当前位置:文档之家› 数学分析第十八章隐函数定理及其应用复习

数学分析第十八章隐函数定理及其应用复习

数学分析第十八章隐函数定理及其应用复习
数学分析第十八章隐函数定理及其应用复习

一、( 隐函数存在唯一性定理 ) 若满足下列条件:

ⅰ> 函数在以为内点的某一区域D上连续 ;

ⅱ> ; ( 通常称这一条件为初始条件 )

ⅲ> 在D内存在连续的偏导数;

ⅳ> .

则在点的某邻域()D内 , 方程唯一地确定一个定义在

某区间内的隐函数, 使得

⑴,时()且

.

⑵函数在区间内连续 .

二、隐函数可微性定理:

Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内

存在且连续 . 则隐函数在区间内可导 , 且

. ( 证 )

例1 验证方程

在点

满足隐函数存在唯一性定

理的条件 , 并求隐函数的导数 . P149例1 例2

. 其中

为由方程

所确定的隐函

数 . 求

. P150例2 ( 仿 )

例3 ( 反函数存在性及其导数 ) 设函数

在点

的某邻域内有连续的导函数

, 且

, . 用隐函数定理验证存在反函数 , 并求反函数的导数(后面的例题P162)

.

0),()

,(

(iv);, (iii));0(),,,( 0,),,,( (ii);

),,,(),,,(),,,( (i) :

00000000400000≠??===?P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理

性质三:雅可比

.

)

,()

,(1

,),(),(1,

),()

,(1

,),(),(1

,)()),(),,0y u G F J

y v v y G F J

y u x u G F J x v v x G F J

x u Q U y x g y ??-

=????-=????-

=????-=??且内有一阶连续偏导数在

并求其偏导数数附近能确定怎样的隐函在讨论方程组

,)2,1,1,2(

,01),,,(,0),,,( 0222P xy v u v u y x G y x v u v u y x F ??

?=+-+-==--+= 例1

;

)2,1,1,2(,1,1 ,, ,2,2,1,2 3 ;

0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-===

:

6!

2!2!

4)2,1,1,2(4 240o 个雅克比式处在=?=C P

.01

144 ),()

,(,

0,61

14

2

),()

,( 00

0=--=??≠=-==??P P v

u

v u P v x G F G G F F v u G F 仅

. ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P

??

?

??===.cos ,

sin sin ,

cos sin ),,(),,(θ?θ?θ?θr z r y r x r z y x 之间的变换公式

与球坐标讨论直角坐标 例4

几何应用

平面曲线的切线和法线;

.0))(,())(,( ),

()

,()

,( :000000000000=-+---

=-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程

,0))(,())(,( ),

()

,(),(:000000000000=----=

-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程

空间曲线的切线和法平面;

,0))(,())(,( ),

()

,(),(:000000000000=----=

-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程

)

6( .0))(())(())(( :000000=-'+-'+-'z z t z y y t y x x t x 法平面方程

曲面的切平面和法线。

1),,(),,(),,(),,(

:0

00000000000000--=

--=--z z z y x F z y x F y y z y x F z y x F x x z y z x 法线方程

,

0))(,,())(,,())(,,(:

,000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 切平面方程写为

.

)1,2(09)(2 33处的切线和法线在点求笛卡儿叶形线

=-+xy y x 例1

.

012)1,2(015)1,2( 96),(,96),(,9)(22233≠-=≠=-=-=-+=y x y x F F x y y x F y x y x F xy y x F ,全平面连续,在解:

.0645,0)1(12)2(51 :=--=---y x y x 即切线方程.01354 ,0)1(15)2(21 :=-+=----y x y x 即法线方程 处的切线和法线方程在求:)2,2(4 22--=+y x 练习1

.

04)2,2(04)2,2( 2,2,4222≠-=--≠-=--==-+=y x y x F F R y F x F y x F ,上连续,在解: 0)2(4)2(4 =+-+-y x 切线方程: .0 =-y x 方程:法线

平面方程

处的切线和法在求螺旋线:3,sin ,cos π====t bt z t a y t a x 练习2

.

