当前位置:文档之家› 经典力学体系的建立

经典力学体系的建立

经典力学体系的建立
经典力学体系的建立

科学发展简史辅导

第七章经典力学体系的建立

经过许多科学家的努力,在天文学和力学方面已经积累了丰富的资料。在此基础上,牛顿实现了天上力学和地上力学的综合,形成了统一的力学体系。这是人类认识自然历史的第一次大飞跃和理论大综合。它开辟了一个新的时代,并对科学发展的进程以及后代科学家们的思维方式产生了极其深刻的影响。牛顿力学的建立是科学形态上的重要变革,标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范。然而,在十七八世纪里其他自然科学仍处在积累资料的阶段。

第一节经典力学体系化的知识基础

以研究机械运动为对象的力学,在17世纪下半叶建立了一个普遍的力学体系,绝不是偶然的,是由多方面的原因造成的结果。

欧洲经过16世纪百余年的宗教和政治改革的大变动之后,到17世纪下半叶进入了一个政治上较为安宁,经济上趋于繁荣的时期。生产实践为力学研究提出了许多问题,这就给科学的发展以推动力。

推动科学家们研究天体运动规律的另一个原因则是由于科学自身发展的要求。例哥白尼学说提出了许多悬而未决的问题。诸如行星运动的轨道形状问题,为什么行星要沿着一定的轨道绕日运行问题等等。这些问题的研究并不是出于某种实用的目的,但它对科学未来的发展却具有极重要的价值。正是这种研究为近代力学的体系化奠定了知识基础。

为牛顿力学的建立打下重要基础的有一系列的科学家,特别是伽利略与开普勒(1571~1630)对牛顿力学的建立有着非常重要的影响。

伽利略通过对自由落体的研究,已经发现了惯性运动和在重力作用下的匀加速运动,奠定了牛顿第一定律和第二定律的基本思想。伽利略关于抛物体运动定律的发现,对牛顿万有引力的学说也有深刻的启示作用。

天文学家开普勒所发现的行星运动定律则是牛顿万有引力学说产生的最重要前提。1609年,开普勒出版了他的《新天文学》一书,公布了太阳系行星运动的两条基本定律:

行星运动第一定律:行星的轨道为椭圆,太阳在椭圆的一个焦点上;

行星运动第二定律:在相等的时间内,行星和太阳的联线所扫过的面积相等,亦称面积定律。

在这之后,开普勒又发现了行星运动第三定律:太阳系中任何两颗行星公转周期的平方比等于它们轨道半径(半主轴长)的立方比,亦称周期定律。

行星运动三定律的发现,使整个太阳系的运动的图景以更加简单明了的形式被揭示出来。由于开普勒的发现,使太阳系成为一个严格按照确定

规律运行的力学系统。因此,西方人把开普勒称为“天空立法者”。

第二节牛顿和他的力学体系

牛顿创造性的成果却无与伦比。他在剑桥时期,研究涉及光学、物理

学中的许多领域。1671年,他制成了反射望远镜,1687年,他的代表作《自

然哲学的数学原理》一书出版。

牛顿作为一个杰出的科学家不仅在力学上作出了重大贡献,还在许多

领域里取得了划时代的成果。正如恩格斯所说:“牛顿由于发明了万有引力

定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学,

由于创立了二项式定理和无限理论而创立了科学的数学,由于认识了力的

本性而创立了科学的力学。”

