当前位置:文档之家› 数学分析第十八章隐函数定理及其应用复习

数学分析第十八章隐函数定理及其应用复习

数学分析第十八章隐函数定理及其应用复习
数学分析第十八章隐函数定理及其应用复习

一、( 隐函数存在唯一性定理 ) 若满足下列条件:

ⅰ> 函数在以为内点的某一区域D上连续 ;

ⅱ> ; ( 通常称这一条件为初始条件 )

ⅲ> 在D内存在连续的偏导数;

ⅳ> .

则在点的某邻域()D内 , 方程唯一地确定一个定义在某区间内的隐函数, 使得

⑴,时()且

.

⑵函数在区间内连续 .

二、隐函数可微性定理:

Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内

存在且连续 . 则隐函数在区间内可导 , 且

. ( 证 )

例1 验证方程

在点

满足隐函数存在唯一性定

理的条件 , 并求隐函数的导数 . P149例1 例2

. 其中

为由方程

所确定的隐函

数 . 求

. P150例2 ( 仿 )

例3 ( 反函数存在性及其导数 ) 设函数 在点

的某邻域内有连续

的导函数 , 且 ,

. 用隐函数定理验证存在反函数 ,

并求反函数的导数(后面的例题P162)

.

0),()

,(

(iv);, (iii));0(),,,( 0,),,,( (ii);

),,,(),,,(),,,( (i) :

00000000400000≠??===?P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理

性质三:雅可比

.

)

,()

,(1

,),(),(1,

),()

,(1

,),(),(1

,)()),(),,0y u G F J y v v y G F J y u x u G F J x v v x G F J

x u Q U y x g y ??-

=????-=????-

=????-=??且内有一阶连续偏导数在

并求其偏导数数附近能确定怎样的隐函在讨论方程组

,)2,1,1,2(

,01),,,(,

0),,,( 0222P xy v u v u y x G y x v u v u y x F ??

?=+-+-==--+= 例1 ;

)2,1,1,2(,1,1 ,, ,2,2,1,2 3 ;

0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-===

:

6!

2!2!

4)2,1,1,2(4 240o 个雅克比式处在=?=C P

.01

144 ),()

,(,0,61

142 ),()

,( 00

0=--=??≠=-==??P P v

u

v u P v x G F G G F F v u G F 仅

. ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P

??

?

??===.cos ,

sin sin ,

cos sin ),,(),,(θ?θ?θ?θr z r y r x r z y x 之间的变换公式

与球坐标讨论直角坐标 例4

几何应用

平面曲线的切线和法线;

.0))(,())(,( ),

()

,()

,( :000000000000=-+---

=-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程

,0))(,())(,( ),

()

,(),(:000000000000=----=

-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程

空间曲线的切线和法平面;

,0))(,())(,( ),

()

,(),(:000000000000=----=

-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程

)6( .0))(())(())(( :000000=-'+-'+-'z z t z y y t y x x t x 法平面方程

曲面的切平面和法线。

1),,(),,(),,(),,(

:0

00000000000000--=

--=--z z z y x F z y x F y y z y x F z y x F x x z y z x 法线方程

,0))(,,())(,,())(,,(:

,000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 切平面方程写为

.

)1,2(09)(2 33处的切线和法线在点求笛卡儿叶形线

=-+xy y x 例1

.

012)1,2(015)1,2( 96),(,96),(,9)(22233≠-=≠=-=-=-+=y x y x F F x y y x F y x y x F xy y x F ,全平面连续,在解:

.0645,0)1(12)2(51 :=--=---y x y x 即切线方程.01354 ,0)1(15)2(21 :=-+=----y x y x 即法线方程

处的切线和法线方程在求:)2,2(4 22--=+y x 练习1

.

04)2,2(04)2,2( 2,2,4222≠-=--≠-=--==-+=y x y x F F R y F x F y x F ,上连续,在解: 0)2(4)2(4 =+-+-y x 切线方程: .0 =-y x 方程:法线

平面方程

处的切线和法在求螺旋线:3,sin ,cos π====t bt z t a y t a x 练习2

.

),,( .,cos ,sin 223b a T b z t a y t a x a -

=='='-='

切向量:解:,

:32

23

2

32

b

b z a y a x a a

π--

-

-=

=

切线方程

.

0)()()(:32

3222

3

=-+-+--

b z b a y x a a

a π法平面方程

.

