当前位置:文档之家› 热学习题解答_第1章温度

热学习题解答_第1章温度

热学习题解答_第1章温度
热学习题解答_第1章温度

第一章温度

1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?

解:(1)

当时,即可由,解得

故在时

(2)又

当时则即

解得:

故在时,

(3)

若则有

显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?

(2)当气体的压强为68mmHg时,待测温度是多少?

解:对于定容气体温度计可知:

(1)

(2)

1-3 用定容气体温度计测得冰点的理想气体温度为,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据

已知冰点

1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为

200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.

解:根据

从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为亦即沸点为.

题1-4图

1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为。

解:依题给条件可得

1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:

由题给条件可知

由(2)-(1)得

将(3)代入(1)式得

1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?

(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:

当时,

代入上式

当,

(1)

(2)

1-8设一定容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强分别为和。

(1)当气体的压强为时,待测温度是多少?

(2)当温度计在沸腾的硫中时(硫的沸点为),气体的压强是多少?

解:解法一设P与t为线性关系:

由题给条件可知:当时有

当时得:

由此而得(1)

(2)时

解法二若设t与P为线性关系

利用第六题公式可得:

由此可得:(1)时

(2)时

1-9当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定:

式中

题1-9题(1)题1-9图(2)

题1-9图(3)

(1)试计算当和时热电动势的值,并在此范围内作图。

(2)设用为测温属性,用下列线性方程来定义温标:

并规定冰点为,汽化点为,试求出a和b的值,并画出图。

(3)求出与和对应的值,并画出图

(4)试比较温标t和温标。

解:令

(1)

(2)在冰点时,汽化点,而,已知

解得:

(3)

当时

当时

当时

(4)温标t和温标只有在汽化点和沸点具有相同的值,随线性变化,而t不随线性变化,所以用作测温属性的温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与虽非线性变化,却能直接反应熟知的温标,因此各有所长。

1-10 用L表示液体温度计中液柱的长度。定义温标与L之间的关系为。式中的a、b为常数,规定冰点为,汽化点为。设在冰点时液柱的长度为,在汽化点时液柱的长度,试求到之间液柱长度差以及到之间液柱的长度差。

解:由题给条件可得:

(1)

(2)

解联立方程(1)(2)得:

1-11定义温标与测温属性X之间的关系为,其中K为常数。

(1)设X为定容稀薄气体的压强,并假定在水的三相点为,试确定温标与热力学温标之间的关系。

(2)在温标中,冰点和汽化点各为多少度?

(3)在温标中,是否存在0度?

解:(1)根据理想气体温标

,而X=P

(1)

由题给条件,在三相点时代入式

代入(1)式得:

(2)

(2)冰点代入(2)式得

汽化点代入(2)式得

(3)若,则

从数学上看,不小于0,说明有0度存在,但实际上,在此温度下,稀薄汽体可能已液化,0度不能实测。

1-12一立方容器,每边长20cm其中贮有,的气体,当把气体加热到时,容器每个壁所受到的压力为多大?

解:对一定质量的理想气体其状态方程为

因,

1-13一定质量的气体在压强保持不变的情况下,温度由升到时,其体积将改变百分之几?

解:根据方程

则体积改变的百分比为

1-14一氧气瓶的容积是,其中氧气的压强是,规定瓶内氧气压强降到时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天。

解:先作两点假设,(1)氧气可视为理想气体,(2)在使用氧气过程中温度不变。则:

由可有

每天用掉的氧气质量为

瓶中剩余氧气的质量为

1-15水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。此时管内水银面到管顶的距离为。问当此气压计的读数为时,实际气压应是多少。设空气的温度保持不变。

题1-15图

解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知

,由于T、M不变

根据方程

有,而

1-16截面为的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。今将左侧的上端封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少?设空气的温度保持不变,压强

题1-16图

解:根据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为(两管水银柱高度差)

设左端水银柱下降

常数

整理得:

(舍去)

1-17图1-17所示为一粗细均匀的J形管,其左端是封闭的,右侧和大气相通,已知大气压强为,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作理想气体。

题1-17图

解:设从J形管右侧灌满水银时,左侧水银柱高为h。假设管子的直径与相比很小,可忽略不计,因温度不变,则对封闭在左侧的气体有:

(S为管的截面积)

解得:

(舍去)

1-18如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管内水银下降了,问闭管内水银面下降了多少?设原来闭管内水银面上空气柱的高度R和大气压强为,是已知的。

题1-18图

解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为。对闭管内一定质量的气体有:

以水银柱高度为压强单位:

取正值,即得

1-19 一端封闭的玻璃管长,贮有空气,气体上面有一段长为的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因而使一部分水银漏出。当大气压为时,六在管内的水银柱有多长?

