:∑b 前=∑b 后=]111[3a ;能量条件:∑b 前2=232a >∑b

后2=231a (2) 不能。能量条件:∑b 前2=∑b 后2,两边能量相等。

(3) 不能。几何条件:∑b 前=a/6[557],∑b 后=a/6[11ˉ1],不能满足。

(4) 不能。能量条件:∑b 前2=a 2 < ∑b 后2=223a ,即反应后能量升高。

15.(1) 能够进行。因为既满足几何条件:∑b 前=∑b 后=]111[3a ,又满足能

量条件:∑b 前2=232a >∑b 后2=

231a (2) b 合=]111[3a ;该位错为弗兰克不全位错。

16.(1)假设晶体中位错线互相缠结、互相钉扎,则可能存在的位错源数目11

1010~10==l n ρ

个/Cm 3。(2) τNi =1.95×107 Pa 。

17.当θ=1°,D =14 nm ;θ=10°,D =1.4 nm 时,即位错之间仅有5~6个原子间距,此时位错密度太大,说明当θ角较大时,该模型已不适用。

18.畸变能是原来的0.75倍 (说明形成亚晶界后,位错能量降低)。

19.设小角度晶界的结构由刃型位错排列而成,位错间距为D 。晶界的能量γ由位错的能量E 构成,设l 为位错线的长度,由附图2.5可知,D E Dl El ==γ

由位错的能量计算可知,中心E r R Gb E +-=02ln )1(4νπ取R =D (超过D 的地方,应力场

相互抵消),r 0=b 和θ=b/D 代入上式可得:

)ln (1ln )1(4 ]ln )1(4[02θθγθθυπθυπθ

γ-=+-=+-A b E b G E b D Gb b 中心中心=式中Gb E Gb 中心,=)1(4A )

1(40υπυπγ-=- 20.(1)晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。

(2) 密排六方结构。

(3) 原子半径发生收缩。这是因为原子要尽量保持自己所占的体积不变或少变 [原子所占体积V A =原子的体积(4/3πr 3+间隙体积],当晶体结构的配位

数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。(4) 不能。因为位错环是通过环内晶体发生滑移、环外晶体不滑移才能形成。

(5) 外力在滑移面的滑移方向上的分切应力。(6) 始终是柏氏矢量方向。(7) 位错的交割。(8) 共格界面。(9) 否,扭转晶界就由交叉的同号螺型位错构成。

第二章

1.说明间隙固熔体与间隙化合物有什么异同。

2.有序合金的原子排列有何特点?这种排列和结合键有什么关系?为什么许多有序合金在高温下变成无序?

3.已知Cd,Zn,Sn,Sb 等元素在Ag 中的固熔度(摩尔分数)极限分别为

210/5.42-=Cd x ,210/20-=Zn x ,210/12-=Sn x ,2

10/7-=Sb x ,它们的原子直径分别

为0.3042nm ,0.314nm ,0.316nm ,0.3228nm ,Ag 为0.2883nm 。试分析其固熔度(摩尔分数)极限差别的原因,并计算它们在固熔度(摩尔分数)极限时的电子浓度。

4.试分析H 、N 、C 、B 在-αFe 和-γFe 中形成固熔体的类型、存在位置和固溶度(摩尔分数)。各元素的原子半径如下:H 为0.046nm ,N 为0.071nm ,C 为0.077nm ,B 为0.091nm ,-αFe 为0.124nm , -γFe 为0.126 nm 。

5.金属间化合物AlNi 具有CsCl 型结构,其点阵常数 a=0.2881nm,试计算其密度(Ni 的相对原子质量为58.71,Al 的相对原子质量为2

6.98)。

6.ZnS 的密度为4.13Mg/m ,试由此计算两离子的中心距离。

7.碳和氮在-γFe 中的最大固熔度(摩尔分数)分别为210/9.8-=C x ,

210/3.10-=N x 。已知C 、N 原子均位于八面体间隙,试分别计算八面体间隙被

C 、N 原子占据的百分数。

8.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?

9.计算在NaCl 内,钠离子的中心与下列各离子中心的距离(设+Na 和-Cl 的半

径分别为0.097nm 和0.181nm )。1)最近邻的正离子;2) 最近邻的离子;3)

次邻近的-Cl 离子;4)第三邻近的-Cl 离子;5)最邻近的相同位置。

10. 某固熔体中含有氧化镁为2MgO 10/30-=x ,2LiF 10/70-=x 。1) 试问-22O ,F ,Mg ,Li =++之质量分数为多少?2) 假设MgO 的密度为3.63g/cm ,LiF 的密

度为2.63g/cm ,那么该固溶体的密度为多少?

11. 非晶形材料的理论强度经计算为G/6~G/4,其中G 为剪切模量。若ν=0.25,由其弹性性质试估计玻璃(非晶形材料)的理论强度(已知E=70000Mpa )。

12. 一陶瓷绝缘体在烧结后含有1%(以容积为准)的孔,其孔长为13.7mm 的立方体。若在制造过程中,粉末可以被压成含有24%的孔,则模子的尺寸应该是多少?