),,( .,cos ,sin 223b a T b z t a y t a x a -

=='='-='

切向量:解:,

:32

23

2

32

b

b z a y a x a a

π--

-

-=

=

切线方程

.0)()()(:32

3222

3

=-+-

+--

b z b a y x a a

a π法平面方程

.

)5,4,3(50222222处的切线和法平面方程点所截出的曲线的与锥面求球面z y x z y x =+=++ 例2

.0868

6),(),(120610610),(),(160108108),(),(,10,8,6,10,8,6)5,4,3(,

2,2,2,2,2,2,

,50222222==??==??-==??-======-======-+=-++=y x G F -x z G F -z y G F G G G F F F z G y G x G z F y F x F z y x G z y x F z y x z y x z y x z y x ,,并且处,在解:

??

?=-=-+--=-=-.05,0)4(4)3(3,0512041603 :)5,4,3(z y x z y -x 即点切线方程在

.034 ,0)5(0)4(3)3(4 :=-=-+-+--y x z y x 即法平面方程

.

)2,2(42

2处的切线和法线方程在求:--=+y x 练习1

数学分析复习提纲(全部版)

数学分析(4)复习提纲 第一部分 实数理论 §1 实数的完备性公理 一、实数的定义 在集合R 内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称R 为实数域或实数空间。 (1)域公理: (2)全序公理: (3)连续性公理(Dedekind 分割原理):设R 的两个子集A ,A '满足: 1°ΦA ΦA ≠'≠, 2°R A A ='? 3°x x A x A x '

聚点定理:(Weierstrass) 致密性定理:(Bolzano-Weierstrass) 柯西收敛准则:(Cauchy) 习题1 证明Dedekind 分割原理与确界原理的等价性。 习题2 用区间套定理证明有限覆盖定理。 习题3 用有限覆盖定理证明聚点定理。 评注 以上定理哪些能够推广到欧氏空间n R ?如何叙述? §2 闭区间上连续函数的性质 有界性定理:上册P168;下册P102,Th16.8;下册P312,Th23.4 最值定理:上册P169;下册下册P102,Th16.8 介值定理与零点存在定理:上册P169;下册P103,Th16.10 一致连续性定理(Cantor 定理):上册P171;下册P103,Th16.9;下册P312,Th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理 §3 数列的上(下)极限 三种等价定义:(1)确界定义;(2)聚点定义;(3)N -ε定义 评注 确界定义易于理解;聚点定义易于计算;N -ε定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。(P173) 习题7 证明上面三种定义的等价性。 第二部分 级数理论 §1 数项级数 前言 级数理论是极限理论的直接延伸,但又有自身独特的问题、特点和研究方法。上(下)极限是研究级数的一个有力工具。对于数项级数,可看作有限个数求和的推广,自然要考虑如何定义其和,两个级数的和与积,结合律、交换律是否还成立等问题。级数的收敛性与无