)5,4,3(50222222处的切线和法平面方程点所截出的曲线的与锥面求球面z y x z y x =+=++ 例2

.0868

6),(),(120610610),(),(160108108),(),(,10,8,6,10,8,6)5,4,3(,

2,2,2,2,2,2,

,50222222==??==??-==??-======-======-+=-++=y x G F -x z G F -z y G F G G G F F F z G y G x G z F y F x F z y x G z y x F z y x z y x z y x z y x ,,并且处,在解:

??

?=-=-+--=-=-.05,0)4(4)3(3,0512041603 :)5,4,3(z y x z y -x 即点切线方程在 .034 ,0)5(0)4(3)3(4 :=-=-+-+--y x z y x 即法平面方程

.

)2,2(42

2处的切线和法线方程在求:--=+y x 练习1

数值分析公式、定理等

第一章 绪论 1. *x = n 21k a a a .010?±,如果|*x -x|≤0.5n k 10-?(这里n 是使此式成立的最大正整数),则称*x 为x 的具有n 位有效数字的近似值。 2.定理:设x 的近似值*x 有(1-1)的表示式: (1)如果*x 有n 位有效数字,则 n 11 10a 21|x ||x x |-**?≤ - (2)如果n 1110) 1a (21 | x ||x x |-* *?+≤ -,则*x 至少有n 位有效数字。 第二章 非线性方程根求解 1. (零点存在定理)如果f(x)在[a,b]上连续,使f(a)?f(b)<0,则必存在α∈(a,b),使f(α)=0。 2.二分法的误差: |1 k 1k k k 2a b |x x ||x x +-*-=-≤- 3. 局部收敛性:设α是f(x)=0的根,若存在α的一个邻域?,当迭代初值属于?时,迭代法得到的序列{k x }收敛到α,则称该迭代法关于根α具有局部收敛性。 4. 收敛速度:设i x 为第i 次迭代值,α是f(x)=0的根,令α-=εi i x ,且假设迭代收敛,即α=∞ →i i x lim 。若存在实数P ≥1,使 c | |||lim p i 1i i =εε+∞ →≠0 ,则称此方法关于根α具有P 阶收敛速度。C 称为渐近误差常数,渐近误差常数C 与f(x)有关。C ≠0保证了P 的唯一性。对于特殊的函数,C 可能为零,此时,由这个函数针对此方法迭代产生的序列收敛得更快。一般情况下,P 越大,收敛就越快。当P=1时,我们称为线性收敛。P>1,称为超线性收敛。P=2,称为平方收敛。 5.牛顿迭代法:) x (f ) x (f x x k k k 1k '- =+ 定理3:如果方程f(x)=0的根α是单根,且在α的某领域内f(x)具有二阶的连续导数,则Newton 迭代法必是局部收敛的 且 ) (f 2)(f lim 2i 1 i i α'α''- =εε+∞ →(即具有二阶收敛速度) 定理4:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r 阶连续导数,则Newton 法具有局部收敛性,且具有线性收敛速度。 定理5:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r+2阶连续导数,则修正Newton 迭代公式:)x ()x (f r x x i i i 1i '?-=+,具有局部收敛性,且具有二阶收敛速度。

Rudin数学分析原理第一章答案

The Real and Complex Number Systems Written by Men-Gen Tsai email:b89902089@https://www.doczj.com/doc/9f2367939.html,.tw 1. 2. 3. 4. 5. 6.Fix b>1. (a)If m,n,p,q are integers,n>0,q>0,and r=m/n=p/q,prove that (b m)1/n=(b p)1/q. Hence it makes sense to de?ne b r=(b m)1/n. (b)Prove that b r+s=b r b s if r and s are rational. (c)If x is real,de?ne B(x)to be the set of all numbers b t,where t is rational and t≤x.Prove that b r=sup B(r) where r is rational.Hence it makes sense to de?ne b x=sup B(x) for every real x. (d)Prove that b x+y=b x b y for all real x and y. 1