13. 一有机化合物,其成分为

2C 10/1.62w -=,2H 10/3.10w -=,2O 10/6.27w -=。

试写出可能的化合物名称。 14. 画出丁醇()OH H C 94的4种可能的异构体。

20. 试述硅酸盐结构的基本特点和类型。

21. 为什么外界温度的急剧变化可以使许多陶瓷器件开裂或破碎?

22. 陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。

答案

1. 其比较如附表2.1所示。

附表2.1 间隙固溶体与间隙化合物的比较

2.有序固熔体,其中各组元原子分别占据各自的布拉菲点阵——称为分点阵,整个固熔体就是由各组元的分点阵组成的复杂点阵,也叫超点阵或超结构。这种排列和原子之间的结合能(键)有关。结合能愈大,原子愈不容易结合。如果异类原子间结合能小于同类原子间结合能,即E AB < (E AA十E BB)/2,则熔质原子呈部分有序或完全有序排列。有序化的推动力是混合能参量(εm=εAB-1/2(E AA+E BB))εm < 0,而有序化的阻力则是组态熵;升温使后者对于自由能的贡献(-TS)增加,达到某个临界温度以后,则紊乱无序的固熔体更为稳定,有序固熔体消失,而变成无序固熔体。

3.在原子尺寸因素相近的情况下,上述元素在Ag中的固熔度(摩尔分数)受原子价因素的影响,即价电子浓度e/a是决定固熔度(摩尔分数)的一个重要因素。它们的原子价分别为2,3,4,5价,Ag为1价,相应的极限固熔度时的电子浓度可用公式c=Z A(1一x B)+Z B x B计算。式中,Z A,Z B分别为A,B组元的价电子数;x B为B组元的摩尔分数。上述元素在固溶度(摩尔分数)极限时的电子浓度分别为1.43,1.42,1.39,1.31。

4.Α-Fe为体心立方点阵,致密度虽然较小,但是它的间隙数目多且分散,因而间隙半径很小:r四=0.291,R=0.0361nm;r八=0.154,R=0.0191nm。H,N,C,B等元素熔人。α-Fe中形成间隙固熔体,由于尺寸因素相差很大,所以固熔度(摩尔分数)都很小。例如N在α-Fe中的固熔度(摩尔分数)在590℃时达到最大值,约为W N=0.1/l0-2,在室温时降至W N=0.001/l0-2;C 在α-Fe中的固溶度(摩尔分数)在727℃时达最大值,仅为W C=0.02l8/10-2,在室温时降至W C=0.006/10-2。所以,可以认为碳原子在室温几乎不熔于α-Fe中,微量碳原子仅偏聚在位错等晶体缺陷附近。假若碳原子熔入。α-Fe 中时,它的位置多在α-Fe的八面体间隙中心,因为。α-Fe中的八面体间隙是不对称的,形为扁八面体,[100]方向上间隙半径r=0.154R,而在[110]方向上,r=0.633R,当碳原子熔入时只引起一个方向上的点阵畸变。硼原子较大,熔人间隙更为困难,有时部分硼原子以置换方式熔人。氢在α-Fe 中的固熔度(摩尔分数)也很小,且随温度下降时迅速降低。以上元素在γ

-Fe。中的固熔度(摩尔分数)较大一些。这是因为γ-Fe具有面心立方点阵,原子堆积致密,间隙数目少,故间隙半径较大:r A=0.414,R=0.0522nm;r

0.225,R=0.0284 nm。故上述原子熔入时均处在八面体间隙的中心。如四=

碳在γ-Fe中最大固熔度(质量分数)为W C=2.1l/10-2;氮在γ-Fe中的最大固熔度(质量分数)约为W N=2.8/10-2。

5.密度ρ=5.97 g/cm3。

6.两离子的中心距离为0.234 nm。

7.碳原子占据10.2%的八面体间隙位置;氮原子占据12.5%的八面体间隙位置。

8.这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。

9. (1)0.278 nm ;(2)0.393 nm(3)0.482 nm ;(4)0.622 nm ;(5)0.393 nm 。

10.(1)WLi+=16/10-2,WMg2+=24/1020,WF-=44/10-2,WO2—=16/10-2

(2)该固熔体的密度ρ=2.9 g /cm3。

11.故理论强度介于44.0~6

4.0E E 之间,即4900~7000 MPa 12.模子的尺寸l =1

5.0 mm 。

13.1:6:37.1:2.10:2.5994.156.27:00797.13.10:011.121.62::≈==O H C

故可能是丙酮。

14. 画出丁醇(C 4H 9OH)的4种可能的异构体如下:

20.硅酸盐结构的基本特点:(1)硅酸盐的基本结构单元是[Si04]四面体,硅原子位于氧原子四面体的间隙中。硅—氧之间的结合键不仅是纯离子键,还有相当的共价键成分。(2)每一个氧最多只能被两个[Si04]四面体所共有。(3)[Si04]四面体可以是互相孤立地在结构中存在,也可以通过共顶点互