解:题1-19图

设在正立情况下管内气体的压强为,以水银柱高度表示压强,

倒立时,管内气体的压强变为,水银柱高度为

由于在倒立过程温度不变,

解之并取的值得

1-20求氧气在压强为,温度为时的密度。

解:已知氧的密度

1-21容积为的瓶内贮有氢气,因开关损坏而漏气,在温度为时,气压计的读数为。过了些时候,温度上升为,气压计的读数未变,问漏去了多少质量的氢。

解:当时,容器内氢气的质量为:

当时,容器内氢气的质量为:

故漏去氢气的质量为

1-22 一打气筒,每打一次可将原来压强为,温度为,体积的空气压缩到容器内。设容器的容积为,问需要打几次气,才能使容器内的空气温度为,压强为。

解:打气后压强为:,题上未说原来容器中的气体情况,可设原来容器中没有空气,设所需打气次数为,则

得:次

1-23一气缸内贮有理想气体,气体的压强、摩尔体积和温度分别为、和,现将气缸加热,使气体的压强和体积同时增大。设在这过程中,气体的压强和摩尔体积满足下列关系式:其中为常数

(1)求常数,将结果用,和普适气体常数表示。

(2)设,当摩尔体积增大到时,气体的温度是多高?

解:根据理想气体状态方程和过程方程有

(1)

(2)

,则

1-24图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提瓶R,水银就进入两根相同的毛细管和内,当中水银面的高度差,设容器的容积为,毛细管直径,求待测容器中的气压。

题1-24图

解:设管体积,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测容器的气体压强相等。以B内气体为研究对象,当R继续上提后,内气体压强增大到,由于温度可视为不变,则根据玻-马定律,有

由于

1-25用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:

(1)打开活拴K,使管AB和罩C与大气相通。上度移动D,使水银面在n处。

(2)关闭K,往上举D,使水银面达到m处。这时测得B、D两管内水银面的高度差。

(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。

(4)往上举D,使水银面重新到达m处,这时测得B、D两管内水银面的高度差

已知罩C和AB管的容积共为,求矿物的密度。

题1-25图

解:设容器B的容积为,矿物的体积为,为大气压强,当打开K时,罩内压强为,步骤(2)中罩内压强为,步骤(4)中,罩内压强为,假设操作过程中温度可视不变,则根据玻-马定律知

未放矿石时:

放入后:

解联立方程得

1-26一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则

当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,

当抽气机转过两转后,压强为

当抽气机转过n转后,压强

设当压强降到时,所需时间为分,转数

1-27按重量计,空气是由的氮,的氧,约的氩组成的(其余成分很少,可以忽略),计算空气的平均分子量及在标准状态下的密度。

解:设总质量为M的空气中,氧、氮、氩的质量分别为。氧、氮、氩的分子量分别为。

空气的摩尔数

则空气的平均摩尔质量为

即空气的平均分子量为。空气在标准状态下的密度

1-28把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。

解:根据道尔顿分压定律可知又由状态方程且温度、质量M不变。

1-29用排气取气法收集某种气体(见图1-29),气体在温度为时的饱和蒸汽压为,试求此气体在干燥时的体积。

题1-29图

解:容器内气体由某气体两部分组成,令某气体的压强为

则其总压强

干燥时,即气体内不含水汽,若某气体的压强也为其体积V,则根据PV=恒量(T、M一定)有

1-30 通常称范德瓦耳斯方程中一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化碳和氢分别为和,试计算这两种气体在,和时的内压强,

解:根据内压强公式,设内压强为的内压强。

当时,

当时

当时

1-31一摩尔氧气,压强为,体积为,其温度是多少?

