当前位置:文档之家› 牛顿经典力学的建立及影响

牛顿经典力学的建立及影响

牛顿经典力学的建立及影响
牛顿经典力学的建立及影响

牛顿经典力学的建立及影响

摘要:牛顿一是一位伟大的物理学家、数学家和天文学家。其科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧, 对现代化科学技术发展和社会进步产生了极其深远的影响。本文就牛顿力学的建立及影响做一简要论述。

关键词:牛顿经典力学影响

一、牛顿经典力学的建立

牛顿所处的时代, 哥白尼提出了日心说, 开普勒从第谷的观测资料中总结了经验的行星三定律, 伽利略又给出了力、加速度等概念并发现了惯性定律和自由落体定律。但是, 这些物理概念和物理规律是孤立的, 在逻辑上是各自独立的东西。牛顿正是“站在这些巨人的肩上”对行星及地面上的物体运动作了整体的考察和研究, 用数学方法, 使物理学成为能够表述因果性的一个完整体系。牛顿对力学的研究成果集中体现在他的科学巨著《自然哲学的数学原理》以下简称《原理》中,。这本书是科学史上极为重要的伟大著作。

1.划时代的巨著《原理》

《原理》一书分为两大部分, 在第一部分中, 牛顿首先明确了当时人们常常混淆的几个重要概念, 如质量、惯性、外力、向心力、时间、空间等, 然后提出了运动的基本定理和定律, 即牛顿力学三定律, 力的合成与分解、动量守恒定律、质心运动定律、相对性原理以及力的等效原理等。这一部分虽然篇幅不大, 但它是全书的基础, 内容极为重要。第二部分是这些定律的应用, 又分为三篇, 前两篇是用演绎推理的方法导出了万有引力定律, 确定了这一定律的具体形式讨论了阻尼运动、流体动力学以及流体静力学等。在第三篇中, 用已发现的规律解释宇宙体系, 研究天体的观测资料, 其中包括行星围绕太阳的运动, 卫星围绕行星的运动, 地面上物体的降落运动和抛射运动, 慧星轨道的确定, 岁差以及潮汐现象与万有引力的符合程度等, 首次把地上的运动与天体运动用数学方式联系起来。

牛顿的时空观是绝对的, 它虽然不能正确揭示作为物质存在形式的空间和时间的统一性, 不能正确揭示物质和运动的统一性, 但它正确反映了当速度远低于光速时的经典理论的基础, 它是在当时实验条件下的科学总结, 是人类认识自然的一个里程碑。

2.著名的牛顿三定律

定律Ⅰ:每个物体继续保持其静止或沿一直线作等速运动的状态, 除非有力加于其上迫使它改变这种状态。

定律Ⅱ:运动的改变和所加的动力成正比, 并且发生在所加的力的那个直线方向上。

定律Ⅲ:每个作用总有一个相等的反作用和它相对抗, 或者说, 两物体彼此之间相互作用永远相等, 并且各指其对方。

牛顿三定律是在观察和实验的基础上发现的, 已被公认为宏观自然规律,

并成为数学演绎的基础。第一定律是在伽利略、笛卡儿关于惯性定律的基础上建立起来的, 对当今的物理学家来说, 它几乎自然地成了力学的基础。第二定律是在明确了质量概念以后, 对伽利略动力学思想的发展, 它是运动三定律的核心。牛顿第一和第二定律是密切相关的。第一定律表明一个不受干扰力的质点保持它的原有的运动状态第二定律则表明, 力只能引起原有运动状态的改变。故这两个定律否定了伽利略—牛顿时代以前关于必须有力才能保持运动的错误观点。第三定律的指出, 可以说是牛顿对力学发展的一个最具创造性的独到的贡献, 这个定律的确立指出了每一个力都有其反作用力, 从而对力的概念作了完整的概括。这三个看起来非常简单的物体运动定律作为一个整体是动力学的基础。这个基础, 从牛顿奠定之后又成为近代动力学和天体力学研究的基本出发点, 因此得到物理学家, 甚至所有科学家和自然哲学家的极大重视。