第十八章 隐函数定理及其应用

第十八章 隐函数定理及其应用 知识脉络 1.隐函数的存在定理(不证),会判断是否存在隐函数,会求隐函数的导数 2. 隐含数组的存在定理,不判断是否存在隐函数组,还要会求隐函数组的导数 3 隐函数的几何应用:平面曲线的切线与法平面、空间曲线的切线与法平面、空间曲 面的切平面与法线 4. 会求条件极值问题的解 一、填空题 1.函数y y x =()由方程12+=x y e y 所确定,则 d d y x = __________. 3. 设函数z z x y =(,)由方程xy z x y z 2=++所确定,则 ??z y = __ _____.z x ?? 4.由xyz x y z +++=222 2所确定函数z z x y =(,)在点(1,0,1)-处的全微分d z =_ __ _. 5. 设0),,(=+++z y x y x x F ,其中F 可微,则 x z ??= ,y z ??= . 6. 设函数z z x y =(,)由yz zx xy ++=3所确定,则 =z x ?? .(其中x y +≠0) 7.设(,)F x y 具有连续偏导数,已知(,)0x y F z z =,则dz = . 8.设函数(,)f x y 满足(,)(,)(,)x y xf x y yf x y f x y +=,(1,1)3x f -=,点(1 ,1,2)P -在曲面(,)z f x y =上,则在点(1,1,2)P -的切平面方程为 . 9.设f z g y (),()都可微,则曲线x f z z g y ==(),()在点(,,)x y z 000处的法平面为 . 10.设f y z (,)与g y ()都是可微函数,则曲线x f y z z g y ==(,),()在点(,,)x y z 000处的切线方程是 . 11.曲线t t z t y t x cos sin ,sin ,cos +===在0=t 处切线与平面0=-+z By x 平行,=B ___ 12.z z x y =(,)由方程 12 355242 2x xy y x y e z z +--+++=确定, 则函数z 的驻点是____ . 13.函数f x y z x (,,)=-22 在x y z 2 2 2 22--=条件下的极大值是_____ __. 14. 设2sin(23)23x y z x y z +-=+-,证明y z x z ??+??=__ ___ __. 二、选择题

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

数学分析 隐函数定理及其应用

第十八章隐函数定理及其应用 教学目的:1.理解隐函数定理的有关概念及隐函数存在的条件,进而会求隐函数的导数; 2.了解隐函数组的有关概念,理解二元隐函数组存在的条件,了解反函数组存在的条件; 3.掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决。 教学重点难点:本章的重点是隐函数定理; 教学时数:14学时 § 1 隐函数 一.隐函数概念:隐函数是表达函数的又一种方法. 隐函数及其几何意义: 以为例作介绍. 1. 2.隐函数的两个问题:ⅰ>隐函数的存在性; ⅱ> 隐函数的解析性 质. 二.隐函数存在条件的直观意义: 三.隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: 在以为内点的某一区域D上连续 ; ⅰ> 函数 ⅱ> ; ( 通常称这一条件为初始条件 )

ⅲ> 在D内存在连续的偏导数 ; ⅳ> . 的某邻域()D内 , 方程唯一地确定一个定义 则在点 在某区间内的隐函数 时()且 ⑴, . 在区间内连续 . ⑵函数 ( 证略 ) 四.隐函数可微性定理: 满足隐函数存在唯一性定理的条件 , 又设在D内 Th 2 设函数 存在且连续 . 则隐函数 且 . ( 证略 ) 例1 验证方程 在点满足隐函数存在 唯一性定理的条件 , 并求隐函数的导数 . P149例1 . 其中为由方程所确 例2 定的隐函数 . 求. P150例2 ( 仿 )

在点的某邻域内 例3 ( 反函数存在性及其导数 ) 设函数 有连续的导函数 函数 , 并求反函数的导数. P151例4 五. 元隐函数: P149 Th3 例4 . 验证在点存在 的隐函数 , 并求偏导数 . P150 例3 平面曲线的切线与法线 : 设平面曲线方程为. 有 一. . 切线方程为, 法线方程为 . 求Descartes叶形线在点处的切线和 例1 二.空间曲线的切线与法平面 : 1.曲线由参数式给出 : . 切线的方向数与方向余弦.