牛顿对科学的杰出贡献是他建立了经典力学的体系,这集中地体现在

他的著名著作《自然哲学的数学原理》一书中。1687年出版的这部著作共

分三卷,第一卷分析了物体在向心力作用下的运动,第二卷分析了物体在

阻力介质中的运动。在这两卷中,阐述了作为力学基础的时间、空间、质

量、动量、力等基本概念,叙述了运动的基本定律,即牛顿力学三定律,

解释了书中所使用的数学问题,并用演绎方法推演出万有引力定律。第三

卷是关于宇宙的构造,这是用已发现的力学定律去解释哥白尼学说和天体

运动的规律。

牛顿力学三定律构成了近代力学的基础,也是近代物理学的重要支柱。

牛顿对于力学的最重要贡献则是万有引力的发现。

牛顿的力学三定律和万有引力定律把天体运动定律与地上物体运动定

律统一起来,建立起了经典力学的理论大厦。牛顿把他的力学理论应用于

太阳系,解决了天体力学中的一系列问题。他拿出了计算太阳质量和行星

质量的方法,证明了地球是一个赤道凸出的扁球,解释了岁差现象,说明

了潮汐的涨落,分析了慧星运动的轨迹和天体摄动现象等。

在18世纪及以后的一系列事实,证实了牛顿力学的真理性,从而得

到了广泛的承认。

对证实牛顿万有引力定律有重要意义的事实,一是哈雷慧星的发现, 二是地球形状的证实,三是关于行星摄动现象的证实。此外,如关于引力常

数G的测定等,也都证实了万有引力定律。1781年,英国天文学家赫舍尔(1738~1822)发现了天王星,首次发现了行星的摄动。1799年,法国著

名科学家拉普拉斯(1749~1827)出版了《天体力学》一书,建立了行星

运动的摄动理论和行星的形状的理论,进一步证实了万有引力定律的正确

性。在这之后,人们运用万有引力定律对天王星摄动现象进行复杂的计算,

预言了海王星的存在。1845年发现了海王星,这是对万有引力定律的有力

证明。

一批科学家以牛顿的学说为基础,创立了力学的新的分支。诸如弹性力学、流体力学、材料力学等等。到18世纪末,牛顿和牛顿力学已取得了巨大的威望,运动三定律和万有引力定律的地位已牢牢确立。

第三节牛顿时代其他科学的发展

十七八世纪自然科学的主要成果是牛顿力学的形成。整个说来,其他各门自然科学尚处在积累资料并逐渐形成为独立学科的时期。

一、微积分的建立

牛顿和莱布尼兹(1646~1716)在继承前人数学研究成果的基础上,分别独立地完成了微积分的建立工作。

二、物理实验研究的新发现

在牛顿时代,人们对光、电、热等物理现象也开展了广泛的研究,并取得了一批科学成果。

1.光学的成果

伽利略曾提出光是按有限速度传播的。荷兰数学家斯涅耳(1591~1626)发现了光的折射定律,提出了折射率概念。丹麦天文学家雷默算出了光速。在近代科学发展的初期,人们就开始了对光的本质的研究,科学史上光的微粒说与波动说之争长达相当长时间。

牛顿是17世纪光学的集大成者。牛顿发现了光的色散现象,证明了不同光谱色的光可以合成为白色光。牛顿指出,一切自然物体的颜色只是由于它们对某一种光谱色的光反射得更多些。牛顿关于颜色的理论,是光学中的重要突破。牛顿设计并制造了反射式望远镜。牛顿对于光学的研究成果,集中地反映在1704年出版的《光学》一书中。

2.物理现象的新发现

17世纪声学、热学和电磁学的实验研究并无多大进展。

18世纪,热学上的第一个重要进展是由于德国的华仑海特(1686~1736)和瑞典的摄尔西斯(1701~1744)建立了测定温度的标准,据此发明了华式和摄氏温度计,从而有可能把温度与热量区别开来。英国物理学家,化学家布莱克(1728~1799)在论证了温度与热量区别的基础上,进而提出了比热和潜热的概念。这些概念的形成是18世纪热学的主要成就。热学的研究在这时是同蒸汽力的应用分不开的。在对热的本质的认识上,布莱克等所倡导的热质说或热素说则仍占统治地位。

在电和磁学的实验研究方面,英国剑桥大学的米歇尔(1724~1793)在1750年发现了两个磁极之间的作用力与磁极间距离的平方成反比。

电学方面在18世纪的进展,首先是因为有了静电起电机和莱顿瓶的发明。荷兰莱顿大学的森布罗克(1692~1761)和德国的克莱斯特(1700~1748)分别发明了能贮存静电电能的电容器,即莱顿瓶。静电起电机与莱顿瓶的发明为静电研究提供了实验工具。美国的富兰克林(1706~1790)