解:由于体积较小,而压强较大,所以利用状态方程则必然出现较大的误差,因此我们用范氏方程求解

式中

1-32试计算压强为,密度为的氧气的温度,已知氧气的范德瓦耳斯常数为,。

解:设氧气的质量为,所占的体积为,则有

根据范氏方程

则有

代入数据得:

1-33用范德瓦耳斯方程计算密闭于容器内质量的二氧化碳的压强。已知容器的容积,气体的温度。试计算结果与用理想气体状态方程计算结果相比较。已知二氧化碳的范德瓦斯常数为,。

解:(1)应用范氏方程计算:

得出:

代入数据计算得:

(2)应用理想气体状态方程:

小结:应用两种方程所得的P值是不同的,用范氏方程所得结果小于理想气体方程所得的P 值。其原因是由于理想气体状态方程忽略分子间作用力和气体分子本身所占的体积,所以使得计算的压强大于真实气体的压强。

绝对温度

不可能比这更冷了 郭世琮 1848年,英国科学家威廉·汽姆逊·开尔文勋爵(1824~1907)建立了一种新的温度标度,称为绝对温标,它的量度单位称为开尔文(K)。这种标度的分度距离同摄氏温标的分度距离相同。它的零度即可能的最低温度,相当于摄氏零下273度(精确数为-273.15℃),称为绝对零度。因此,要算出绝对温度只需在摄氏温度上再加273即可。那时,人们认为温度永远不会接近于0K,但今天,科学家却已经非常接近这一极限了。 物体的温度实际上就是原子在物体内部的运动。当我们感到一个物体比较热的时候,就意味着它的原子在快速动动:当我们感到一个物体比较冷的时候,则意味着其内部的原子运动速度较慢。我们的身体是通过热或冷来感觉这种运动的,而物理学家则是绝对温标或称开尔文温标来测量温度的。 按照这种温标测量温度,绝对温度零度(0K)相当于摄氏零下273.15度(-273.15℃)被称为“绝对零度”,是自然界中可能的最低温度。在绝对零度下,原子的运动完全停止了,并且从理论上讲,气体的体积应当是零。由此,人们就会明白为什么温度不可能降到这个标度之下,为什么事实上甚至也不可能达到这个标度,而只能接近它。 自然界最冷的地方不是冬季的南极,而是在星际空间的深处,那里的温度是绝对温度3度(3K),即只比绝对零度高3度。 这个“热度”因为实际上我们谈到的温度总是在绝对零度之上)是作为宇宙起源的大爆炸留存至今的热度,事实上,这是证明大爆炸理论最显著有效的证据之一。 在实验室中人们可以做得更好,能进一步地接近于绝对零度,从上个世纪开始,人们就已经制成了能达到3K的制冷系统,并且在10多年前,在实验室里达到的最低温度已是绝对零度之上1/4度了,后来在1995年,科罗拉多大学和美国国家标准研究所的两位物理学家爱里克·科内尔和卡尔威曼成功地使一些铷原子达到了令人难以置信的温度,即达到了绝对零度之上的十亿分之二十度(2×10-8K)。他们利用激光束和“磁陷阱”系统使原子的运动变慢,我们由此可以看到,热度实际上就是物质的原子运动。非常低的温度是可以达不到的,而且还要以寻求“阻止”每一单个原子运动,就像打台球一样,要使一个球停住就要用另一个球去打它。这了弄明白这个道理,只要想一想下面这个事实就够了。在常温下,气体的原子以每小时1600公里的速度运动着,而在3K的温度下则是以每小时1米的速度运动着,而在20nK

热学(李椿+章立源+钱尚武)习题解答_第1章温度

第一章温度 1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 解:(1) 当时,即可由,解得 故在时 (2)又 当时则即 解得: 故在时, (3) 若则有 显而易见此方程无解,因此不存在的情况。 1-2 定容气体温度计的测温泡浸在水的三相点槽时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少? 解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计的气体在冰点时的压强与水的三相点时压强之比的极限值。 解:根据 已知冰点 。

1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度. 解:根据 从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K. 题1-4图 1-5铂电阻温度计的测量泡浸在水的三相点槽时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。 解:依题给条件可得 则 故 1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。 设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。 解: 由题给条件可知 由(2)-(1)得 将(3)代入(1)式得