相连接。(4)Si —O--Si 的结合键形成一折线。硅酸盐分成下列几类:(1)含有有限硅氧团的硅酸盐;(2)链状硅酸盐;(3)层状硅酸盐;(4)骨架状硅酸盐。

21.因为大多数陶瓷主要由晶相和玻璃相组成,这两种相的热膨胀系数相差较大,由高温很快冷却时,每种相的收缩不同,所造成的内应力足以使陶瓷器件开裂或破碎。

22.陶瓷材料中主要的结合键是离子键及共价键。由于离子键及共价键很强,故陶瓷的抗压强度很高,硬度极高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好,耐高温,化学稳定性高。

第三章

1.试述结晶相变的热力学条件、动力学条件、能量及结构条件。

2.如果纯镍凝固时的最大过冷度与其熔点(t m=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol)

3.已知Cu的熔点t m=1083℃,熔化潜热L m=1.88×103J/cm3,比表面能σ=1.44×105J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。

4.试推导杰克逊()方程

5.铸件组织有何特点?

6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?

7.已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。

8.欲获得金属玻璃,为什么一般选用液相线很陡,从而有较低共晶温度的二元系?

9.比较说明过冷度、临界过冷度、动态过冷度等概念的区别。

10.分析纯金属生长形态与温度梯度的关系。

11.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何?

12.简述纯金属晶体长大的机制。

13.试分析单晶体形成的基本条件。

14.指出下列概念的错误之处,并改正。

(1)所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。

(2)金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。

(3)在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

(4)在任何温度下,液相中出现的最大结构起伏都是核。

(5)所谓临界晶核,就是体系自由能的减少完全补偿表面自由能的增加时的晶胚的大小。

(6)在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。

(7)测定某纯金属铸件结晶时的最大过冷度,其实测值与用公式ΔT=0.2T m计算值基本一致。

(8)某些铸件结晶时,由于冷却较快,均匀形核率N1提高,非均匀形核率N2也提高,故总的形核率为N= N1 +N2。

(9)若在过冷液体中,外加10 000颗形核剂,则结晶后就可以形成10 000颗晶粒。

(10)从非均匀形核功的计算公式A 非=A 均

)(4cos cos 323θθ+-中可以看出,当润湿角θ=00时,非均匀形核的形核功最大。

(11)为了生产一批厚薄悬殊的砂型铸件,且要求均匀的晶粒度,则只要在工艺上采取加形核剂就可以满足。

(12)非均匀形核总是比均匀形核容易,因为前者是以外加质点为结晶核心,不象后者那样形成界面,而引起自由能的增加。

(13)在研究某金属细化晶粒工艺时,主要寻找那些熔点低、且与该金属晶格常数相近的形核剂,其形核的催化效能最高。

(14)纯金属生长时,无论液-固界面呈粗糙型或者是光滑型,其液相原子都是一个一个地沿着固相面的垂直方向连接上去。

(15)无论温度如何分布,常用纯金属生长都是呈树枝状界面。

(16)氮化铵和水溶液与纯金属结晶终了时的组织形态一样,前者呈树枝晶,后者也呈树枝晶。

(17)人们是无法观察到极纯金属的树枝状生长过程,所以关于树枝状的生长形态仅仅是一种推理。

(18)液体纯金属中加入形核剂,其生长形态总是呈树枝状。

(19)纯金属结晶时若呈垂直方式长大,其界面时而光滑,时而粗糙,交替生长。

(20)从宏观上观察,若液-固界面是平直的称为光滑界面结构,若是金属锯齿形的称为粗糙界面结构。

(21)纯金属结晶时以树枝状形态生长,或以平面状形态生长,与该金属的熔化熵无关。

(22) 金属结晶时,晶体长大所需要的动态过冷度有时还比形核所需要的临界过冷度大。

答案

1.分析结晶相变时系统自由能的变化可知,结晶的热力学条件为G<0;由单位体积自由能的变化Tm T

Lm G B ?-=?可知,只有T>0,才有GB<0。即只有过

冷,才能使G<0。动力学条件为液—固界面前沿液体的温度T

时,还有1/3的表面能必须由液体中的能量起伏来提供。液体中存在的结构起伏,是结晶时产生晶核的基础。因此,结构起伏是结晶过程必须具备的结构条件。

2. 凝固驱动力G =一3253.5 J /mol 。

3. (1)r k =9.03X10-10 m ; (2)n=261个。

4.所谓界面的平衡结构,是指在界面能最小的条件下,界面处于最稳定状态。其问题实质是分析当界面粗糙化时,界面自由能的相对变化。为此,作如下假定:(1) 液、固相的平衡处于恒温条件下;(2) 液、固相在界面附近结构相同;(3) 只考虑组态熵,忽略振动嫡。

设N 为液、固界面上总原子位置数,固相原子位置数为n ,其占据分数为x =n/N ;界面上空位分数为1一x ,空位数为N(1一x)。形成空位引起内能和结构熵的变化,相应引起表面吉布斯自由能的变化为