3.万有引力定律

在引力问题上, 牛顿在观念上肯定了地球上的重力与天体间引力的同一性,这在科学史上有特别重要的意义。他从建立总的力学体系出发, 排除次要因素, 发挥他高超的数学才能处理变量问题, 在前人已知引力平方反比定理的基础上, 把向心力与物体天体的质量联系起来,并利用了他的反作用定律, 从而推广为普适的万有引力定律(2

21r m m G F )。利用万有引力理论, 人们发现了海王星、冥王星, 解释了今后几百年内极多的地面现象与天体现象, 例如哈雷慧星、地球的扁形等。定律经过了实践的严格检验, 得到了全世纪的公认。直到今天, 万有引力定律仍是最精密可靠的基本定律之一, 也是天体力学和宇宙航行计算的基础。

二、经典力学的创立对现代科学发展的影响和启示

牛顿是近代理论物理学的创始人, 他所建立的力学理论体系不仅能说明已有的理论已经说明的现象, 更重要的是, 经典力学理论能预见到新的物理现象和物理事实, 并能以天文观测或实验证实它们的正确性。诺贝尔物理学奖获得者杨振宁教授在谈到物理学发展时曾指出物理学发展的动力有两个, 一个是实验, 另一个是物理学本身的结构。理论物理学是以实验为基础的, 没有实验, 没有对客观现象的分析和研究就不可能有物理学的发展。和经典力学体系相应的是, 牛顿建立了研究自然科学的新方法。他站在巨人的肩上以培根的实验归纳方法为基础, 又吸收了笛卡儿的数学演绎体系, 形成了他的比较全面的科学方法通过实验和观察即分析现象, 然后加以概括和总结为普遍法则即综合方法, 启开了实验科学的大门, 使作为实验科学的物理学形成了一个光辉的体系。这已成为人类认识事物本质的智能体现和重要的方法论之一, 三百年来为自然科学的繁荣立下了不朽功勋。

牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展, 并成为那时理论物理学的纲领或规范, 直到麦克斯韦电磁理论诞生, 人类对客观世界的认识扩展到电磁领域, 提出电磁场概念。这也可以认为是牛顿引力场理论的一次重大飞跃。量子力学和相对论的建立以及人们对自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。

三、结语

牛顿在自然科学史上占有独特的地位, 他给两个多世纪的自然科学的内容

和结构打上了自己的烙印。他的经典力学体系所奠定的物理基础和方法启迪了人们征服自然的无穷智慧, 几百年来受到人们的高度崇敬。他的科学成就和哲学观点不仅对当时的学术界和思想界起着重大推动作用, 而且还影响了的后来的一些社会变革, 对现代化科学发展和社会进步都产生了极其深刻的影响。牛顿力学体系的建立是人类文明进步的划时代标志, 它不仅总结和发展了牛顿之前物理学的几乎全部重要成果, 而且也是后来所有科学方法的楷模。

参考书目:

[1] 牛顿力学及其物理定律科海拾贝田俊民中国标准出版社

[2] 经典力学要义钱尚武科学出版社

牛顿对经典力学的贡献

课题:牛顿对经典力学的贡献 组长:马啸 组员:邢硕张森淇宋迪刘梦圆刘倩指导教师:车卫红

在天文学方面,牛顿可以称为近代伟大天文学家。他的杰出贡献是制作了反射式望远镜,反射式望远镜的制造成功,是天文学史上的一项重大革新。自伽利略发明第一架天文望远镜以来,人们对于宇宙的认识范围迅速扩展,但是当时流行的伽利略、开普勒等人发明和制造的折射望远镜,口径有限,制造大型望远镜不但困难,而且太庞大,同时折射望远镜的折射色差和球差都很大,这些大大限制了天文观测的范围。牛顿由于了解了白光的组成,因而于1668年设计制成了第一架反射式望远镜。这种望远镜能反射较广光谱范围的光而无色差,容易获得较大的口径,同时对球差也有校正。这样牛顿为现代大型天文望远镜的制造奠定了基础。 牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。 在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。

高考物理力学知识点之牛顿运动定律易错题汇编含答案解析(1)