Proof:For(a):mq=np since m/n=p/q.Thus b mq=b np. By Theorem1.21we know that(b mq)1/(mn)=(b np)1/(mn),that is, (b m)1/n=(b p)1/q,that is,b r is well-de?ned. For(b):Let r=m/n and s=p/q where m,n,p,q are integers,and n>0,q>0.Hence(b r+s)nq=(b m/n+p/q)nq=(b(mq+np)/(nq))nq= b mq+np=b mq b np=(b m/n)nq(b p/q)nq=(b m/n b p/q)nq.By Theorem1.21 we know that((b r+s)nq)1/(nq)=((b m/n b p/q)nq)1/(nq),that is b r+s= b m/n b p/q=b r b s. For(c):Note that b r∈B(r).For all b t∈B(r)where t is rational and t≤r.Hence,b r=b t b r?t≥b t1r?t since b>1and r?t≥0.Hence b r is an upper bound of B(r).Hence b r=sup B(r). For(d):b x b y=sup B(x)sup B(y)≥b t x b t y=b t x+t y for all rational t x≤x and t y≤y.Note that t x+t y≤x+y and t x+t y is rational. Therefore,sup B(x)sup B(y)is a upper bound of B(x+y),that is, b x b y≥sup B(x+y)=b(x+y). Conversely,we claim that b x b r=b x+r if x∈R1and r∈Q.The following is my proof. b x+r=sup B(x+r)=sup{b s:s≤x+r,s∈Q} =sup{b s?r b r:s?r≤x,s?r∈Q} =b r sup{b s?r:s?r≤x,s?r∈Q} =b r sup B(x) =b r b x. And we also claim that b x+y≥b x if y≥0.The following is my proof: 2

数学分析·下定义及定理

第十二章 数项级数 1、级数的收敛性 定义1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 ???++???++n u u u 21 (1) 称为数项级数或无穷级数(也常简称级数),其中n u 称为数项级数(1)的通项. 数项级数(1)也常写作: ∑∞ =1 n n u 或简单写作 ∑n u . 数项级数(1)的前n 项之和,记为 n n k k n u u u u S +???++==∑=211 , (2) 称它为数项级数(1)的第n 个部分和,也简称部分和. 定义 2 若数项级数(1)的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项级 数(1)收敛,称S 为数项级数(1)的和,记作 ???++???++=n u u u S 21或∑=n u S . 若{}n S 是发散数列,则称数项级数(1)发散. 定理12.1(级数收敛的柯西准则)级数(1)收敛的充要条件是:任给正数ε,总存在正整数N ,使得当m >N 以及对任意的正整数,都有 p m m m u u u ++++???++21<ε. (6) 定理12.2 若级数∑n u 与 ∑n υ 都收敛,则对任意常数,,d c 级数 ()∑+n n d cu υ亦收 敛,且 ()∑∑∑+=+. n n n n d u c d cu υυ 定理12.3 去掉、增加或改变级数的有限个项并不改变级数的收敛性.

定理12.4 在收敛级数的项中任意加括号,即不改变级数的收敛性,也不改变级数的和。 正向级数 定理12.5 正项级数 ∑n u 收敛的充要条件:部分和数列{}n S 有界,即存在某个正数M , 对一切正整数n 有n S N 都有,n n u υ≤,则 (i )若级数 ∑n υ 收敛,则级数 ∑n u 也收敛; (ii )若级数∑n υ 发散,则级数 ∑n υ 也发散. 推论 设 ???++???++???++???++n n u u u υυυ2121, ()()43 是两个正项级数,若 , lim l u n n n =∞ →υ 则 (i )当+∞<

第十八章 隐函数定理及其应用

第十八章 隐函数定理及其应用 知识脉络 1.隐函数的存在定理(不证),会判断是否存在隐函数,会求隐函数的导数 2. 隐含数组的存在定理,不判断是否存在隐函数组,还要会求隐函数组的导数 3 隐函数的几何应用:平面曲线的切线与法平面、空间曲线的切线与法平面、空间曲 面的切平面与法线 4. 会求条件极值问题的解 一、填空题 1.函数y y x =()由方程12+=x y e y 所确定,则 d d y x = __________. 3. 设函数z z x y =(,)由方程xy z x y z 2=++所确定,则 ??z y = __ _____.z x ?? 4.由xyz x y z +++=222 2所确定函数z z x y =(,)在点(1,0,1)-处的全微分d z =_ __ _. 5. 设0),,(=+++z y x y x x F ,其中F 可微,则 x z ??= ,y z ??= . 6. 设函数z z x y =(,)由yz zx xy ++=3所确定,则 =z x ?? .(其中x y +≠0) 7.设(,)F x y 具有连续偏导数,已知(,)0x y F z z =,则dz = . 8.设函数(,)f x y 满足(,)(,)(,)x y xf x y yf x y f x y +=,(1,1)3x f -=,点(1 ,1,2)P -在曲面(,)z f x y =上,则在点(1,1,2)P -的切平面方程为 . 9.设f z g y (),()都可微,则曲线x f z z g y ==(),()在点(,,)x y z 000处的法平面为 . 10.设f y z (,)与g y ()都是可微函数,则曲线x f y z z g y ==(,),()在点(,,)x y z 000处的切线方程是 . 11.曲线t t z t y t x cos sin ,sin ,cos +===在0=t 处切线与平面0=-+z By x 平行,=B ___ 12.z z x y =(,)由方程 12 355242 2x xy y x y e z z +--+++=确定, 则函数z 的驻点是____ . 13.函数f x y z x (,,)=-22 在x y z 2 2 2 22--=条件下的极大值是_____ __. 14. 设2sin(23)23x y z x y z +-=+-,证明y z x z ??+??=__ ___ __. 二、选择题