对闪电的本性作了开拓性的勇敢的探索,证实了地上的静电与天上的雷电本质上相同,由此发明了避雷针。1785年,法国军事工程师通过实验测定,建立了静电荷之间相互作用的数量关系式,即库仑定律。

3.近代化学的初期成果。

15世纪以后,作为化学原始形式的炼金术已经衰落,代之而起的则是医药化学。17世纪的医药化学家们发现了一些新的化学属性、化学反应和化学药品。17世纪真正把化学确立为一门科学的是著名的英国科学家波义耳(1627~1691)。他发现了气体方面的波义耳定律。波义耳根据大量的实验论证了化学元素的概念,把元素同化合物,混合物区别开来,使化学从炼金术中脱离开来。他在其主要著作《怀疑的化学家》一书中给元素下了比较清楚的定义。波义耳把严格的实验方法引入了化学,确立了化学的独立性,成了近代化学的奠基者。

化学在十七八世纪的重要成果是法国科学家拉瓦锡建立了氧化燃烧理论。

1774年,英国化学家普列斯特利(1733~1804)通过实验得到一种能够帮助可燃物质燃烧的气体。拉瓦锡把这种新发现的气体命名为氧,并提出了新的燃烧学说,这就彻底地推翻了燃素说。对燃烧现象的深入研究,不仅得到了氧,还导致了18世纪对碳酸气、氢气、氯气,氮气等的发现。18世纪的化学家们还改进了化学分析方法,发展了吹管分析,湿法分析等分析方法。这一切为19世纪原子分子学说的提出,为化学工业的成长,奠定了科学技术基础。

4.显微镜的发明与生物学的成果。1661年,意大利解剖学家发现了蛙肺的动脉末端与静脉末端是通过毛细血管相连的,证实了血液的肺循环过程。这一发现是靠显微镜实际观察的结果。显微镜是推动生理学、生物学前进的重要观察仪器。经荷兰人列文霍克(1632~1723)的改进,使显微镜放大倍数已达270倍,这就为观察生物的微结构和微小的生物提供了有力的工具。胡克在1665年用自制的显微镜观察软木组织,发现了细胞。马尔比基(1628~1694)等人在植物中观察到了细胞组织,列文霍克又在显微镜下发现了血液中的血细胞,从而揭开了细胞学研究的序幕。1675年,列文霍克在污水中发现了大量的极小的动物一一一微生物,这就使生物学的研究进入了一个新的领域,即微生物世界。

自古以来,在对于生物物种的由来的看法上,有所谓的自然发生说。第一个对自然发生说提出疑义的是意大利的雷迪(1626~1676),直到19世纪,才由巴士德(1822~1895)的著名实验,彻底否定了自然发生说。

在十七八世纪中,关于物种由来的问题曾发生过预成说与渐成说的争论。预成说主张,组成生物驱体的各种器官,不是新生成的,而是在卵里就已经形成了,后来只不过是它的扩展而已。渐成说认为,各种器官是由

尚未分化的基体渐渐形成的。在十七八世纪里占统治地位的是预成说。随着胚胎学的进步,预成说才逐渐破产了。

18世纪生物学的重要成就是瑞典学者林耐(1707~1778)作的动植物分类。早在古代就有两种关于动植物的分类方法,一是着眼于物种间的不连续性,抓住生物的一个或几个特征,把生物划分为若干类群;另一种则着眼于物种间的连续性,通过对生物的不同特征进行比较,找到不同生物间的联系,把生物界看作是一个有亲缘关系的生物链条。前者通常叫“人为分类法”,后者叫“自然分类法”。直到17世纪,由于分类方法不统一,动植物名称更不统一,这为生物学研究带来许多困难。林耐于1735年出版了《自然系统》一书,书中采用人为分类法,把有花植物分为23个纲,无花植物为一纲,成为“林式24纲”。纲下又分为目、属、种,从而建立了植物的分类体系。在动物分类上把动物分成6个纲。林耐还发展了生物命名的“双名法”,生物名称用两个拉丁字母表示,第一字是表示属名,第二字表示种名。林耐基本上完成了生物的人为分类,也使后人有可能进一步研究物种之间的关系和物种进化。