高考物理力学知识点之牛顿运动定律易错题汇编含答案解析(1) 一、选择题 1.如图,某人在粗糙水平地面上用水平力F 推一购物车沿直线前进,已知推力大小是80N ,购物车的质量是20kg ,购物车与地面间的动摩擦因数,g 取 ,下列说 法正确的是( ) A .购物车受到地面的支持力是40N B .购物车受到地面的摩擦力大小是40N C .购物车沿地面将做匀速直线运动 D .购物车将做加速度为 的匀加速直线运动 2.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( ) A .0m m mg m + B .00m m F m + C . 00 m m mg m + D . 000 m m F m + 3.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接.当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的

A .圆环不一定加速下滑 B .圆环可能匀速下滑 C .圆环与杆之间一定没有摩擦 D .圆环与杆之间一定存在摩擦 4.如图A 、B 、C 为三个完全相同的物体。当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( ) A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 5.下列单位中,不能.. 表示磁感应强度单位符号的是( ) A .T B . N A m ? C . 2 kg A s ? D . 2 N s C m ?? 6.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2) A .1J B .1.6J C .2J D .4J 7.滑雪运动员由斜坡高速向下滑行过程中其速度—时间图象如图乙所示,则由图象中AB 段曲线可知,运动员在此过程中

牛顿力学分析

牛顿运动分析 1、光滑水平面上,有一木块以速度v向右运动,一根弹簧固定在墙上,如图所示,木块从与弹簧接触直到弹簧被压缩成最短的时间内木块将做的运动是:() A.匀减速运动B.速度减小,加速度增大 C.速度减小,加速度减小D.无法确定 2、如图所示,两个木块的质量关系是m a=2m b,用细线连接后放在倾角为θ的光滑固 定斜面上.在它们沿斜面自由下滑的过程中,下列说法中正确的是() A.它们的加速度大小关系是a a<a b B.它们的加速度大小相等,且a<gsinθ C.连接它们的细线上的张力一定为零D.连接它们的细线上的张力一定不为零 3、如图所示,一物块放在倾角为θ的传输带上,且物块始终与传输带相对静止.关 于物块所受到的静摩擦力,下列说法正确的是() A.当传输带匀速运动时,速度越大,静摩擦力越大 B.当传输带加速向上运动时,加速度越大,静摩擦力越大 C.当传输带加速向下运动时,静摩擦力的方向一定沿斜面向下 D.当传输带加速向下运动时.静摩擦力的方向一定沿斜面向上 4、一条不可伸长的轻绳跨过质量可忽略不计的光滑定滑轮,绳的一端系一质量m=15kg的重物,重物静止于地面上,有一质量m'=10kg的猴子,从绳子的另一端沿绳向上爬,如图所示,在重物不离地面的条件下,猴子向上爬的最大加速度 (g=10m/s2): A.25m/s2B.5m/s2C.10m/s2 D.15m/s2 5、如图2-3-7所示,木块A质量为1 kg,木块B的质量为2 kg,叠放在 水平地面上,A、B间最大静摩擦力为1 N, B与地面间动摩擦因数为0.1, 今用水平力F作用于B,则保持A、B相对静止的条件是F不超过(). A.3 N B.4 N C.5 N D.6 N 6、如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ, B与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g,现对A施加一水平拉 力F,则() A.当F>3μmg时,A相对B滑动 B.当F=μmg时,A的加速度为μg

牛顿对经典力学贡献

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687 年7月5日发表的不朽著作《自然哲学的数学原理》里用数学 方法阐明了宇宙中最基本的法则——万有引力定律和三大运 动定律。这四条定律构成了一个统一的体系,被认为是“人类 智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物 理界的科学观点,并成为现代工程学的基础。牛顿为人类建立 起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被 安葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献

所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。 牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。 牛顿三大定律