S T u S T S P u S T H Gs ?-?≈?-?+?=?-?=?)(形成N(1一x)个空位所增加的内能由其所断开的固态键数和一对原子的键能的乘积决定。内能的变化为)1(x x L N u m -=?ξ式中ξ与晶体结构有关,称为晶体学因子。

其次,求熵变。由熵变的定义式,则有

)]!1([)!(!ln )]!([)!(!ln x N Nx N k Nx N Nx N k S -=-=?按striling 近似式展开,当N 很大时,得S =一kN [xlnx+(1一x)In(1一x)]最后,计算液—固界面上自由能总的变化,即)]1ln()1(ln [)1(x x x x N kT x x L N S T u Gs m m m --++-=?-?=?ξ 所以:)1ln()1(ln )1(x x x x x x kTm L NkT Gs m m --++-=?ξ令:

m m

kT L ξα= 所以:)1ln()1(ln )1(x x x x x x NkT Gs m --++-=?α

5.在铸锭组织中,一般有三层晶区:(1)最外层细晶区。其形成是由于模壁的温度较低,液体的过冷度交大,因此形核率较高。(2)中间为柱状晶区。其形成是由于模壁的温度升高,晶核的成长速率大于晶核的形核率,且沿垂直于模壁风向的散热较为有利。在细晶区中取向有利的晶粒优先生长为柱状晶粒。(3)中心为等轴晶区。其形成是由于模壁温度进一步升高,液体过冷度进一步降低,剩余液体的散热方向性已不明显,处于均匀冷却状态;同时,未熔杂质、破断枝晶等易集中于剩余液体中,这些都促使了等轴晶的形成。应该指出,铸锭的组织并不是都具有3层晶区。由于凝固条件的不同,也会形成在铸锭中只有某一种晶区,或只有某两种晶区。

6.固态金属熔化时不一定出现过热。如熔化时,液相若与汽相接触,当有少量液体金属在固相表面形成时,就会很快复盖在整个表面(因为液体金属总是润湿同一种固体金属),由附图2.6表面张力平衡可知SV SL LV r r r =+θcos ,而实验指出SV SL LV r r r <+,说明在熔化时,自由能的变化aG(表面)

化时液相不与汽相接触,则有可能使固体金属过热,然而,这在实际上是难以做到的。

7.LDPE 的自由空间为g cm g cm g cm /097.001.1192.0133

3=-;HDPE 的自由空间为

g cm g cm g cm /052.001.1196.0133

3=-

8.金属玻璃是通过超快速冷却的方法,抑制液—固结晶过程,获得性能异常的非晶态结构。玻璃是过冷的液体。这种液体的黏度大,原子迁移性小,因而难于结晶,如高分子材料(硅酸盐、塑料等)在一般的冷却条件下,便可获得玻璃态。金属则不然。由于液态金属的黏度低,冷到液相线以下便迅速结晶,因而需要很大的冷却速度(估计>1010℃/s)才能获得玻璃态。为了在较低的冷速下获得金属玻璃,就应增加液态的稳定性,使其能在较宽的温度范围存在。实验证明,当液相线很陡从而有较低共晶温度时,就能增加液态的稳定性,故选用这样的二元系(如Fe —B ,Fe —C ,h —P ,Fe —Si 等)。为了改善性能,可以加入一些其他元素(如Ni ,Mo ,Cr ,Co 等)。这类金属玻璃可以在10’一10‘℃/s 的冷速下获得。

9.实际结晶温度与理论结晶温度之间的温度差,称为过冷度(T =Tm 一Tn)。它是相变热力学条件所要求的,只有AT>0时,才能造成固相的自由能低于液相自由能的条件,液、固相间的自由能差便是结晶的驱动力。过冷液体中,能够形成等于临界晶核半径的晶胚时的过冷度,称为临界过冷度(T*)。显然,当实际过冷度TT*时,才能均匀形核。所以,临界过冷度是形核时所要求的。晶核长大时,要求液—固界面前沿液体中有一定的过冷,才能

满足(dN /dt)F >(dN /dt)M ,这种过冷称为动态过冷度(T k =Tm 一T i ),它是晶体长大的必要条件。

10.纯金属生长形态是指晶体宏观长大时界面的形貌。界面形貌取决于界面前沿液体中的温度分布。(1)平面状长大:当液体具有正温度梯度时,晶体以平直界面方式推移长大。此时,界面上任何偶然的、小的凸起伸入液体时,都会使其过冷度减小,长大速率降低或停止长大,而被周围部分赶上,因而能保持平直界面的推移。长大中晶体沿平行温度梯度的方向生长,或沿散热的反方向生长,而其他方向的生长则受到抑制。(2) 树枝状长大:当液体具有负温度梯度时,在界面上若形成偶然的凸起伸入前沿液体时,由于前方液体有更大的过冷度,有利于晶体长大和凝固潜热的散失,从而形成枝晶的一次轴。一个枝晶的形成,其潜热使邻近液体温度升高,过冷度降低,因此,类似的枝晶只在相邻一定间距的界面上形成,相互平行分布。在一次枝晶处的温度比枝晶间温度要高,如附图2.7(a)中所示的AA 断面上丁A>丁n ,这种负温度梯度使一次轴上又长出二次轴分枝,如附图2.7(b)所示。同样,还会产生多次分枝。枝晶生长的最后阶段,由于凝固潜热放出,使枝晶周围的液体温度升高至熔点以上,液体中出现正温度梯度,此时晶体长大依靠平界面方式推进,直至枝晶间隙全部被填满为止。