数学分析学年论文隐函数有关定理及其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1 隐函数 (1) 1.1隐函数的定义 (1) 1.2. 隐函数存在定理 (2) 1.3. 隐函数的可导条件 (2) 2.隐函数组 (4) 2.1 隐函数组概念 (4) 2.2 隐函数组存在条件 (4) 3 隐函数的几何应用 (6) 3.1 平面曲线的切线与法线 (6) 3.2 空间曲线的切线与法平面 (6) 3.3空间曲面的切平面与法线 (8) 参考文献 (9)

摘 要:本文主要介绍了隐函数与隐函数组的相关定理,并讨论了此类定理在求平面的法线及切平面方面的应用. 关键词:隐函数;唯一性;隐函数组;可微性 Theorem and application of Implicit function Abstract :we will discussion of Implicit function existence,and differentiability and the Geometry application in the solution of the normal to plane and tangent plant. Keywords :Implicit function; uniqueness; implicit function group; differentiable 前言 这篇论文我们将重点介绍有关隐函数定理的的条件及隐函数存在的条件,掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决,这样既是解决实际问题的需要,也为后来的函数系统的完善打下基础. 1 隐函数 1.1隐函数的定义 设,X R Y R ??,函数:.F X Y R ?→对于方程 (,)0F x y = ()1 若存在集合I X J Y ??与对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1),则称由方程(1)确定一个在I 上,值域含于J 的隐函数.若把它记为 (),,,f x y x I y J =∈∈ 则成立恒等式 (,())0F x f x ≡,x I ∈. 例如方程 10xy y +-= 能确定一个定义在(,1)(1,)-∞-?-+∞上的隐函数.

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

数学分析18.1隐函数定理及其应用之隐函数

第十七章 隐函数定理及其定理 1隐函数 一、隐函数的概念 设E ?R 2,函数F:E →R 2.如果存在集合I,J ?E,对任何x ∈I, 有惟一确定的y ∈J, 使得(x,y)∈E, 且满足方程F(x,y)=0, 则称 F(x,y)=0确定了一个定义在I 上, 值域含于J 的隐函数. 若把它记为 y=f(x), x ∈I, y ∈J, 则有F(x,f(x))≡0, x ∈I. 注:由自变量的某个算式表示的函数称为显函数,如:y=x+1. 二、隐函数存在性条件的分析 隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线, ∴要使隐函数存在,至少要存在点P 0(x 0,y 0), 使F(x 0,y 0)=0, y 0=f(x 0). 要使隐函数y=f(x)在点P 0连续,需F 在点P 0可微,且(F x (P 0),F y (P 0))≠(0,0), 即曲面z=F(x,y)在点P 0存在切平面. 要使隐函数y=f(x)(或x=g(y))在点P 0可微, 则在F 可微的假设下, 通过F(x,y)=0在P 0处对x 求导,由链式法则得:F x (P 0)+F y (P 0)0 x x dx dy ==0. 当F y (P 0)≠0时,可得0 x x dx dy ==- ) (P F ) (P F 0y 0x , 同理,当 F x (P 0)≠0时,可得 y y dy dx ==- ) (P F )(P F 0x 0y .

三、隐函数定理 定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件: (1)F在以P0(x0,y0)为内点的某一区域D?R2上连续; (2)F(x0,y0)=0(通常称为初始条件); (3)F在D内存在连续的偏导数F y(x,y); (4)F y(x0,y0)≠0. 则 1、存在点的P0某邻域U(P0)?D,在U(P0)上方程F(x,y)=0惟一地决定了一个定义在某区间(x0-α,x0+α)上的(隐)函数y=f(x), 使得 当x∈(x0-α,x0+α)时,(x,f(x))∈U(P0), 且F(x,f(x))≡0, y0=f(x0); 2、f(x)在(x0-α,x0+α)上连续. 证:1、由条件(4), 不妨设F y(x0,y0)>0(若F y(x0,y0)<0,则讨论-F(x,y)=0). 由条件(3)F y在D上连续,及连续函数的局部保号性知, 存在点P0的某一闭方邻域[x0-β,x0+β]×[y0-β,y0+β]?D, 使得 在其上每一点都有F y(x,y)>0. ∴对每个固定的x∈[x0-β,x0+β], F(x,y)作为y的一元函数,必定在[y0-β,y0+β]上严格增且连续. 由初始条件(2)可知F(x0,y0-β)<0, F(x0,y0+β)>0. 又由F的连续性条件(1), 知F(x,y0-β)与F(x,y0+β)在[x0-β,x0+β]上也是连续的,由保号性知, 存在0<α≤β, 当x∈(x0-α,x0+α)时, 恒有F(x,y0-β)<0, F(x,y0+β)>0. 如图,在矩形ABB’A’的AB边上F取负值, 在A’B’边上F取正值.