关于牛顿力学的论文报告

关于牛顿力学的论文报告 (一)对自然观念的影响 牛顿经典力学的成就之大使得它得以广泛传播,深深地改变了人们的自然观。人们往往用力学的尺度去衡量一切,用力学的原理去解释一切自然现象,将一切运动都归结为机械运动,一切运动的原因都归结为力,自然界是一架按照力学规律运动着的机器。这种机械唯物主义自然观在当时是有进步作用的。由于它把自然界中起作用的原因都归结为自然界本身规律的作用,有利于促使科学家去探索自然界的规律。它能刺激人们运用分析和解剖的方式,从观察和实验中取得更多的经验材料,这对科学的发展来说也是必要的。但这种思维方式在一定程度上忽视了理论思维的作用,忽视了事物之间的联系和发展,因而又有着严重的缺陷。 (二)对自然科学的影响 牛顿经典力学的内容和研究方法对自然科学,特别是物理学起了重大的推动作用,但也存在着消极影响。 牛顿建立的经典力学体系以及他的力学研究纲领所获得的成功,在当时使科学家们以为牛顿经典力学就是整个物理学,甚至是全部自然科学的可靠的最终的基础。在相当长的历史时期内,牛顿经典力学名著《自然哲学的数学原理》一书成为了科学家们共同遵循的规范,它支配了当时整个自然科学发展的进程。他研究问题的科学方法和原理也普遍得到赞赏和采用。牛顿研究经典力学的科学方法论和认识论,如运用分析和综合相结合的方法与公理化方法及科学的简单性原则、寻求因果关系中相似性统一性原则、以实验为基础发现物体的普遍性原则和正确对待归纳结论的原则,对后世科学的发展也影响深远。 (三)对社会科学的影响 经典力学不但对自然科学产生了很大影响,在社会科学方面,特别是对哲学和人类思想发展,也产生了重大影响。 在经典力学的直接影响下,英国的霍布斯和洛克建立和发展了机械唯物主义哲学,并由于其强大的影响力,使得唯物论从宗教神学那里争得了发言权,并在随后形成了人类历史上唯物主义和唯心主义斗争最为激烈的一段时期。经过康德和黑格尔对辩证法和机械唯物主义的研究和发展,以及马克思和恩格斯对哲学已有研究成果的吸收,结合当时科学发展成果,最终建立了唯物主义辩证法。唯物主义辩证法的建立,在很大程度上得益于牛顿经典力学体系的建立。 近现代科学和哲学是发轫于经典力学的,正是从牛顿建立经典力学开始,人类在思想观念上才开始真正走向科学化合现代化,而它对人类思想领域的影响也是极其广泛而深刻的。事物总是辩证统一、一分为二的。虽然科学家在运用牛顿经典力学方法及成果时使自然科学得到了长足发展,但当时人们在接受和运用牛顿的科学成果之时,没有搞清它的适用范围,也作出了不适当的夸大。例如,当初有科学家认为所有涉及到的物理学问题都可以归结为不变的引力和斥力,因而只要把自然现象转化为力就行了。结果到后来,“力”成了对现象和规律缺乏认识的避难所,把当时无法解释的各种现象都冠以各种不同力的名称。因此,牛顿经典力学的内容及其研究方法在推动自然科学发展的同时,也产生了很大的消极影响。对经典力学,我们要辩证地看待其得与失。