11.根据自由能与晶胚半径的变化关系,可以知道半径r

核;r>r k 的晶胚才有可能成核;而r =r k 的晶胚既可能消失,也可能稳定长

大。因此,半径为“的晶胚称为临界晶核。其物理意义是,过冷液体中涌现出来的短程有序的原子团,当其尺寸r ≥r k 时,这样的原子团便可成为晶核

而长大。临界晶核半径r k ,其大小与过冷度有关,则有T L T r m m k ?=1

12.晶体长大机制是指晶体微观长大方式,它与液—固界面结构有关。具有粗糙界面的物质,因界面上约有50%的原子位置空着,这些空位都可接受原子,故液体原子可以单个进入空位,与晶体相连接,界面沿其法线方向垂直推移,呈连续式长大。具有光滑界面的晶体长大,不是单个原子的附着,而是以均匀形核的方式,在晶体学小平面界面上形成一个原子层厚的二维晶核与原界面间形成台阶,单个原子可以在台阶上填充,使二维晶核侧向长大,在该层填满后,则在新的界面上形成新的二维晶核,继续填满,如此反复进行。若晶体的光滑界面存在有螺型位错的露头,则该界面成为螺旋面,并形成永不消失的台阶,原子附着到台阶上使晶体长大。

13.形成单晶体的基本条件是使液体金属结晶时只产生一个核心(或只有一个核心能够长大)并长大成单晶体。

14.(1)……在冷却曲线上出现的实际结晶温度与熔点之差……液-固界面前沿液态中的温度与熔点之差。(2)……使体系自由能减小……(3)在过冷液体中,液态金属中出现的……(4)在一定过冷度(>厶了’)下……(5)……就是体系自由能的减少能够补偿2/3表面自由能……(6)……不能成核,即便是有足够的能量起伏提供,还是不能成核。(7)测定某纯金属均匀形核时的有效过冷度……(8)……那么总的形核率N=N2。(9)……则结晶后就可以形成数万颗晶粒。(10)……非均匀形核的形核功最小。(11)……则只要在工艺上采取对厚处加快冷却(如加冷铁)就可以满足。(12)……因为前者是以外加质点为基底,形核功小……(13)……主要寻找那些熔点高,且……(14)……若液—固界面呈粗糙型,则其液相原子……(15)只有在负温度梯度条件下,常用纯金属……(16)……结晶终了时的组织形态不同,前者呈树枝晶(枝间是水),后者呈一个个(块状)晶粒。(17)……生长过程,但可以通.过实验方

法,如把正在结晶的金属剩余液体倒掉,或者整体淬火等进行观察,所以关于树枝状生长形态不是一种推理。(18)……其生长形态不会发生改变。

(19)……其界面是粗糙型的。(20)……平直的称为粗糙界面结构……锯齿形的称为平滑界面结构。(21)……因还与液—固界面的结构有关,即与该金属的熔化熵有关。(22)……增加,但因金属的过冷能力小,故不会超过某一极大值……(23)……动态过冷度比形核所需要的临界过冷度小。

第四章

1.在Al-Mg 合金中,x Mg =0.05,计算该合金中Mg 的质量分数(w Mg )(已知Mg 的

相对原子质量为24.31,Al 为26.98)。

2.已知Al-Cu 相图中,K =0.16,m =3.2。若铸件的凝固速率R =3×10-4 cm/s ,温度梯度G =30℃/cm ,扩散系数D =3×10-5cm 2/s ,求能保持平面状界面生长的合金中W Cu 的极值。

3.证明固溶体合金凝固时,因成分过冷而产生的最大过冷度为: 最大过冷度离液—固界面的距离为:

??????-=GDK R K mw R D x Cu C )1(ln 0式中m —— 液相线斜率;w C0

Cu —— 合金成分;K ——

平衡分配系数;G —— 温度梯度;D —— 扩散系数;R —— 凝固速率。 说明:液体中熔质分布曲线可表示为:

????????? ??--+=x D R K K w C Cu C L exp 110 4.Mg-Ni 系的一个共晶反应为:

设w 1

Ni =C 1为亚共晶合金,w 2Ni =C 2为过共晶合金,这两种合金中的先共晶相的

质量分数相等,但C 1合金中的α总量为C 2合金中α总量的2.5倍,试计算C 1和C 2的成分。

5.在图4—30所示相图中,请指出:(1) 水平线上反应的性质;(2) 各区域的组织组成物;(3) 分析合金I,II的冷却过程;(4) 合金工,II室温时组织组成物的相对量表达式。