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

数学分析下——二元函数的极限课后习题

第二节 二元函数的极限 1、试求下列极限(包括非正常极限): (1)(,)(0,0)lim x y x 2y 2x 2+y 2 ; (2)(,)(0,0)lim x y 1+x 2+y 2x 2+y 2 ; (3) (,)(0,0) lim x y x 2+y 21+x 2+y 2 -1 ; (4)(,)(0,0)lim x y xy+1 x 4+y 4 ; (5)(,) (1,2)lim x y 12x-y ; (6)(,)(0,0)lim x y (x+y)sin 1 x 2+y 2 ; (7)(,)(0,0)lim x y sin(x 2+y 2)x 2+y 2 x 2+y 2 . 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=y 2x 2+y 2 ; (2)f(x,y)=(x+y)sin 1x sin 1y ; (3)f(x,y)=x 2y 2x 2y 2+(x-y)2 ; (4)f(x,y)=x 3+y 3 x 2+y ; (5)f(x,y)=ysin 1x ; (6)f(x,y)=x 2y 2 x 3+y 3 ; (7)f(x,y)=e x -e y sinxy . 3、证明:若1 。 (a,b) lim (x,y )f(x,y)存在且等于A ;2。 y 在b 的某邻域内,有 lim x a f(x,y)= (y)则 y b lim a lim x f(x,y)=A. 4、试应用ε—δ定义证明 (x,y)(0,0)lim x 2y x 2+y 2 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) (x,y) ( ,) lim f(x,y)=A ; (2) (x,y) (0, ) lim f(x,y)=A. 7、试求下列极限: (1) (x,y) ( , )lim x 2+y 2 x 4+y 4 ; (2)(x,y)(, ) lim (x 2+y 2)e -(x+y);

数学分析18隐函数定理及其应用总练习题

第十八章 隐函数定理及其定理 总练习题 1、方程:y 2-x 2(1-x 2)=0在哪些点的邻域内可惟一地确定连续可导的隐函数y=f(x). 解:由y 2=x 2(1-x 2)知1-x 2≥0, ∴|x|≤1; 且 y 2=x 2(1-x 2 )≤2 2221??? ? ? ?-+x x =41, ∴|y|≤21 . 记F=y 2-x 2(1-x 2), 则F, F x =2x 3-2x(1-x 2)=4x 3-2x, F y =2y; 由F y ≠0得y ≠0, 即x ≠0且x ≠±1. 令D={(x,y)||x|≤1,|y|≤ 2 1 且y ≠0 }, 则F 在D 内每一个邻域内有定义, 且F, F x , F y 在D 上处处连续. 又由F(x,y)=0, F y ≠0知 原方程在D 上唯一确定隐函数y=f(x). 2、设函数f(x)在区间(a,b)内连续,函数φ(y)在区间(c,d)内连续,而且φ’(y)>0, 问在怎样条件下,方程φ(y)=f(x)能确定函数y=φ-1(f(x)). 并研究例子(1)siny+shy=x; (2)e -y =-sin 2x. 解:记F(x,y)=φ(y)-f(x), 由F y =φ’(y)>0知, 若f[(a,b)]∩φ[(c,d)]≠?, 就存在点(x 0,y 0), 满足F(x 0,y 0)=0, 即 可在(x 0,y 0)附近确定隐函数y=φ-1(f(x)). (1)设f(x)=x, φ(y)=siny+shy, 由f,φ在R 上连续且φ’(y)=cosy+chy>0, 又 f(R)∩φ(R)=R ≠?, ∴原方程可确定函数y=y(x). (2)∵f(x)=-sin 2x ≤0, φ(y)=e -y >0, ∴f(R)∩φ(R)=?, ∴原方程不能确定函数y=y(x).