数学分析中的英文单词和短语

数学分析中的英文单词和短语 第一章实数集与函数

第二章 数列极限 Chapter 2 Limits of Sequences 第三章 函数极限 Chapter 3 Limits of Functions 第四章 函数的连续性 Chapter 4 Continuity of Functions

第六章 微分中值定理 及其应用 Chapter 6 Mean Value Theorems of Differentials and their Applications

第七章 实数的完备性 Chapter 7 Completeness of Real Numbers 第八章 不定积分 Chapter 8 Indefinite Integrals 第九章 定积分 Chapter 9 Definite Integrals

第十章定积分的应用Chapter 10 Applications of Definite Integrals 第十一章反常积分Chapter 11 Improper Integrals 第十二章数项级数Chapter 12 Series of Number Terms 第十三章函数列与函数项级数 Chapter 13 Sequences of Functions and

Series of Functions 第十四章 幂级数 Chapter 14 Power Series 第十五章 傅里叶级数 Chapter 15 Fourier Series 第十六章 多元函数的极限与连续 Chapter 16 Limits and Continuity of Functions of Several Variavles

数学分析 隐函数定理及其应用

第十八章隐函数定理及其应用 教学目的:1.理解隐函数定理的有关概念及隐函数存在的条件,进而会求隐函数的导数; 2.了解隐函数组的有关概念,理解二元隐函数组存在的条件,了解反函数组存在的条件; 3.掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决。 教学重点难点:本章的重点是隐函数定理; 教学时数:14学时 § 1 隐函数 一.隐函数概念:隐函数是表达函数的又一种方法. 隐函数及其几何意义: 以为例作介绍. 1. 2.隐函数的两个问题:ⅰ>隐函数的存在性; ⅱ> 隐函数的解析性 质. 二.隐函数存在条件的直观意义: 三.隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: 在以为内点的某一区域D上连续 ; ⅰ> 函数 ⅱ> ; ( 通常称这一条件为初始条件 )

ⅲ> 在D内存在连续的偏导数 ; ⅳ> . 的某邻域()D内 , 方程唯一地确定一个定义 则在点 在某区间内的隐函数 时()且 ⑴, . 在区间内连续 . ⑵函数 ( 证略 ) 四.隐函数可微性定理: 满足隐函数存在唯一性定理的条件 , 又设在D内 Th 2 设函数 存在且连续 . 则隐函数 且 . ( 证略 ) 例1 验证方程 在点满足隐函数存在 唯一性定理的条件 , 并求隐函数的导数 . P149例1 . 其中为由方程所确 例2 定的隐函数 . 求. P150例2 ( 仿 )

在点的某邻域内 例3 ( 反函数存在性及其导数 ) 设函数 有连续的导函数 函数 , 并求反函数的导数. P151例4 五. 元隐函数: P149 Th3 例4 . 验证在点存在 的隐函数 , 并求偏导数 . P150 例3 平面曲线的切线与法线 : 设平面曲线方程为. 有 一. . 切线方程为, 法线方程为 . 求Descartes叶形线在点处的切线和 例1 二.空间曲线的切线与法平面 : 1.曲线由参数式给出 : . 切线的方向数与方向余弦.