6.根据下列条件画出一个二元系相图,A和B的熔点分别是1000℃和700℃,含w B=0.25的合金正好在500℃完全凝固,它的平衡组织由73.3%的先共晶。和26.7%的(α+β)共晶组成。而w B=0.50的合金在500℃时的组织由40%的先共晶α和60%的(α+β)共晶组成,并且此合金的α总量为50%。

7.图4-31为Pb-Sb相图。若用铅锑合金制成的轴瓦,要求其组织为在共晶体基体上分布有相对量为5%的β(Sb)作为硬质点,试求该合金的成分及硬度(已知α(Pb)的硬度为3HB,β(Pb)的硬度为30HB)。

8.参见图4-32 Cu-Zn相图,图中有多少三相平衡,写出它们的反应式。分析含w Zn=0.40的Cu-Zn合金平衡结晶过程中主要转变反应式及室温下相组成物与组织组成物。

9.计算含碳w C=0.04的铁碳合金按亚稳态冷却到室温后,组织中的珠光体、二次渗碳体和莱氏体的相对量;并计算组织组成物珠光体中渗碳体和铁素体、莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量。

10.根据显微组织分析,一灰口铁内石墨的体积占12%,铁素体的体积占88%,试求Wc为多少(已知石墨的密度ρG=2.2g/cm3,铁素体的密度ρα=7.8g/cm3)。

11.汽车挡泥板应选用高碳钢还是低碳钢来制造

12.当800℃时,

(1) Fe-0.002 C的钢内存在哪些相(2) 写出这些相的成分;(3) 各相所占的分率是多少?

13.根据Fe-Fe3C相图(见图4-33),

(1) 比较w C=0.004的合金在铸态和平衡状态下结晶过程和室温组织有何不同;

(2) 比较wc=0.019的合金在慢冷和铸态下结晶过程和室温组织的不同;

(3) 说明不同成分区域铁碳合金的工艺性。

14.550℃时有一铝铜合金的固熔体,其成分为x C=0.02。此合金先被淬火,然后重新加热到100℃以便析出θ。此θ(CuAl2:)相发展成许多很小的颗粒弥散分布于合金中,致使平均颗粒间距仅为5.0nm。

(1) 请问1mm3合金内大约形成多少个颗粒

(2) 如果我们假设100℃时α中的含Cu量可认为是零,试推算每个9颗粒内有多少个铜原子(已知Al的原子半径为0.143 nm)。

15.如果有某Cu-Ag合金(W Cu=0.075,W Ag=0.925) 1000g,请提出一种方案,可从该合金内提炼出100g的Ag,且其中的含Cu量w Cu<0.02(假设液相线和固相线均为直线)。

16.已知和渗碳体相平衡的α-Fe,其固溶度方程为:

假设碳在奥氏体中的固熔度方程也类似于此方程,试根据Fe-Fe3C相图写出该方程。

17.一碳钢在平衡冷却条件下,所得显微组织中,含有50%的珠光体和50%的铁素体,问:

(1) 此合金中含碳质量分数为多少

(2) 若该合金加热到730℃,在平衡条件下将获得什么组织

(3) 若加热到850℃,又将得到什么组织

18.利用相律判断图4-34所示相图中错误之处。

材料科学基础期末考试历届考试试题复习资料

四川理工学院试卷(2009至2010学年第1学期) 课程名称:材料科学基础 命题教师:罗宏 适用班级:2007级材料科学与工程及高分子材料专业 考试(考查) 年 月 日 共 页 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试题答案及评分标准 得分 评阅教师 一、判断题:(10分,每题1分,正确的记错误的记“%” 1?因为晶体的排列是长程有序的,所以其物理性质是各向同性。 (% 2. 刃型位错线与滑移方向垂直。(话 3. 莱氏体是奥氏体和渗碳体的片层状混合物。(X ) 4?异类原子占据空位称为置换原子,不会引起晶格畸变。 (X 5. 电子化合物以金属键为主故有明显的金属特性。 (话 6. 冷拉后的钢条的硬度会增加。(话 7. 匀晶系是指二组元在液态、固态能完全互溶的系统。 (话 题号 -一- -二二 三 四 五 六 七 八 总分 评阅(统分”教师 得分 :题 * 冷 =要 密;