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

牛顿运动定律练习题基础版带答案

一,选择题。 1. 有关力的概念,下列说法正确的是() A.力不可能离开物体而独立存在 B.受力物体不一定是施力物体 C.一个力的发生必定涉及到两个物体 D.重力的大小和方向与物体的运动状态无关 2. 关于力的作用效果的叙述中,正确的是() A.物体的运动状态发生变化,一定受到力的作用 B物体的运动状态不发生变化,一定不受到力的作用 C.物体受到力的作用后,一定同时出现形变和运动状态发生变化的现象 D力对物体的作用效果完全由力的大小决定 3.关于弹力,下列叙述正确的是() A.两物体相互接触,就一定会产生相互作用的弹力 B.两物体不接触,就一定没有相互作用的弹力 C.两物体有弹力作用,物体不一定发生了弹性形变 D.只有弹簧才能产生弹力 4.关于弹力的方向,下列说法正确的是() A弹力的方向一定垂直于接触面 B弹力的方向不一定垂直于接触面 C绳子类软物体产生的弹力一定垂直于被拉物体的平面 D绳子类软物体产生的弹力一定沿绳子的方向 5. 关于摩擦力产生的条件,下列说法正确的是( ) A.相互压紧的粗糙物体间总有摩擦力的 B.相对运动的物体间总有摩擦力作用 C.只要相互压紧并发生相对运动的物体间就有摩擦力作用 D.只有相互压紧并发生相对滑动或有相对运动趋势的粗糙物体间才有摩擦力作用 6.关于静摩擦力,下列说法正确的是() A.只有静止的物体才可能受静摩擦力 B.有相对运动趋势的相互接触的物体间有可能产生静摩擦力 C.产生静摩擦力的两个物体间一定相对静止 D.两个相对静止的物体间一定有静摩擦力产生 7.下列关于滑动摩擦力的说法正确的是() A.滑动摩擦力的方向总是阻碍物体的运动并与物体的运动方向相反 B.当动摩擦因数一定时,物体所受的重力越大,它所受的滑动摩擦力也越大C.有滑动摩擦力作用的两物体间一定有弹力作用,有弹力作用的二物体间不一定有滑动摩擦力作用 D.滑动摩擦力总是成对产生的,两个相互接触的物体在发生相对运动时都会受到滑动摩擦力作用 8.用水平力F把物体压在竖直墙壁上静止不动.设物体受墙的压力为F1,摩擦 力为F2,则当水平力F增大时,下列说法中正确的是( ) A.F1 增大、F2 增大B.F1 增大、F2 不变 C.F1 增大、F2减小D.条件不足、不能确定 9.如图所示,甲、乙、丙三个物体质量相同,与地面的动摩擦因数相同,受到三

经典力学

经典力学 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。 一切物体在没有受到外力作用或受到的合外力为零时,它们的运动保持不变,包括加速度始终等于零的匀速直线运动状态和静止状态,直到有外力迫使它改变这经典力学 种状态为止。 牛顿第二定律 物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma【当F(合)、m和a 采用国际单位制N、kg和m/s2时,k=1】 牛顿第三定律 两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。 万有引力定律 自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,经典力学

与它们之间距离的平方成反比。公式:F(n)=(GMm)/r² 基本假定 第一个假定:假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的。由此可知,经典力学实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定:一切可观测的物理量在原则上可以无限精确地加以测定。由此可知,经典力学只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 应用范围 它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。 编辑本段发展 16世纪以前 力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响,经典力学 以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。16世纪-17世纪 人们开始通过科学实验,对力学现象进行准确的研究。许多物理学

论牛顿力学与拉格朗日方程的优缺点

论牛顿力学与拉格朗日方程的优缺点 拉格朗日力与牛顿力学学并非是在力学中的两大体系,也不是在力学里建立的新的理论,反而拉格朗日力学是在力学中引入广义坐标和虚功原理将牛顿力学的进一步拓展,它们在力学范畴内所包含的内容完全等价,但不过是解决问题的出发点不一样. 1、从牛顿力学出发来看这个问题,而牛顿力学的核心在于牛顿第二定律,牛顿力学为求解力学问题提供可靠而有效的方法,但在实际生活中,用牛顿力学研究质点系统的运动却不尽人意。其一,在它表达方式上有时显得十分复杂。其二,力学方程组包含大量的微分方程,在处理约束问题时,虽然独立变量减少了,可相关约束方程又增加了,加大了解决问题的难度。比如:对于有n个质点所组成的受到K个约束条件限制的力学体系,用牛顿力学求解则需3N+K个方程联立求解,而采用拉格朗日方程则只需3N-K个方程,然而,粗看感觉没多大优越之处,但约束越多,则拉格朗日越显其锋芒。 2、拉格朗日力学是牛顿力学的拓展形式,但在处理问题时的着 眼点不同。牛顿力学的方法是以质点为对象,着眼点放在作用在物体上的外在因素(受力情况),在处理问题是,先考虑各个质点的受力,然后类似推断怎个系统的运动,然而拉格朗日力学是以整个力学系统为对象,通过广义坐标来描述质点的位形,着眼于对整个系统的能量概念。因此,在用拉格朗日力学处理力学问题时,撇开了牛顿力学是矢量,解决问题是既要注意其大小再要注意其方向,所以采用能量(标量)来解决问题,这就降低问题