在18世纪时也有人坚持自然分类法。演化思想的先驱者法国的布丰(1707~1788)认为,自然界是没有栅栏的,把生物分为不连续的纲、目、属、种是错误的。布丰从他的观点出发,写了《动物自然史》,对大量动物进行了详细分类。布丰并且主张大自然能够从一个原始的类型发展出一切其他的生物种类,最早提出了物种演化的观念。

第四节科学观与自然观的变革

从16世纪中叶由哥白尼发起的天文学革命,到17世纪末叶牛顿经典力学体系的建立,是近代自然科学发展的第一个时期。经典力学体系的建立,标志着理论自然科学首先在力学领域诞生了。理论自然科学是建立在实验基础之上,并且是定量地表述自然规律的一种知识体系。它与古代自然哲学的直觉猜测不同,又与实用科学的经验知识汇集有根本的区别。力学在这一时期里作为带头学科,它的概念和方法对其他自然科学的发展有着深刻的影响。哈维血液循环理论的建立,使医学、生理学、生物学从神学中解放出来,生理学、胚胎学取得了独立的科学地位,动植物分类系统的建立,又为生物学研究开辟了道路;化学摆脱了炼金术的形式,经波义耳确立为独立学科;声、光、电、磁、热等物理现象的实验研究取得了新的进展。

一、科学观的变革

科学内容及由此而引起的科学形态的变革,极大地影响了人们对科学的基本看法,引起了科学观的变革。在这一时期,推动科学前进的力量,当然还不完全是出于功利主义的目的。但是近代自然科学的发展,却逐渐证明了它自身的价值。近代自然科学发展的一个重要特点,就是许多科学

都表现出对当时一些主要技术问题的关切。技术的改进需要不断地应用科学,科学的重要性逐渐地为人们所认识。17世纪的培根和笛卡儿就深信人类可以建立完整的自然科学知识体系,因而就会一大比一天生活得更好。 18世纪的多数学者不仅相信科学会有益于人类的进步,而且相信人类能得到充分可靠的自然知识,相信自然界可以被人正确地认识。神学统治科学的日子已经结束,神学虽然还可以歪曲科学的成果,但已无法阻止科学的前进。

二、自然观的变革

随着近代科学的发展,不仅推动了科学观的变革,也使自然观发生了巨大的变化,形成了机械唯物主义的自然观。由于当时科学发展状况的限制,这种自然观有明显的形而上学和机械论的特征。在这种形而上学的自然观看来,自然界是绝对不变的,自然界的一切从来就是如此,将来也是这样。

牛顿时代的自然科学主要是力学达到了比较完善的程度,因而人们往往用力学的尺度去衡量一切,用力学的原理去解释一切自然现象,将一切运动都归结为机械运动,一切运动的原因都归结为力,自然界是一架按照力学规律运动着的机器。

应该说这种形而上学的机械唯物主义自然观在当时是有进步作用的。由于它把自然界中起作用的原因都归结为自然界本身的规律的作用,有利于促使科学家去探索自然界的规律。它能刺激人们运用分析、解剖的方式,从观察和实验中取得更多的经验材料,这对科学的发展来说也是必要的。但形而上学的思维方式忽视理论思维的作用,忽视事物之间的联系和发展,只见树木,不见森林,因而又有着严重的缺陷。这种形而上学的自然观,在对自然界整体的看法上又似乎低于古代。

形而上学的、机械的自然观在18世纪形成,并在那时居统治地位是有历史原因的。概括起来就是:在近代自然科学产生时期,首先需要把自然界分解开来加以研究,考察各种自然过程的区别,这是科学研究必由之路,人们在认识事物时,开始总是先要注意这种事物是什么和有多少,难免忽略事物的产生、发展和转化过程;自然科学的发展中,首先是以机械运动形式为对象的力学达到完善的程度,其他自然科学还处在积累资料的阶段,因此,也就难免用力学的尺度衡量一切,用力学的规律解释一切。科学发展的一定的历史阶段,形成了唯物主义自然观的一定的历史形态。伴随19世纪自然科学在各个领域的全面发展,形而上学的机械唯物主义自然观的局限性被日益暴露出来,一种崭新的、辩证唯物主义自然观的产生就成为历史的必然了。