8.根据菲克定律,扩散驱动力是浓度梯度,因此扩散总是向浓度低的方向进行。(X

9. 细晶强化本质是晶粒越细,晶界越多,位错的塞积越严重,材料的强度也就 越高。(V ) 10. 体心立方的金属的致密度为 0.68。(V ) 、单一选择题:(10分,每空1分) (B) L+B — C+B (C ) L —A+B (D ) A+B^L 7. 对于冷变形小 的金属,再结晶核心形成的形核方式一般是( A ) (A ) 凸出形核亚 ( B )晶直接形核长大形核 (B ) 亚晶合并形核 (D )其他方式 8. 用圆形钢饼加工齿轮,下述哪种方法更为理想? ( C ) (A )由钢板切出圆饼(B )由合适的圆钢棒切下圆饼 (C ) 由较细的钢棒热镦成饼 (D )铸造成形的圆饼 1. 体心立方结构每个晶胞有(B ) 个原子。 2. 3. (A) 3 ( B) 2 (C) 6 固溶体的不平衡凝固可能造成 (A )晶内偏析 (C )集中缩孔 属于<100>晶向族的晶向是( (A) [011] (B) [110] (D) 1 (B) (D) (C) 晶间偏析 缩松 [001] (D) [101] 4.以下哪个工艺不是原子扩散理论的具体应用 (A )渗氮 (B )渗碳 (C )硅晶片掺杂 () (D )提拉单晶5.影响铸锭性能主要晶粒区是(C ) (A )表面细晶粒区 (B )中心等轴(C )柱状晶粒区 三个区影 响相同 6 ?属于包晶反应的是(A ) ( L 表示液相, A 、B 表示固相) (A) L+A — B

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础试题库

《材料科学基础》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分) 2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐

蚀如何防止或减轻奥氏体不锈钢的晶间腐蚀 4、为什么大多数铸造合金的成分都选择在共晶合金附近 5、什么是交滑移为什么只有螺位错可以发生交滑移而刃位错却不能 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类固溶体在材料中有何意义 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在 8、应变硬化在生产中有何意义作为一种强化方法,它有什么局限性 9、一种合金能够产生析出硬化的必要条件是什么 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的如何消除 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点 14、临界晶核的物理意义是什么形成临界晶核的充分条件是什么 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行若不在γ-Fe相区进行会有什么结果 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理若需要继续冷轧变薄时,又应进行何种热处理 19、位错密度有哪几种表征方式 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征(12分) 23、加工硬化的原因(6分) 24、柏氏矢量的意义(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象(8分) 26、已知916℃时,γ-Fe的点阵常数,(011)晶面间距是多少(5分) 27、画示意图说明包晶反应种类,写出转变反应式(4分) 28、影响成分过冷的因素是什么(9分) 29、单滑移、多滑移和交滑移的意义是什么(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分) 31、某晶体的原子位于四方点阵的节点上,点阵的a=b,c=a/2,有一晶面在x,y,z轴的截距分别为6个原子间距、2个原子间距和4个原子间距,求该晶面的

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

材料科学基础作业解答

第一章 1.简述一次键与二次键各包括哪些结合键这些结合键各自特点如何 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别稳态与亚稳态结构的区别 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

《材料科学基础》期末考试试卷及参考答案,2019年6月

第1页(共11页) ########2018-2019学年第二学期 ########专业####级《材料科学基础》期末考试试卷 (后附参考答案及评分标准) 考试时间:120分钟 考试日期:2019年6月 题 号 一 二 三 四 五 六 总 分 得 分 评卷人 复查人 一、单项选择题(请将正确答案填入表中相应题号处,本题13小题,每小题2分,共26分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 答案 1. 在形核-生长机制的液-固相变过程中,其形核过程有非均匀形核和均匀形核之分,其形核势垒有如下关系( )。 A. 非均匀形核势垒 ≤ 均匀形核势垒 B. 非均匀形核势垒 ≥ 均匀形核势垒 C. 非均匀形核势垒 = 均匀形核势垒 D. 视具体情况而定,以上都有可能 2. 按热力学方法分类,相变可以分为一级相变和二级相变,一级相变是在相变时两相自由焓相等,其一阶偏导数不相等,因此一级相变( )。 A. 有相变潜热改变,无体积改变 B. 有相变潜热改变,并伴随有体积改变 C. 无相变潜热改变,但伴随有体积改变 D. 无相变潜热改变,无体积改变 得分 专业 年级 姓名 学号 装订线

3. 以下不是材料变形的是()。 A. 弹性变形 B. 塑性变形 C. 粘性变形 D. 刚性变形 4. 在固溶度限度以内,固溶体是几相?() A. 2 B. 3 C. 1 D. 4 5. 下列不属于点缺陷的主要类型是()。 A. 肖特基缺陷 B. 弗伦克尔缺陷 C. 螺位错 D. 色心 6. 由熔融态向玻璃态转变的过程是()的过程。 A. 可逆与突变 B. 不可逆与渐变 C. 可逆与渐变 D. 不可逆与突变 7. 下列说法错误的是()。 A. 晶界上原子与晶体内部的原子是不同的 B. 晶界上原子的堆积较晶体内部疏松 C. 晶界是原子、空位快速扩散的主要通道 D. 晶界易受腐蚀 8. 表面微裂纹是由于晶体缺陷或外力作用而产生,微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要,微裂纹长度,断裂强度。() A. 越长;越低 B. 越长;越高 C. 越短;越低 D. 越长;不变 9. 下列说法正确的是()。 A. 再结晶期间,位错密度下降导致硬度上升 B. 再结晶期间,位错密度下降导致硬度下降 C. 再结晶期间,位错密度上升导致硬度上升 D. 再结晶期间,位错密度上升导致硬度下降 10. 下列材料中最难形成非晶态结构的是()。 A. 陶瓷 B. 金属 C. 玻璃 D. 聚合物 第2页(共11页)