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

数学分析学年论文隐函数有关定理及其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1 隐函数 (1) 1.1隐函数的定义 (1) 1.2. 隐函数存在定理 (2) 1.3. 隐函数的可导条件 (2) 2.隐函数组 (4) 2.1 隐函数组概念 (4) 2.2 隐函数组存在条件 (4) 3 隐函数的几何应用 (6) 3.1 平面曲线的切线与法线 (6) 3.2 空间曲线的切线与法平面 (6) 3.3空间曲面的切平面与法线 (8) 参考文献 (9)

摘 要:本文主要介绍了隐函数与隐函数组的相关定理,并讨论了此类定理在求平面的法线及切平面方面的应用. 关键词:隐函数;唯一性;隐函数组;可微性 Theorem and application of Implicit function Abstract :we will discussion of Implicit function existence,and differentiability and the Geometry application in the solution of the normal to plane and tangent plant. Keywords :Implicit function; uniqueness; implicit function group; differentiable 前言 这篇论文我们将重点介绍有关隐函数定理的的条件及隐函数存在的条件,掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决,这样既是解决实际问题的需要,也为后来的函数系统的完善打下基础. 1 隐函数 1.1隐函数的定义 设,X R Y R ??,函数:.F X Y R ?→对于方程 (,)0F x y = ()1 若存在集合I X J Y ??与对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1),则称由方程(1)确定一个在I 上,值域含于J 的隐函数.若把它记为 (),,,f x y x I y J =∈∈ 则成立恒等式 (,())0F x f x ≡,x I ∈. 例如方程 10xy y +-= 能确定一个定义在(,1)(1,)-∞-?-+∞上的隐函数.

数值积分_数值积分原理__matlab实现

课程设计报告课程设计题目:求解 的近似值 课程名称:数值分析课程设计 指导教师: X X X 小组成员: X X X X X X X X X 2013年12月31日

目录 目录 (1) 题目 (2) 一、摘要 (2) 二、设计目的 (2) 三、理论基础 (3) 1、复合矩形法求定积分的原理 (3) 2、复合梯形法求定积分的原理 (3) 3、复合辛普森法求定积分的原理 (4) 4、龙贝格求积公式原理 (5) 四、程序代码及运算结果 (5) 1、复合矩形法求定积分:用sum函数 (5) 2、复合梯形法求定积分 (6) 方法一 (6) 方法二:用trapz函数 (7) 3、复合辛普森法求定积分 (7) 方法一 (7) 方法二:用quad函数 (7) 4、龙贝格求定积分 (8) 5、Lobatto数值积分法 (9) 6、波尔文(Borwein)高阶公式 (9) 五、结果分析 (10) 六、设计心得 (10) 七、参考文献 (11)

题 目: (1)已知:411 02π=+? x dx ,所以 ?+=10214 dx x π 。于是,我们可以通过计算上述定积分的近似值来得到π的近似值。 (2)波尔文(Borwein )高阶公式 在π值的高阶算法研究中,最好的结果来自两个都叫波尔文的数学家。他们在1984年发表了一个2阶收敛公式: 20=a ,00=b ,220+=p , ??? ?? ? ???++=++=+=++++++1 111 11 1)1()1(2) 1(k k k k k k k k k k k k k b a b p p b a b a b a a a 式中π→k p 。试运用上述迭代算法,计算圆周率的近似值,并和前面传统方法进行比较。 一、摘要 借助matlab 环境下的计算机编程语言,先用基本的积分函数对给出的题目进行求积分,然后基于给出的波尔文高阶收敛公式,在进行了连续迭代后,对运行结果做出分析,同时与之前的传统做法进行比较。 二、设计目的 用熟悉的计算机语言编程,上机完成用复合矩形法、复合梯形法、复合辛普森法、龙贝格法以及Lobatto 数值积分方法,掌握各种方法的理论依据及求解思路,了解数值积分各种方法的异同与优缺点。

数学分析18.1隐函数定理及其应用之隐函数

第十七章 隐函数定理及其定理 1隐函数 一、隐函数的概念 设E ?R 2,函数F:E →R 2.如果存在集合I,J ?E,对任何x ∈I, 有惟一确定的y ∈J, 使得(x,y)∈E, 且满足方程F(x,y)=0, 则称 F(x,y)=0确定了一个定义在I 上, 值域含于J 的隐函数. 若把它记为 y=f(x), x ∈I, y ∈J, 则有F(x,f(x))≡0, x ∈I. 注:由自变量的某个算式表示的函数称为显函数,如:y=x+1. 二、隐函数存在性条件的分析 隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线, ∴要使隐函数存在,至少要存在点P 0(x 0,y 0), 使F(x 0,y 0)=0, y 0=f(x 0). 要使隐函数y=f(x)在点P 0连续,需F 在点P 0可微,且(F x (P 0),F y (P 0))≠(0,0), 即曲面z=F(x,y)在点P 0存在切平面. 要使隐函数y=f(x)(或x=g(y))在点P 0可微, 则在F 可微的假设下, 通过F(x,y)=0在P 0处对x 求导,由链式法则得:F x (P 0)+F y (P 0)0 x x dx dy ==0. 当F y (P 0)≠0时,可得0 x x dx dy ==- ) (P F ) (P F 0y 0x , 同理,当 F x (P 0)≠0时,可得 y y dy dx ==- ) (P F )(P F 0x 0y .