第二章 热力学第二定律

第二章热力学第二定律 一、单选题 1) 理想气体绝热向真空膨胀,则() A. ?S = 0,?W = 0 B. ?H = 0,?U = 0 C. ?G = 0,?H = 0 D. ?U =0,?G =0 2) 对于孤立体系中发生的实际过程,下式中不正确的是() A. W = 0 B. Q = 0 C. ?S > 0 D. ?H = 0 3) 理想气体经可逆与不可逆两种绝热过程,则() A. 可以从同一始态出发达到同一终态。 B. 不可以达到同一终态。 C. 不能确定以上A、B中哪一种正确。 D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。 4) 1mol,100℃及p?下的水向真空蒸发为p?,373K的水蒸汽,过程的△A为( )K J A. 0 B. 0.109 C.-3.101 D.40.67 5) 对于封闭体系的热力学,下列各组状态函数之间的关系中正确的是:() (A) A > U; (B) A < U; (C) G < U; (D) H < A。 6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=1dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。此过程中氧气的熵变为: ( ) A. ?S >0 B. ?S <0 C. ?S =0 D. 都不一定 7)1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为( )J·K-1 A. 19.14, -19.14, 0 B. -19.14, 19.14, 0 C. 19.14, 0, 19.14 D. 0 , 0 , 0 8) 1 mol,373 K,p?下的水经下列两个不同过程变成373 K,p?下的水蒸汽,(1) 等温等压可逆蒸发,(2) 真空蒸发,这两个过程中功和热的关系为:( ) (A) W1> W2Q1> Q2(B) W1< W2Q1> Q2 (C) W1= W2Q1= Q2(D) W1> W2Q1< Q2 9)封闭系统中, W'= 0,恒温恒压下的化学反应可用( )计算系统的熵变. A. ΔS=Q/T; B. ΔS=ΔH/T; C. ΔS=(ΔH-ΔG)/T D. ΔS=nRln( V2/V1) 10) 理想气体经历等温可逆过程,其熵变的计算公式是:( ) A. ?S =nRT ln(p1/p2) B. ?S =nRT ln(V2/V1) C. ?S =nR ln(p2/p1) D. ?S =nR ln(V2/V1) 11) 固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为419.7K,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的熵变?S 应为:( ) J·K-1 A. 44.1 B. 15.4 C. -44.1 D. -15.4 12) dA= -SdT-PdV适用的过程是()。 A.理想气体向真空膨胀B.-10℃,100KPa下水凝固为冰 C.N2(g)+3H2(g) = 2NH3(g)未达平衡D.电解水制取氧 13) 封闭系统中发生等温等压过程时,系统的吉布斯函数改变量△G等于() A.系统对外所做的最大体积功, B. 可逆条件下系统对外所做的最大非体积功, C.系统对外所做的最大总功, D. 可逆条件下系统对外做的最大总功. 14) 在p?下,373K的水变为同温下的水蒸汽。对于该变化过程,下列各式中哪个正确:( ) A.?S体+?S环> 0 B. ?S体+?S环 < 0 C.?S体+?S环 = 0 D. ?S体+?S环的值无法确定 15) 某体系等压过程A→B的焓变?H与温度 T无关,则该过程的:() (A) ?U与温度无关 (B) ?S与温度无关 (C) ?A与温度无关;(D) ?G与温度无关。 16) 1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2′,V2′,T2′,若p2 = p2′ 则:( ) A.T2′= T2, V2′= V2, S2′= S2 B.T2′> T2, V2′< V2, S2′< S2 C.T2′> T2, V2′> V2, S2′> S2 D.T2′< T2, V2′< V2, S2′< S2

绝对温度与相对温度

热力学温度 绝对温度一般指热力学温度 热力学温度,又称开尔文温标、绝对温标,简称开氏温标,是国际单位制七个基本物理 量之一,单位为开尔文,简称开,(符号为K),其描述的是客观世界真实的温度,同时也 是制定国际协议温标的基础,是一种标定、量化温度的方法。 热力学温度又被称为绝对温度,是热力学和统计物理中的重要参数之一。一般所说的绝对零度指的便是0K,对应零下摄氏度。 中文名 热力学温度 外文名 thermodynamic temperature 符号 T 单位 开尔文 提出者 威廉汤姆逊 绝对零度 理论最低温度 目录