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

隐函数定理及其应用.

S F 01(数) Ch 18 隐函数定理及其应用计划课时: 6 时 P 231 — 236 2002. 09.20 .

231 Ch 18 隐函数定理及其应用 ( 6 时 ) § 1 隐函数 ( 2 时 ) 一. 隐函数概念:隐函数是表达函数的又一种方法. 1. 隐函数及其几何意义: 以0),(=y x F 为例作介绍. 2. 隐函数的两个问题: ⅰ> 隐函数的存在性; ⅱ> 隐函数的解析性质. 二. 隐函数存在条件的直观意义: 三. 隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数),(y x F 在以),(000y x P 为内点的某一区域D 2 R ?上连续 ; ⅱ> ),(00y x F 0=; ( 通常称这一条件为初始条件 ) ⅲ> 在D 内存在连续的偏导数),(y x F y ; ⅳ> ),(00y x F y 0=/. 则在点0P 的某邻域 (0P )?D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间 ) , (00αα+-x x 内的隐函数)(x f y =, 使得 ⑴ )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F . ⑵ 函数)(x f 在区间) , (00αα+-x x 内连续 . ( 证 ) 四. 隐函数可微性定理: Th 2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续 . 则隐函数)(x f y =在区间) , (00αα+-x x 内可导 , 且

第十八章隐函数定理及其应用

第十八章 隐函数定理及其应用 一、证明题 1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有 2.设tgx y u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算 ()()y ,x v ,u ??和()() v ,u y ,x ??并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()?θ,,r 的形式: 2 221z u y u x u u ??? ????+???? ????+??? ????=?, 2222222z u y u x u u ??+??+??=?. 4.证明对任意常数ρ,?,球面2222z y x ρ=++与锥面2 222z tg y x ??=+是正交的. 5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数). 6.证明:在n 个正数的和为定值条件 x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n n h a .并由此结果推出n 个正数的几何中值不大于算术中值. ≤????n n 21x x x n x x x n 21+???++ 二、计算题 1.方程 能否在原点的某邻域内确定隐函数 或 . 2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数. 3.求下列方程所确定的隐函数的偏导数: (1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数; (2)F(x,x+y,x+y+z)=0,求 , 和 .

数学分析第十八章隐函数定理及其应用复习

一、( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数在以为内点的某一区域D上连续 ; ⅱ> ; ( 通常称这一条件为初始条件 ) ⅲ> 在D内存在连续的偏导数; ⅳ> . 则在点的某邻域()D内 , 方程唯一地确定一个定义在 某区间内的隐函数, 使得 ⑴,时()且 . ⑵函数在区间内连续 . 二、隐函数可微性定理: Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内 存在且连续 . 则隐函数在区间内可导 , 且 . ( 证 )

例1 验证方程 在点 满足隐函数存在唯一性定 理的条件 , 并求隐函数的导数 . P149例1 例2 . 其中 为由方程 所确定的隐函 数 . 求 . P150例2 ( 仿 ) 例3 ( 反函数存在性及其导数 ) 设函数 在点 的某邻域内有连续的导函数 , 且 , . 用隐函数定理验证存在反函数 , 并求反函数的导数(后面的例题P162) . 0),() ,( (iv);, (iii));0(),,,( 0,),,,( (ii); ),,,(),,,(),,,( (i) : 00000000400000≠??===?P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理 性质三:雅可比