三、隐函数定理 定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件: (1)F在以P0(x0,y0)为内点的某一区域D?R2上连续; (2)F(x0,y0)=0(通常称为初始条件); (3)F在D内存在连续的偏导数F y(x,y); (4)F y(x0,y0)≠0. 则 1、存在点的P0某邻域U(P0)?D,在U(P0)上方程F(x,y)=0惟一地决定了一个定义在某区间(x0-α,x0+α)上的(隐)函数y=f(x), 使得 当x∈(x0-α,x0+α)时,(x,f(x))∈U(P0), 且F(x,f(x))≡0, y0=f(x0); 2、f(x)在(x0-α,x0+α)上连续. 证:1、由条件(4), 不妨设F y(x0,y0)>0(若F y(x0,y0)<0,则讨论-F(x,y)=0). 由条件(3)F y在D上连续,及连续函数的局部保号性知, 存在点P0的某一闭方邻域[x0-β,x0+β]×[y0-β,y0+β]?D, 使得 在其上每一点都有F y(x,y)>0. ∴对每个固定的x∈[x0-β,x0+β], F(x,y)作为y的一元函数,必定在[y0-β,y0+β]上严格增且连续. 由初始条件(2)可知F(x0,y0-β)<0, F(x0,y0+β)>0. 又由F的连续性条件(1), 知F(x,y0-β)与F(x,y0+β)在[x0-β,x0+β]上也是连续的,由保号性知, 存在0<α≤β, 当x∈(x0-α,x0+α)时, 恒有F(x,y0-β)<0, F(x,y0+β)>0. 如图,在矩形ABB’A’的AB边上F取负值, 在A’B’边上F取正值.

数学分析学习方法与心得体会

数学分析学习方法 数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。 1.提高学习数学的兴趣 首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。 2.知难而进,迂回式学习 首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。 中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

数学分析18隐函数定理及其应用总练习题

第十八章 隐函数定理及其定理 总练习题 1、方程:y 2-x 2(1-x 2)=0在哪些点的邻域内可惟一地确定连续可导的隐函数y=f(x). 解:由y 2=x 2(1-x 2)知1-x 2≥0, ∴|x|≤1; 且 y 2=x 2(1-x 2 )≤2 2221??? ? ? ?-+x x =41, ∴|y|≤21 . 记F=y 2-x 2(1-x 2), 则F, F x =2x 3-2x(1-x 2)=4x 3-2x, F y =2y; 由F y ≠0得y ≠0, 即x ≠0且x ≠±1. 令D={(x,y)||x|≤1,|y|≤ 2 1 且y ≠0 }, 则F 在D 内每一个邻域内有定义, 且F, F x , F y 在D 上处处连续. 又由F(x,y)=0, F y ≠0知 原方程在D 上唯一确定隐函数y=f(x). 2、设函数f(x)在区间(a,b)内连续,函数φ(y)在区间(c,d)内连续,而且φ’(y)>0, 问在怎样条件下,方程φ(y)=f(x)能确定函数y=φ-1(f(x)). 并研究例子(1)siny+shy=x; (2)e -y =-sin 2x. 解:记F(x,y)=φ(y)-f(x), 由F y =φ’(y)>0知, 若f[(a,b)]∩φ[(c,d)]≠?, 就存在点(x 0,y 0), 满足F(x 0,y 0)=0, 即 可在(x 0,y 0)附近确定隐函数y=φ-1(f(x)). (1)设f(x)=x, φ(y)=siny+shy, 由f,φ在R 上连续且φ’(y)=cosy+chy>0, 又 f(R)∩φ(R)=R ≠?, ∴原方程可确定函数y=y(x). (2)∵f(x)=-sin 2x ≤0, φ(y)=e -y >0, ∴f(R)∩φ(R)=?, ∴原方程不能确定函数y=y(x).

隐函数定理及其应用.

S F 01(数) Ch 18 隐函数定理及其应用计划课时: 6 时 P 231 — 236 2002. 09.20 .