牛顿对经典力学贡献

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687 年7月5日发表的不朽著作《自然哲学的数学原理》里用数学 方法阐明了宇宙中最基本的法则——万有引力定律和三大运 动定律。这四条定律构成了一个统一的体系,被认为是“人类 智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物 理界的科学观点,并成为现代工程学的基础。牛顿为人类建立 起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被 安葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献

所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。 牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。 牛顿三大定律

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

从经典力学到量子力学的思想体系探讨

从经典力学到量子力学的思想体系探讨 一、量子力学的产生与发展 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象 一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以 h为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中 电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差△E=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史 上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即 康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利 发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中

经典力学发展简史

经典力学发展简史 姓名:周玉全班级:物理学151班学号:5502115018 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学和经典力学联系的实例分析

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 量子力学与经典力学的联系的实例分析 摘要:量子力学与经典力学研究的对象不同,范围不同,二者之间是不是不可逾越的?当然不是,在一定条件下,二者可以过渡.本文首先对量子力学和经典力学的关系进行了分析,其次通过具体的实例来说明量子力学过渡到经典力学的条件,最后分析出从运动学角度,经典力学向量子力学过渡可归结为从泊松括号向对易得过渡.

关键词:量子力学;经典力学;过渡 从高中到大学低年级,我们所涉及的物理学内容均为经典物理学范畴,经典物理学理论在宏观低速范围内已是相当完善,正如十九世纪末一些物理学家所描述的那样,做机械运动的物体,当运动速度小于真空中的光速时准确地遵从牛顿力学规律;分子热运动的规律有完备的热力学和统计力学理论;电磁运动有麦克斯韦方程加以描述;光的现象有光的波动理论,整个物理世界的重要规律都已发现,以后的工作只要重复前人的实验,提高实验精度,在测量数据后面多添加几个有效数字而已.正因如此为何在学完经典物理学以后还要继续学习近代物理学,如何引入近代物理学就显得格外重要. 毫无疑问近代物理学的产生是物理学上号称在物理学晴朗的天空上“两朵小小的乌云”造成的[1],正是这引发了物理学的一场大革命.这“两朵小小的乌云”即黑体辐射实验和迈克尔逊-莫雷实验.1900年为了解释黑体辐射实验,普朗克能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及原子结构等一系列问题上,经典物理都碰到了无法克服的困难,通过引入量子化思想,这些问题都迎刃而解,这就导致了描述微观世界的理论-量子力学的建立. 在经典物理十分成熟、完备的情况下引入静近代物理学,毫无疑问必须强调以下问题:(1)经典物理学的适用范围是宏观低速运动;(2)19世纪末20世纪初,物理学已经研究到微观现象和高速运动的新阶段;(3)新的研究范畴必须引入新的理论,这样,近代物理学的出现也就顺理成章了. 尽管强调经典物理学的适用范围是宏观低速运动,但碰到微观高速问题,人们依旧习惯于首先用已知非常熟悉的经典物理来解决物理学家如此,我们也不例外.无疑用经典物理学去解决高速微观问题最终必将以失败而告终.然而在近代物理学课程的研究中有意识地首先让经典物理学去碰壁,去得出结论,但结论是矛盾的和错误的,然后,引出近代物理学的有关理论,问题最后迎刃而解[2]. 经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学.近代物理学则是在微观和高速领域物理实验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学,必须指出,在相对论和量子力学建立以后的当代物理学研究中.虽然大量的是近代物理学问题,但也有不少属于经典物理学问题.因此不能说有了近代物理学就可抛弃经典物理学. 量子力学是物理学研究的经验扩充到微观领域的结果.因此,量子力学的建立必然是以经典力学为基础,它们之间存在必然的联系,量子力学修改了物理学中关于物理世界的描述以及物理规律陈述的基本概念.量子力学关于微观世界的各种规律的研究给

经典力学的诠释

编辑本段

经典力学 种状态为止。 牛顿第二定律 物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma【当F(合)、m和a采用国际单位制N、kg和m/s2时,k=1】 牛顿第三定律 两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。 万有引力定律 自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比, 经典力学