1介绍 2热力学温度与摄氏度换算 3本质 4由来 . 5测定方法 . 6负热力学温度 介绍 热力学温标是由威廉汤姆森,第一代开尔文男爵于1848年利用热力学第二定律的推论卡诺定理引入的。 它是一个纯理论上的温标,因为它与测温物质的属性无关。符号T,单位K (开尔文,简称开)。国际单位制(S D的7个基本量之一,热力学温标的标度,符号为T o 根据热力学原理得出,测量热力学温度,采用国际实用温标。热力学温度旧称绝对温度 (absolute temperature )。单位是开尔文”英文是"Kelvin简称开”国际代号"K'但不加“° 来表示温度。开尔文是为了纪念英国物理学家Lord Kelvin而命名的。以绝对零度(0K)为最低温度,规定水的三相点的温度为,开定义为水三相点热力学温度的1/。 摄氏度为表示摄氏温度时代替开的一个专门名称。而水的三相点温度为摄氏度。因此热力学温度T与人们惯用的摄氏温度t的关系是:T ( K) =+t( C )o规定热力学温度的单位开(K)与摄氏温度的单位摄氏度( C )的平均值完全相同。所以△ T K = △T C。在表示温度差和温 度间隔时,用K和用C的值相同。 热力学温度与摄氏度换算 表达式为:T=t+273 T是热力学温标t是摄氏温标 它的由来是这样的: 一定质量的气体在体积不变的情况下温度每升高(或降低)1C增加(或减少)的压强值等于它在0C时压强的1/273用公式表示为 p=p0(1+t/273) 其中p0是0 C时气体的压强

热力学

2 热力学第一定律 本章学习要求: 1.掌握热力学的基本概念,重点掌握状态函数的特点。 2.明确热力学能(U)和焓(H)都是状态函数,热(Q)和功(W)都是与过程相关的物理量。 3.初步掌握用状态函数分析和处理问题的方法。 4.理解可逆过程与最大功的概念。 5.掌握热力学第一定律的表述与数学表达式,学会计算理想气体单纯状态变化过程、相变、化学变化过程的△U、△H、Q及W。 6.理解反应进度与反应热效应的概念,掌握热力学第一定律与黑斯定律的关系,能熟练地应用黑斯定律由生成热与燃烧热计算常温下的反应热。 7.学会应用基尔霍夫定律计算不同温度下的反应热。 在生产实践与科学研究中,我们常碰到这样一些问题:一个物理或化学过程发生后能量得失关系如何?是吸热还是放热?一个新的制备方案能否实现?如何反映最佳反应条件?在一定条件下反应的最高产量可达多少?热力学就是解决这些关系的。 热力学是研究能量互相转换所遵循规律的科学。将热力学基本原理用来研究化学现象以及与化学有关的物理现象就是化学热力学。它的主要内容是利用热力学第一定律计算化学反应的热效应;利用热力学第二定律解决化学反应的方向与限度以及与平衡有关的问题。 热力学两个定律在化学过程以及与化学有关的物理过程中的应用就形成了化学热力学。从热力学定律出发用演绎法讨论具体对象的宏观性质。 热力学方法有以下几个特点: (1)热力学研究的对象是大量粒子的集合体,所得的结论具有统计性质,而不适应于个别分子,原子或离子。 (2)热力学不考虑物质的内部结构,也不管反应进行的机理。 (3)热力学没有时间因素,不涉及速率问题。 热力学的优点是:用热力学方法研究问题,只需要知道研究对象的始态和终态以及过程进行的外界条件,就可以做相应的计算,它不需要知道物质的微观结

标准热力学数据

标准热力学数据(298.15K) https://www.doczj.com/doc/9d9817535.html, 2005-6-7 20:58:37 来源:生命经纬 化学式(状态)H G S 氢(hydrogen) H2(g)0 0 130.57 H+(aq)0 0 0 锂(lithium) Li(s)0 0 29.12 Li+(aq)-278.49 -293.30 13.39 Li2O(s)-597.94 -561.20 37.57 LiCl(s)-408.61 -384.38 59.33 钠(sodium) Na(s)0 0 51.21 Na+(aq)-240.12 261.89 58.99 Na2O(s)-414.22 -375.47 75.06 NaOH(s)-425.61 -379.53 64.45 NaCl(s)-411.65 -384.15 72.13 钾(potassium) K(S)0 0 64.18 K+(aq)-252.38 -283.26 102.51 KOH(s)-424.76 -379.11 78.87 KCl(s)-436.75 -409.15 82.59 铍(beryllium) Be(s)0 0 9.50 BeO(s)-609.61 -580.32 14.14 镁(magnesium) Mg(s)0 0 32.68 Mg2+(aq)-466.85 -454.80 -138.07 MgO(s)-601.70 -569.44 27.91 Mg(OH)2(s)-924.54 -833.58 63.18 MgCl2(s)-641.32 -591.83 89.62 MgCO3(s)-1095.79 -1012.11 65.69 钙(calcium) Ca(s)0 0 41.42 Ca2+(aq)-542.83 -553.54 -53.14 CaO(s)-635.09 -604.04 39.75 Ca(OH)2(s)-986.09 -898.56 83.39