的难度。但拉格朗日方程得到的各种表达式的物理图像,又不如牛顿力学那样简单直观。 3、牛顿力学与拉格朗日力学相互联系,但其基本观念并不相同。牛顿力学的基本观念:时间的绝对性欲时空分离的观念,使它只适用于物体运动速度远小于光速的范围。拉格朗日是以达朗伯原理为基础,而达朗伯原理出发点是牛顿方程,其推导只是改变形式。比如引入广义坐标使变量独立,利用虚功原理去掉约束力的贡献。 总之:拉格朗日力学只是选择从另外角度来研究力学,其与牛顿力学等价,在处理问题时各有优缺,只有在适当的地方合适选择才使问题变得简单!!

牛顿运动定律 基础测试题

第三章自我测试基础测试 一、选择题(以下题目所给出的四个答案中,有一个或多个是正确的。) 1. 有关惯性大小的下列叙述中,正确的是( ) A.物体跟接触面间的摩擦力越小,其惯性就越大 B.物体所受的合力越大,其惯性就越大 C.物体的质量越大,其惯性就越大 D.物体的速度越大,其惯性就越大 2. 站在升降机中的人出现失重现象,则升降机可能() A. 作加速上升 B. 作减速下降 C. 作加速下降 D. 作减速上升 3. 下面说法中正确的是() A. 力是物体产生加速度的原因 B. 物体运动状态发生变化,一定有力作用在该物体上 C. 物体运动速度的方向与它受到的合外力的方向总是一致的 D. 物体受恒定外力作用,它的加速度恒定. 物体受到的外力发生变化,它的加速度也变化 4. 火车在平直轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为( ) A. 人跳起后,车厢内空气给他以向前的力,带着他随同火车一起向前运动 B. 人跳起的瞬间,车厢地板给他一个向前的力,推动他随同火车一起向前运动 C. 人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已 D. 人跳起后直到落地,在水平方向上人和车始终有相同的速度 5.从水平地面竖直向上抛出一物体,物体在空中运动后最后又落回地面。在空气对物体的阻力不能忽略的条件下,以下判断正确的是()A.物体上升的加速度大于下落的加速度 B.物体上升的时间大于下落的时间 C.物体落回地面的速度小于抛出的速度 D.物体在空中经过同一位置时的速度大小相等

6. 一根绳子吊着一只桶悬空时,在下述几对力中,属于作用力与反作用力的是 ( ) A .绳对桶的拉力,桶所受的重力 B .桶对绳的拉力,绳对桶的拉力 C .绳对桶的拉力,桶对地球的作用力 D .桶对绳的拉力,桶所受的重力 7. 如图1所示,当人向右跨了一步后,人与重物重新保持静止,下述说 法中正确的是 ( ) A.地面对人的摩擦力减小 B.地面对人的摩擦力增大 C.人对地面的压力增大 D.人对地面的压力减小 8. 下列说法中正确的是 ( ) A .物体保持静止状态,它所受合外力一定为零 B .物体所受合外力为零时,它一定处于静止状态 C .物体处于匀速直线运动状态时,它所受的合外力可能是零,也可能不是零 D .物体所受合外力为零时,它可能做匀速直线运动,也可能是静止 9. 马拉车由静止开始作直线运动,先加速前进,后匀速前进. 以下说法正确的是 ( ) A.加速前进时,马向前拉车的力,大于车向后拉马的力 B.只有匀速前进时,马向前拉车和车向后拉马的力大小相等 C.无论加速或匀速前进,马向前拉车与车向后拉马的力大小都是相等的 D.车或马是匀速前进还是加速前进,不取决于马拉车和车拉马这一对力 10. 如图2所示,物体A 静止于水平地面上,下列说法中正确的是 ( ) A .物体对地面的压力和受到的重力是一对平衡力 B .物体对地面的压力和地面对物体的支持力是一对作用力和反作 用力 C .物体受到的重力和地面支持力是一对平衡力 D .物体受到的重力和地面支持力是一对作用力和反作用力 11. 物体在合外力F 作用下,产生加速度a ,下面哪几种说法是正确的 ( ) A. 在匀减速直线运动中,a 与F 反向 图 1 图2