与它们之间距离的平方成反比。公式:F(n)=(GMm)/r² 基本假定 第一个假定:假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的。 由此可知,经典力学实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。 第二个假定:一切可观测的物理量在原则上可以无限精确地加以测定。由此可知,经典力学只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 应用范围 它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。 编辑本段发展 16世纪以前 力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响, 经典力学

以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。 16世纪-17世纪 人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,经典力学逐渐摆脱传统观念的束缚,有了很大的进展。 英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。经典力学概括来说,是由伽利略及其时代的优秀物理学家奠基,由牛顿正式建立。所以牛顿曾说过,他是站在了巨人的肩膀上。 18世纪-19世纪 由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系, 经典力学 又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:拉格朗日、哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是现代物理的基础,如量子场论、广义相对论、量子引力等。 微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。 20世纪 现代力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

经典力学体系的主要内容

力学在量子力学出现前的总称,研究宏观物体的运动规律,包括以牛顿运动定律为基础的经典理论和狭义相对论。I.牛顿在1687年出版的《自然哲学的数学原理》一书中提出的运动三定律和万有引力定律为经典力学奠定了基础。L.欧拉,J.-L.拉格朗日、W.R.哈密顿等继牛顿之后,发展了不同的体系,推广了力学在自然科学和工程技术中的应用。 学者们根据经典力学的定律和万有引力定律曾经精确地预言彗星和小行星等的运动,并且得到了验证;还根据这些定律预言并发现了新的行星。经典力学应用的成功以及麦克斯韦的电磁学理论预测电磁波的成功曾使19世纪末一些物理学家以为物理学在原则上已是完善的。 以牛顿定律为基础的力学理论是有它的局限性的。当物体的运动速度可与光速比拟时,对运动的分析要求放弃绝对空间和时间的概念,A.爱因斯坦于1905年建立的狭义相对论对此作了彻底的改革。在狭义相对论中,给出了长度收缩效应和时间膨胀效应,从而得出质点的质量是速度的函数,当质点速度接近光速时,质量趋于无限大。在物体的速度比光速小得多的条件下,牛顿定律成为相对论的特殊情况。在相对论动力学中也可应用拉格朗日和哈密顿的方法,但此时的拉格朗日函数和啥密顿函数不同于非相对论力学中的相应函数。

20世纪20年代,L.-V.德布罗意、E.薛定谔、W.K.海森伯、P.A.M.狄喇克等物理学家建立了研究电子、质子等微观粒子行为的量子力学。量子力学的一个基本观点是微观粒子的行为不能以空间和时间的确定函数表达,故量子力学是非经典的。 由于牛顿力学和相对论力学在描述物体行为的观点上是一致的,现代的经典力学著作都把狭义相对论的知识作为经典力学的组成部分。这些著作常包括牛顿力学和其重要发展体系——拉格朗日体系、哈密顿体系,以及狭义相对论等部分。因此,经典力学可分为非相对论经典力学和相对论经典力学。 经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基要学术。在物理学里,经典力学是最早被接受为力学的一个基本纲领。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。在十六世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。 基本定律 牛顿第一定律