. ) ,() ,(1 ,),(),(1, ),() ,(1 ,),(),(1 ,)()),(),,0y u G F J y v v y G F J y u x u G F J x v v x G F J x u Q U y x g y ??- =????-=????- =????-=??且内有一阶连续偏导数在 并求其偏导数数附近能确定怎样的隐函在讨论方程组 ,)2,1,1,2( ,01),,,(,0),,,( 0222P xy v u v u y x G y x v u v u y x F ?? ?=+-+-==--+= 例1 ; )2,1,1,2(,1,1 ,, ,2,2,1,2 3 ; 0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-=== : 6! 2!2! 4)2,1,1,2(4 240o 个雅克比式处在=?=C P .01 144 ),() ,(, 0,61 14 2 ),() ,( 00 0=--=??≠=-==??P P v u v u P v x G F G G F F v u G F 仅 . ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P ?? ? ??===.cos , sin sin , cos sin ),,(),,(θ?θ?θ?θr z r y r x r z y x 之间的变换公式 与球坐标讨论直角坐标 例4 几何应用 平面曲线的切线和法线; .0))(,())(,( ), () ,() ,( :000000000000=-+--- =-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

隐函数定理及其在几何上的应用

隐函数定理及其在几何上的应用 【摘要】 隐函数(组)是函数关系的另一种表现形式。讨论隐函数(组)的存在性、连续性与可微性,是深刻了解这类函数本身的需要。同时在求以隐函数(组)的形式为方程出现的曲线和曲面的切线或切平面时,都要用到隐函数(组)的微分法。 【关键词】隐函数存在惟一性定理、隐函数可微性定理 、隐函数组定理、隐函数定理在几何上的应用 1 定理及证明 隐函数存在惟一性定理 设方程 ()0,=y x F 中的函数()y x F ,满足以下四个条件: (i) 在以 为内点的某一区域D 上连续 ; (ii) ; (初始条件 ); (iii) 在D 内存在连续的偏导数 ; (iv) . 则在点0P 的某邻域()D P U ∈0内 , 方程()y x F ,=0唯一地确定一个定义 在某区间()αα+-∈00,x x x 内的隐函数()x f y =,使得 ⑴ 当()00y x f = ,()αα+-∈00,x x x 时, 有(())()0,P U x f x ∈且()()0,≡x f x F ; ⑵ 函数()x f 在区间()αα+-∈00,x x x 内连续。 证 首先证明隐函数的存在与惟一性. 证明过程归结起来有以下四个步骤

(a) “一点正, 一片正 ” 由条件 (iv), 不妨设()0,00>y x F y 因为()y x F y ,连续,所以根据保号性0>?β 使得()0,>y x F y ,()S y x ∈, 其中[][]D y y x x S ?+-?+-=ββββ0000,, (b) “正、负上下分 ” 因()0,>y x F y ,()S y x ∈,, 故[]ββ+-∈?00,x x x ,把()y x F ,看做y 的函数, 它在[]ββ+-00,y y 上严格递增,且连续(据条件 (i)) 特别对于函数()y x F ,0 ,由条件 可知 ()0,00<-βy x F ,()0,00>+βy x F (c) “同号两边伸” 因为()β-0,y x F ,()β+0,y x F 关于x 连续, 故由(b )的结论,根据保号性α?,()βα≤<0,使得 ()β-0,y x F <0,()β+0,y x F >0,()αα+-∈00,x x x (a) 一点正,一片正 ++++++++++++++++++++++++++++++++++++++++ x 0x 0 x β-0x β+?0y 0y β -0 y β+y S O (b) 正、负上下分 + ++? ? ?_ _ _ + _ 0 x y O 0x β -0x β+0x 0y β +0y β -0 y (c) 同号两边伸 ? ++++ - - - - x 0 x y 0 y O 0x α -0x α+0-y β 0y β+? ?