231 Ch 18 隐函数定理及其应用 ( 6 时 ) § 1 隐函数 ( 2 时 ) 一. 隐函数概念:隐函数是表达函数的又一种方法. 1. 隐函数及其几何意义: 以0),(=y x F 为例作介绍. 2. 隐函数的两个问题: ⅰ> 隐函数的存在性; ⅱ> 隐函数的解析性质. 二. 隐函数存在条件的直观意义: 三. 隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数),(y x F 在以),(000y x P 为内点的某一区域D 2 R ?上连续 ; ⅱ> ),(00y x F 0=; ( 通常称这一条件为初始条件 ) ⅲ> 在D 内存在连续的偏导数),(y x F y ; ⅳ> ),(00y x F y 0=/. 则在点0P 的某邻域 (0P )?D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间 ) , (00αα+-x x 内的隐函数)(x f y =, 使得 ⑴ )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F . ⑵ 函数)(x f 在区间) , (00αα+-x x 内连续 . ( 证 ) 四. 隐函数可微性定理: Th 2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续 . 则隐函数)(x f y =在区间) , (00αα+-x x 内可导 , 且

数学分析定义、定理、推理一览表

定义1 给定两个非负实数 其中00,a b 为非负整数,(),1,2,k k a b k =L 为整数,若有 则称x 与y 相等,记为x y =. 定义2 定义3 绝对值得一些性质 定义4 区间和邻域 定义5 有界的定义 定义6 确界的定义 定理1 定理一 确界原理 定理2 推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的). 函数的概念 定义1 函数的四则运算 初等函数 定义2 几个重要的等式(不等式) 数列极限 定义1 收敛数列的性质 定义1 设{}n a 为数列,{}k n 为正整数集N +的无限子集,且12k n n n <<<

无穷小量阶的比较(定义见下页末) 函数极限存在的条件 两个重要极限 常见的几个等价无穷小量 函数的连续 区间上的连续函数 连续函数的性质 导数和微分 定义2单侧导数 导函数 导数的几何意义 求导法则 反函数的导数 复合函数的导数 基本求导法则 基本初等函数导数公式 参变量函数的导数

高阶导数 定义略 微分 定义1 定理5.10 可微函数 若函数在定义区间上每一点都可微,则称函 数为可微函数. 微分的运算法则 高阶微分

第十八章隐函数定理及其应用

第十八章 隐函数定理及其应用 一、证明题 1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有 2.设tgx y u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算 ()()y ,x v ,u ??和()() v ,u y ,x ??并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()?θ,,r 的形式: 2 221z u y u x u u ??? ????+???? ????+??? ????=?, 2222222z u y u x u u ??+??+??=?. 4.证明对任意常数ρ,?,球面2222z y x ρ=++与锥面2 222z tg y x ??=+是正交的. 5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数). 6.证明:在n 个正数的和为定值条件 x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n n h a .并由此结果推出n 个正数的几何中值不大于算术中值. ≤????n n 21x x x n x x x n 21+???++ 二、计算题 1.方程 能否在原点的某邻域内确定隐函数 或 . 2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数. 3.求下列方程所确定的隐函数的偏导数: (1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数; (2)F(x,x+y,x+y+z)=0,求 , 和 .

数学分析第十八章隐函数定理及其应用复习

一、( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数在以为内点的某一区域D上连续 ; ⅱ> ; ( 通常称这一条件为初始条件 ) ⅲ> 在D内存在连续的偏导数; ⅳ> . 则在点的某邻域()D内 , 方程唯一地确定一个定义在 某区间内的隐函数, 使得 ⑴,时()且 . ⑵函数在区间内连续 . 二、隐函数可微性定理: Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内 存在且连续 . 则隐函数在区间内可导 , 且 . ( 证 )

例1 验证方程 在点 满足隐函数存在唯一性定 理的条件 , 并求隐函数的导数 . P149例1 例2 . 其中 为由方程 所确定的隐函 数 . 求 . P150例2 ( 仿 ) 例3 ( 反函数存在性及其导数 ) 设函数 在点 的某邻域内有连续的导函数 , 且 , . 用隐函数定理验证存在反函数 , 并求反函数的导数(后面的例题P162) . 0),() ,( (iv);, (iii));0(),,,( 0,),,,( (ii); ),,,(),,,(),,,( (i) : 00000000400000≠??===?P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理 性质三:雅可比