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

经典力学与时空观

第五章经典力学与物理学的革命 第一节经典力学的成就与局限性 一.三维目标 知识与技能: 1、了解经典力学的发展历程,知道经典力学发展历程中有哪些物理学家作出了突出贡献. 2、了解经典力学所取得的伟大成就及其对当时自然科学、社会发展的影响. 3、认识经典力学的局限性和适用范围. 过程与方法: 1、通过收集对经典力学建立作出重要贡献的物理学家的故事,把科学成果的发现过程展现为历史的过程,即科学家是如何在前人的基础上进行求索的,并将科学家的成果放在特定的历史背景下去评说,从而让学生认识到历史的发展有承接,科学的发展也一样. 2、通过收集和交流具体实例来分析说明经典力学所取得的伟大成就,培养学生就某一观点或结论收集例证的能力,培养学生获取和评价信息的能力. 情感、态度与价值观: 1、通过查阅、对比、举例、交流等学习活动,培养学生自主学习的习惯和善于合作的意识;培养学生懂得尊重他人的成果、与他人合作交流的能力与习惯,锻炼学生在讨论与交流活动中敢于发表自己的感想和看法,共同探讨交流与合作学习的途径. 2、使学生领悟和感受科学研究方法的正确使用对科学发展的重要意义,体会经典力学在人类认识自然以及物理学发展中的重要影响和作用. 二、教学重难点:1、经典力学的概念,研究范围。 2、经典力学渗透的研究方法。 三、教学过程: 1.经典力学的发展历程 对经典力学发展历程的了解建议以学生自主学习和合作学习为主,可以课前将学生分小组,布置学生收集、查阅相关资料和书籍,有条件的学校可以组织学生上网查找经典力学发展史,在学生自学及小组内相互交流的基础上引导学生理清经典力学理论形成和发展的线索,建议从以下几个角度进行提炼和分析: (1)领会力学体系得以建立的原因. 一是生产需要的推动,由于生产实践为力学研究提出了许多问题,促使许多科学家投身于地上物体运动和天体运动规律的研究. 二是科学自身发展的要求. 三是因为力学研究的对象最简单,它抛开物体的物理、化学性质,只把它作为一个有质量的实体来看待,研究物体间的作用及在这一作用下物体运动状态的变化规律.四是有一系列科学家为牛顿力学的建立打下了重要的科学基础,特别是:(1)伽利略发现了惯性定律和重力作用下的匀加速运动,奠定了牛顿第一定律和第二定律的基本思想.②“天空的立法者”——开普勒所发现的行星运动三定律,是牛顿万有引力定律产生的最重要的前提.

牛顿力学的建立

牛顿力学的建立 恩格斯说:“社会一旦有技术上的需要,则这种需要就会比十所大学更能把科学推向前进。”作为以社会需要为根本动力的自然科学不仅是长期科学实践发展的产物,而且在其背后还有着深刻的社会背景,牛顿力学的建立同样说明了这一点。 十五世纪下半叶以后,由于商业资本的日益勃起,资本主义的生产关系在西欧各国封建制度内部逐渐形成起来。由于生产力的发展和资本主义对外扩张的需要,手工业、城市建筑、航海造船、矿山开采和军事技术都得了发展。资产阶级为了掠夺和追求更大的利润,就需要进一步发展生产,而为了发展生产,就特别需要有探索自然规律的科学。另外,也正是由于生产的发展,新技术的使用以及新航路的开辟,才为自然科学研究提供了大量课题、材料和新的实验手段。就在这个时候,真正系统的自然科学才开始从过去浑为一体的自然哲学中分化出来,一些各自独立的学科相继建立和发展起来,其中居于首位的是对当时航海和工业生产有直接联系的、以天上和地上物体的最简单的运动形式——机械运动为研究对象的古典力学。 牛顿力学正如其它任何新的发现和科学成果一样不仅具有间断突破的特点,而且还具有连续继承的特点,它的产生是以一定的科学成果的积累为条件,是以往科学认识发展的继承和飞跃,是在前人系统观察、大量的实验和对不少问题的理论分析的基础上建立起来的,它的形成经历了约一个世纪,广大劳动人民的长期生产实践,以及哥白尼、伽利略、笛卡儿、开卜勒、胡克、惠更斯等人在力学、天文学和数学方面的研究工作,为牛顿力学的建立奠定了雄厚的基础。 十五、十六世纪,由于资产阶级进行海外掠夺和对外贸易的发展,航海事业产生和发展起来,需要精确测定船只在海洋上的位置,特别是测量经度,而经度测量大大地推动了天文学家对天象的观测,随着天象资料的积累,人们提出了许多托勒密体系无法回答的新课题,伟大的波兰天文学家哥白尼用自制的各种仪器对天象进行长期观测,并对观测资料进行分析整理,于1543年出版了《天体运动论》,提出了“日心地动说”的体系,推翻了统治天文学领域一千多年的托勒密体系,从而揭开了自然科学独立发展的序幕。 一、开卜勒等人对万有引力定律的贡献 哥白尼提出太阳中心说之后,许多天文学家对天体运行作了长时期的大量观察。伽利略第一个把望远镜用于天文观测,发现了木星的四个卫星、土星的环,金星的相、太阳黑子、月球表面的山谷等一系列重要现象,有力地证实了哥白尼学说。丹麦天文学家第谷·布拉赫(1546-1601)设计并制造了当时属世界第一流水平的观测仪器,缩小了仪器的误差范围,他用毕生的精力连续二十年系统地精确地观察行星的运动,取得了大量的数据,编制了恒星表。第谷死后,他的助手和学生开卜勒对他的遗稿及大量观测纪录进行了整理,发现天体必然作匀速圆周运动的传统观念无法与天文观测资料相符,而开卜勒又坚信哥白尼日心说和第谷的观测资料,于是他决定寻找与其相适合的行星运动的轨道形式及其速度的分布规律。他经过多年对火星运动的研究,于1609年出版了《新天文学》一书和《论火星的运动》一文,提出了太阳系行星运动的两个定律,这就是椭圆轨道定律和面积定律,也就是现在所说的开卜勒第一定律和第二定律。 当开普勒建立起关于太阳系行星运动轨道和运动速度的定量描述后,他并不满足已取得的成就,他相信太阳系是一个整体,就必然还存在着一个把所有行星联系起来的普遍规律,来说明和反映不同行星运动之间的关系。于是他又进一步去探索各个行星运行轨道与运行周期的关系。他根据当时关于水星、金星、地球、火星、木星、和土星仅有的而又杂乱无章的