隐函数的定理及其应用论文原稿

隐函数的定理及其应用 摘 要:本文主要讨论了隐函数和隐函数组的相关定理,并举例说明其应用. 关键词:隐函数 隐函数组 可微性 导数 引言 我们在初中时就开始接触到函数,在我们眼中,函数就是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素.在之前我们所接触到的函数,其表达式大多是自变量的某个算式,如 21,(sin sin sin )xyz y x u e xy yz zx =+=++ 这种形式的函数即为显函数.然而我们在很多地方也会遇到另一种形式的函数,它的自变量与因变量之间的对应法则是由一个方程式所确定的.简单来说,若能由函数方程 (,)0F x y =, ① 确定y 为x 的函数()y f x =,即(,())0F x f x ≡,就称y 是x 的隐函数. 1.关于隐函数的一些定理 1.1 隐函数存在惟一性 若(1)函数F 在以000(,)P x y 为内点的某一区域0D R ?上连续; (2)00(,)0F x y =(通常称为初始条件); (3)在D 内存在连续的偏导数(,)y F x y ; (4)00(,)0y F x y ≠, 则在点0P 的某邻域0()U P D ?内,方程(,)0F x y =惟一地确定了一个定义在某区间 00(,)x x αα-+内的函数(隐函数)()y f x =,使得 (1) 00()f x y =,x ∈00(,)x x αα-+时(,())x f x ∈0()U P 且(,())0F x f x ≡; (2) ()f x 在00(,)x x αα-+内连续. 需要注意的是,上述定理中的条件仅仅是充分的.如方程3 3 0y x -=在点(0,0)不满足条件

(完整word版)数学分析—极限练习题及详细答案

一、选择题 1.若0 () lim 1sin x x x φ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。 A.sin ||x B.ln(1)x - C. 1 1.【答案】D 。 2.设f(x)在x=0处存在3阶导数,且0() lim 1tan sin x f x x x →=-则'''f (0)=( ) A.5 B.3 C.1 D.0 2. 【 答 案 】 B. 解 析 由 洛 必达 法 则 可 得 300 02() '() ''() lim lim lim 1 tan sin 2cos sin sin cos cos x x x f x f x f x x x x x x x x -→→→==-+-42200''()''() lim lim 16cos sin 2cos cos 21 x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3x B.3 4 x C.3 2 x D.x 3.【答案】A.解析 .1 2 2 33 31233 2000311(1)1133lim lim (1)3313 x x x x x x x ---→→→-+?==+=选A 。 4.函数2sin f ()lim 1(2)n n x x x π→∞=+的间断点有( )个 A.4 B.3 C.2 D.1 4.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故 20.5sin 12lim 1(2(0.5))2n x π →-- =- +?-, 20.5sin 12lim 1(20.5)2n x π →= +?,故,有两个跳跃间断点,选C 。 5.已知()bx x f x a e =-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )

浅谈隐函数及其应用

浅谈隐函数及其应用

分类号: 学校代码:11460 学号:11201910 南京晓庄学院本科生毕业论文 浅谈隐函数及其应用 On the implicit function and its application 所属院(部):信息工程学院 学生姓名:王林林 指导教师:马圣容 研究起止日期:二○一四年十一月至二○一五年五月

【摘要】本文从隐函数定理的内容、隐函数的概念、证明方法,以及隐函数定理的应用几个方面进 行了简单的介绍。首先从隐函数定理出发,介绍并证明隐函数组定理和反函数组定理。通过这些推论,我们知道了隐函数定理的在很多方面都有着广泛的用途。最后讨论了隐函数定理在计算偏导数和导数、几何应用这几个方面的应用并做了具体的论述. 【关键词】隐函数定理;应用;导数;证明 【Abstract】 In this paper, the contents of the implicit function theorem, the concept of

implicit function, the proof method, and the application of the implicit function theorem are briefly introduced.. From the implicit function theorem, we introduce and prove the implicit function theorem and inverse function group theorem.. Through these inferences, we know that the implicit function theorem is widely used in many aspects.. At last, the application of the implicit function theorem in the calculation of partial derivative and derivative, and its application in geometrical application are discussed. 【Key words】implicit function theorem; Application; Optimization theory; proof

相关主题
文本预览
相关文档 最新文档