. ) ,() ,(1 ,),(),(1, ),() ,(1 ,),(),(1 ,)()),(),,0y u G F J y v v y G F J y u x u G F J x v v x G F J x u Q U y x g y ??- =????-=????- =????-=??且内有一阶连续偏导数在 并求其偏导数数附近能确定怎样的隐函在讨论方程组 ,)2,1,1,2( ,01),,,(,0),,,( 0222P xy v u v u y x G y x v u v u y x F ?? ?=+-+-==--+= 例1 ; )2,1,1,2(,1,1 ,, ,2,2,1,2 3 ; 0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-=== : 6! 2!2! 4)2,1,1,2(4 240o 个雅克比式处在=?=C P .01 144 ),() ,(, 0,61 14 2 ),() ,( 00 0=--=??≠=-==??P P v u v u P v x G F G G F F v u G F 仅 . ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P ?? ? ??===.cos , sin sin , cos sin ),,(),,(θ?θ?θ?θr z r y r x r z y x 之间的变换公式 与球坐标讨论直角坐标 例4 几何应用 平面曲线的切线和法线; .0))(,())(,( ), () ,() ,( :000000000000=-+--- =-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程

隐函数定理及其在几何上的应用

隐函数定理及其在几何上的应用 【摘要】 隐函数(组)是函数关系的另一种表现形式。讨论隐函数(组)的存在性、连续性与可微性,是深刻了解这类函数本身的需要。同时在求以隐函数(组)的形式为方程出现的曲线和曲面的切线或切平面时,都要用到隐函数(组)的微分法。 【关键词】隐函数存在惟一性定理、隐函数可微性定理 、隐函数组定理、隐函数定理在几何上的应用 1 定理及证明 隐函数存在惟一性定理 设方程 ()0,=y x F 中的函数()y x F ,满足以下四个条件: (i) 在以 为内点的某一区域D 上连续 ; (ii) ; (初始条件 ); (iii) 在D 内存在连续的偏导数 ; (iv) . 则在点0P 的某邻域()D P U ∈0内 , 方程()y x F ,=0唯一地确定一个定义 在某区间()αα+-∈00,x x x 内的隐函数()x f y =,使得 ⑴ 当()00y x f = ,()αα+-∈00,x x x 时, 有(())()0,P U x f x ∈且()()0,≡x f x F ; ⑵ 函数()x f 在区间()αα+-∈00,x x x 内连续。 证 首先证明隐函数的存在与惟一性. 证明过程归结起来有以下四个步骤

(a) “一点正, 一片正 ” 由条件 (iv), 不妨设()0,00>y x F y 因为()y x F y ,连续,所以根据保号性0>?β 使得()0,>y x F y ,()S y x ∈, 其中[][]D y y x x S ?+-?+-=ββββ0000,, (b) “正、负上下分 ” 因()0,>y x F y ,()S y x ∈,, 故[]ββ+-∈?00,x x x ,把()y x F ,看做y 的函数, 它在[]ββ+-00,y y 上严格递增,且连续(据条件 (i)) 特别对于函数()y x F ,0 ,由条件 可知 ()0,00<-βy x F ,()0,00>+βy x F (c) “同号两边伸” 因为()β-0,y x F ,()β+0,y x F 关于x 连续, 故由(b )的结论,根据保号性α?,()βα≤<0,使得 ()β-0,y x F <0,()β+0,y x F >0,()αα+-∈00,x x x (a) 一点正,一片正 ++++++++++++++++++++++++++++++++++++++++ x 0x 0 x β-0x β+?0y 0y β -0 y β+y S O (b) 正、负上下分 + ++? ? ?_ _ _ + _ 0 x y O 0x β -0x β+0x 0y β +0y β -0 y (c) 同号两边伸 ? ++++ - - - - x 0 x y 0 y O 0x α -0x α+0-y β 0y β+? ?

数学分析公式定理111章

第一章 变量与函数 §1 函数的概念 一 变量 变量、常量、实数性质、区间表示 二 函数 1.定义1 设,X Y R ?,如果存在对应法则f ,使对x X ?∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。习惯上称x 自变量, y 为因变量。函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X . {}()|(),f X y y f x x X ==∈。 2.注 (1) 函数有三个要素,即定义域、对应法则和值域。 例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ= ∈(相同,对应法则的表达形式不同) 。 (2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函 数()y f x =”或“函数f ”。 (3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的 象。a 称为()f a 的原象。 3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。 2 可用“特殊方法”来表示的函数。 分段函数:在定义域的不同部分用不同的公式来表示。 例: 1,0sgn 0,01,0x x x x >?? ==??-,则称f 为X 上的严格减函数。

相关主题
文本预览
相关文档 最新文档