经典力学发展简史

经典力学发展简史 姓名:周玉全班级:物理学151班学号:5502115018 力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。 力学的发展可谓与人类生活与生产息息相关。早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。 在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。这点最为人所熟知便属“地心说”了。托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。 首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。但科学并不会因惧怕火刑而驻足不前。德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。开普勒的这两条定律打破了两千年来认为天体只能作匀速圆周运动的观念,使日心说与观测结果更为符合。开普勒继续利用第谷的观测数据进行深入研究,并于九年后找到了二分之三次方定律,即开普勒第三定律。开普勒三定律对推动天文学和力学有重要作用。伽利略是又一位献身于哥白尼学说的伟人。他是第一个将望远镜对准天体的科学家。1610年出版的《星界信使》一书,是对哥白尼学说的一极大支持。

牛顿力学的局限性

牛顿力学的局限性 正是由于经典物理学取得了非凡的成就,给人们印象太深刻了,遂使有些科学家产生了错觉,认为巨大发现的时代业已过去。这种悲观的论点在上世纪末相当流行。具有典型意义的据称是著名物理学家迈克耳孙(A.A.Michelson)说过的一段话,“当然无法绝然肯定物理科学不再会有像过去那么惊人的奇迹,但非常可能的是大部分宏伟的基本原理业已确立,而今后的进展仅在于将这些原理严格地应用于我们所关注的现象上。在这里测量科学的重要性就显示出来了——定量的结果比定性的结果更为可贵。一位卓越的物理学家曾经说过,物理科学未来的真理将在小数点六位数字上求索”,(1898年芝加哥大学导学手册)。值得注意,这类悲观论点,在20世纪科学的重大发展之后,又在本世纪末重新问世。具有代表性的是美国资深科学记者霍根(J.Horgan)访问许多知名学者之后,写出了《科学的终结》一书,在断章取义地引述若干科学家的谈话之后,得出了荒谬的结论,不仅是物理学走向了穷途末路,而是一切自然科学都到了散场的地步,堪称为上一世纪末悲观论点变本加厉的新版本,其命运必将重蹈前者的覆辙。 富有洞见的是英国著名物理学家凯尔文(L.Kelvin)于1900年所作的演说。他在对19 世纪物理学的成就表示满意的同时,提出了“在物理学晴朗天空的远处,还有两朵令人不安的乌云”。这两朵乌云指的是:其一实验察觉不到物体和以太的相对运动;其二是气体多原子分子的低温比热不符合能量均分定理。这两朵乌云迅速导致倾盆大雨,即相对论和量子论的两场物理学的革命。 19世纪的科学家不满足于用麦克斯韦方程组来解释电磁现象,热衷于采用机械模型来说明问题,即使是大师麦克斯韦本人也不例外。以太被引入作为真空中传播电磁波的媒质。迈克耳孙与莫莱(Morley)设计了精巧的实验来验证物体和以太的相对运动,取得了负的结果。爱因斯坦提出了狭义相对论(1905年),其物理洞见在于摒弃了不必要的以太假设,进而肯定电磁学的规律对于一切惯性参考系都是成立的,而且具有相同的形式,真空的光速不变,不同惯性系之间的变换关系为洛伦兹变换。我们知道,牛顿力学也是对于惯性参考系才成立,而不同惯性系之间的变换关系为伽利略变换。这样经典力学和经典电磁学之间就存在矛盾。爱因斯坦肯定了经典电磁学,而对经典力学作了相应的修正,摒弃了牛顿的绝对的时空观,认为空间、时间与运动有关,并首创性地提出了质量与能量的对等关系,将牛顿力学修正后成功地应用于高速运动的情形。