(完整版)材料科学基础考题1

材料科学基础考题 Ⅰ卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷 二、选择题(每题2分,共20分) 1.在体心立方结构中,柏氏矢量为a[110]的位错( )分解为a/2[111]+a/2]111[. (A) 不能(B) 能(C) 可能 2.原子扩散的驱动力是:( ) (A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度 3.凝固的热力学条件为:() (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4.在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现() (A) 氧离子空位(B) 钛离子空位(C)阳离子空位 5.在三元系浓度三角形中,凡成分位于()上的合金,它们含有另两个顶角所代表的两组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6.有效分配系数k e 表示液相的混合程度,其值范围是() (A)1

材料科学基础试题库

材料科学基础试题库 材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中________ 。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于________ 。 A、单相区中 B、两相区中 C、三相平衡水平线上 3、铸铁与碳钢的区别在于有无______ 。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是_____ 。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为_______ 。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为________ 。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的 c/a 为_____ 。 A、1.6 B、2 XV (2/3) C、“ (2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值范围是_________ o(其中Ko是平衡分配系数)

A、 1

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与 点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系 是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 , 致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数 为 ,四面体间隙数为 。 3. 纯铁冷却时在912e 发生同素异晶转变是从 结构转变为 结构,配位数 , 致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的 方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径 R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间 隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ; (3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑 性 ,导电性 。 6)间隙固溶体是 ,间隙化合物 是 。 二、 问答 1、 分析氢,氮,碳,硼在a-Fe 和g-Fe 中形成固溶体的类型,进入点阵中的位置和固 溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼: 0.091nm ,a-Fe :0.124nm ,g-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

材料科学基础习题与答案

第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因? 2. 从结构、性能等面描述晶体与非晶体的区别。 3. 谓理想晶体?谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数? 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。)谓配位数?谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等面比较有异同? 5. 固溶体和中间相的类型、特点和性能。谓间隙固溶体?它与间隙相、间隙化合物之间有区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么? 6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3 Cu 的原子数。 7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。当铁由bcc 转变为fcc 时,其密度改变的百分比为多少? 9. 谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如? 10. 在面心立晶胞中画出[012]和[123]晶向。在面心立晶胞中画出(012)和(123)晶面。 11. 设晶面()和(034)属六晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个

材料科学基础期末试题

几种强化加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。 细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用和化学交互作用。 几种概念 1、滑移系:一个滑移面和该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。滑移和孪晶的区别 滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1. 相律是在完全平衡状态下,系统的相数、组元数和温度压力之间的关系,是系统的平衡条件的数学表达式:f=C-P+2 2. 二元系相图是表示合金系中合金的相与温度、成分间关系的图解。 3?晶体的空间点阵分属于7大晶系,其中正方晶系点阵常数的特点为a=b M c,a = B =Y =90°,请列举除立方和正方晶系外其他任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4. 合金铸锭的宏观组织包括表层细晶区、柱状晶区和中心等轴晶区三部分。 5.在常温和低温下,金属的塑性变形主要是通过滑移的方式进行的。此外还有孪生和扭

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

材料科学基础试题库答案 (1)

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时

间t的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel缺陷时,晶体体积_________,晶体密度_________;而有Schtty缺陷时,晶体体积_________,晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大时,_________是主要的。 0016.少量CaCl2在KCl中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其缺陷反应式为_________。 0017.Tg是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg比慢冷时_________ ,淬冷玻璃比慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的三种熔体,其粘度大小的顺序为_________。 0019.三T图中三个T代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2组成的熔体,若保持Na2O含量不变,用CaO置换部分SiO2后,电导_________。0022.在Na2O-SiO2熔体中加入Al2O3(Na2O/Al2O3<1),熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 0026.离子晶体生成Schttky缺陷时,正离子空位和负离子空位是同时成对产生的,同时伴随_________的增加。0027.多种聚合物同时并存而不是一种独存这就是熔体结构_________的实质。在熔体组成不变时,各级聚合物的数量还与温度有关,温度升高,低聚物浓度增加。 0028.系统中每一个能单独分离出来并_________的化学均匀物质,称为物种或组元,即组份。例如,对于食盐的水溶液来说,NaCl与H2O都是组元。而Na+、Cl-、H+、OH-等离子却不能算是组元,因为它们都不能作为独立的物质存在。 0029.在弯曲表面效应中,附加压力ΔP总是指向曲面的_________,当曲面为凸面时,ΔP为正值。 0030.矿化剂在硅酸盐工业中使用普遍,其作用机理各异,例在硅砖中加入1-3%[Fe2O3+Ca2(OH)2]做矿化剂,能使大部分a-石英不断溶解同时不断析出a-磷石英,从而促进a-石英向磷石英的转化。水泥生产中

相关主题
文本预览
相关文档 最新文档