论述量子力学对现代科技的影响

20世纪20年代首先是物理学的黄金时代,它是自本世纪初开始的历时30 年之久的物理学革命的最后10年,其间量子力学的建立是最为引人注目的高潮。量子力学的建立,是继相对论之后对古典物理学的又一次严重的打击,它对物理学乃至整个自然科学的冲击比相对论更为猛烈。相对论提供了新的时空观,量子力学则向人们提供了一种新的关于自然界的思考方法和表述形式。量子力学的一系列基本概念,如物质的波粒二象性、物理量的不可对易性、测不准关系、互补性等等,深刻地揭示了微观物质世界的基本规律,极大地加速了原子物理学和固态物理学的发展,也为核物理学和粒子物理学准备了理论基础,对结构化学和分子生物学等的产生也有启迪作用。因此,量子力学可以说是20世纪最多产的科学理论,它迄今仍具有强大的生命力。在探索微观世界的同时,人类对宇宙世界的探索也从太阳系、银河系向更大的河外星系进军。河外星系的发现是20世纪天文学最重大的成就之一,它导致了星系天文学的诞生,掀开了人类探索大宇宙的新的一页。在物理学家和天文学家探索物质世界和宇宙空间奥秘的同时,生物学家和医药学家也在探索人体自身的奥秘和寻求治疗疾病、延长寿命的方法。抗菌素的发现和免疫疫苗的研究有了突破性的进展。科学技术的发展带来了众多的发明创造,丰富了人们的日常生活;家用电器的问世,具有特别重要的意义。中国则是在1915年创立了中国科学社、创刊了《科学》杂志之后,又于1928年成立了中央研究院和北平研究院,标志着中国科学的发展进入了建制化阶段。 加拿大多伦多大学医院医师班丁(F.G.Banting,1891-1941)发现糖 尿病一定与胰腺有关。经过研究,他发现在健康人的胰腺上,分布着许多像 岛屿一样的小暗点,而患糖尿病人的胰腺上,小暗点只是健康人的一半。 班丁作出了一个大胆的设想,只要想方设法增加胰腺上的小暗点,就能 攻克糖尿病这个难关。他把增加的小暗点称为“胰岛素”。通过一段时间的 研制,终于实现可以在胰腺不受破坏的情况下,进行正常的提取,并且在实 验室里把胰岛素分离出来。 美国物理学家康普顿(Arthur Holly Compton ,在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长的x光外,还产生了波长比原波长大的x光,其波长的增量随散射角的不同而变化。这种现象称

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

相关主题
文本预览
相关文档 最新文档