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

牛顿第一定律是力学基础知识

第1节牛顿第一定律 教学目标: 1、知识与技能 (1)使学生了解牛顿第一定律。 (2)使学生领会得出牛顿第一定律的科学方法。 (3)理解惯性是物体保持静止状态或匀速直线运动状态的性质; (4)知道一切物体在任何情况下都具有惯性; (5)知道日常生活中的惯性现象; (6)能分析惯性现象在生活中的利用和危害. 2、过程与方法 在解释惯性现象的过程中进行语言表达能力的训练; 3、情感、态度与价值观 (1)渗透物理与生活实际相联系,物理知识解决问题的方法教育; (2)通过探究与交流,使学生有将自己的见解公开并与他人讨论的愿望,认识交流合作的重要性,有主动与他人合作的精神. 教学重点: 牛顿第一定律、认识一切物体在任何情况下都有惯性。 教学难点: 牛顿第一运动定律的表述、正确认识惯性现象。 教学过程: 1、新课引入 [演示]: 静止在木板面上的小车受力后运动,撤力后慢慢止. [设疑]:那么是不是说必须有力作用在物体上,才能使物体继续运动,没有力的作用,物体就要停下来? 2、新课教学 (1)牛顿第一定律 [讲解]:早在2000多年前古希腊的哲学家亚里士多德就说过“运动者皆被推动”,根据亚里士多德的观点就是说,小车的运动需要推力去维持。大家都同意他的观点吗? [演示实验]:从斜面滑下的小车,在水平面上运动,小车在水平方向上,没有用力推它,但小车仍然向前运动。 [提问]:小车没有受到水平的推力作用却仍然能运动,这不是和亚里士多德的观点相违背了吗?那么我们今天就来探究一下物体的运动一定需要力来维持吗? a提出问题:物体的运动一定需要力来维持吗?

b猜想与假设: [学生活动]:学生对问题做出猜想,教师进行适当的评价。 c制定计划与设计实验 [讲解]:我们现在还是回到这辆小车,我给它一个推力它就能运动,那么它为什么运动一段距离以后又会停下来呢?小车在运动过程中受到了摩擦力的作用,有力阻碍了小车的前进,水平方向上没有其它力的作用,这样我们想办法让摩擦力更小,观察小车的运动情况。 [讨论]:怎样改变小车所受的摩擦力? [归纳]:我们通过用表面光滑程度不同的材料来改变小车所受的摩擦力。 [展示]:展示三种材料:毛巾、纸板、玻璃。让学生感觉它们表面的光滑程度。 [讨论]:小车滑行的距离会不会受到其它因素的影响呢? [讲解]:摩擦力和初始速度都对小车滑行距离有影响,这里就有两个变量了,我们讲过当探究多个变量对实验结果的影响时,我们可以采用控制变量法。控制摩擦力不变的情况下,改变速度,观察小车在水平轨道上运动的情况,这探究的是速度对物体运动情况的影响,这不是我们今天探究的问题。我们今天探究的是力是不是维持物体运动的原因,那么我们就应该在保持速度不变的情况下改变摩擦力的大小,观察小车在水平轨道上的运动情况。 [讨论]:如何来控制物体开始在水平轨道上运动时的速度保持一样呢? [教师点拔]:推力或从高处滑下,让小车获得速度;推力不好控制) [总结]:我们可以让小车放在斜面的同一高度,让其自由下滑,注意不能给小车力,保证小车在水平轨道上开始运动时具有相同的速度。 4、进行实验与收集证据 实验:让小车分别从同一斜面的相同高度自由滑下,观察小车在不同材料的水平面上运动的情况。(分别铺上毛巾、纸板、玻璃)(填写课本上49页的空格) 水平面越光滑,小车受到的摩擦力越小,小车的速度减小得越慢,小车运动距离就越长。 [讨论]:假如水平方向上的摩擦力突然消失了,那么运动的小车将会怎样? [总结]:假如水平面对小车完全没有摩擦,小车将永远运动下去。实际上,接触面光滑,完全没有摩擦是做不到的。这里,用设想完全没有摩擦的理想化的方法进行推理,通常叫“理想实验”,它是科学推理的一种重要方法。 [讲解]:如果接触面光滑时,摩擦力为零,速度也就不再减小,将永远运动下去。小车不受力也能够永远运动下去,说明力不是维持物体运动的原因,只是改变物体运动状态的原因。

相关主题
文本预览
相关文档 最新文档