热力学的基本概念汇总

§4-1 热力学的基本概念 本节介绍一些基本概念——热力学系统 平衡态 准静态过程。 一、热力学系统(Thermodynamic System )(系统) 1.热力学系统 在热力学中,把所要研究的对象,即由大量微观粒子组成的物体或物体系称为热力学系统。在下一节中,将对热力学系统进行详细的讨论。外界环境(环境):系统以外的物质 1)概念:在热力学中,把要研究的宏观物体叫作热力学系统,简称系统,也称为工作物质。热力学系统是由大量分子组成的,可以是固体、液体和气体等。本章主要研究理想气体。 与热力学系统相互作用的环境称为外界。 2)热力学系统的分类:根据系统与外界是否有作功和热量的交换,系统可分为: 一般系统:有功、有热交换 透热系统:无功、有热交换 绝热系统:有功、无热交换 封闭系统:无功、无热交换(又称为孤立系统) 对于平衡态的系统,可以用压强、温度、体积来描述系统的状态。 根据系统与外界是否有物质和能量交换,系统可分为: 孤立系统:无能量、无质量交换 ——isolated system 封闭系统:有能量、无质量交换 ——closed system 开放系统:有能量、有质量交换 ——Open system 绝热系统:无能量交换 ——adiabatic system 二、平衡态 1.气体的物态参量 对于由大量分子组成的一定量的气体,其宏观状态可以用体积V 、压强P 和温度T 来描述。描述系统状态变化的物理量称为气体的物态参量。有体积(V) 、压强(p)、温度(T) 1)气体的体积(V olumn )V —— 几何参量 气体的体积V 是指气体分子无规则热运动所能到达的空间。对于密闭容器中的气体,容器的体积就是气体的体积。 单位:m 3 注意:气体的体积和气体分子本身的体积的总和是不同的概念。 2)压强(Pressure )P ——力学参量 压强P 是大量分子与容器壁相碰撞而产生的,它等于容器壁上单位面积所受到的正压力。定义式为 S F P 单位:(1)SI 制帕斯卡 Pa 1Pa=1N ·m -2 (2)cm ·Hg 表示高度为1cm 的水银柱在单位底面上的正压力。 1mm ·Hg=1Toor (托) (3)标准大气压 1atm=76ch ·Hg=1.013×105Pa 工程大气压 9.80665×104Pa 3)温度(Temperature )T ——热力学参量 温度的概念是比较复杂的,它的本质与物质分子的热运动有密切的关系。温度的高低反映分子热运动激烈程度。在宏观上,我们可以用温度来表示物体的冷热程度,并规定较热的物体有较高的温度。

大学物理热学第一章知识点整理

第一章导论 1. 宏观描述方法和微观描述方法 热力学是热物理学的宏观理论,而统计物理学则是热物理学的微观理论. 2. 热力学系统的平衡态 在不受外界条件的影响下,经过足够长时间后系统必将达到一个宏观上看来不随时间变化的状态,这才是平衡态 判断是否平衡态的标准:有无热流与粒子流. 力学平衡条件:通常情况下,表现为压强处处相等 热学平衡条件:温度处处相等(无热流) 化学平衡条件:无外场作用下,系统各部分的化学组成处处相同 只有在外界条件不变的情况下同时满足力学平衡条件、热学平衡条件和化学平衡条件的系统,才不会存在热流与粒子流,才处于平衡态。 3.热力学第零定律和温标 热力学第零定律的物理意义:互为热平衡的物体之间必存在一个相同的特征-----它们的温度是相同的 温标是温度的数值表示法 建立经验温标的三个要素: (1)选择某种测温物质,确定它的测温属性(某种属性随着冷热程度的改变而单调、显著的改变) (2)选定固定点(如水的沸点为100℃,冰的正常熔点是0℃) (3)进行分度 水的三相点温度为273.16k,冰点温度为273.15k 热力学温标为基本温标 摄氏温标、理想气体温标和热力学温标 4、物态方程 处于平衡态的某种物质的热力学参量(如压强、体积、温度)之间所满足的函数关系称为这种物质的物态方程,或称状态方程。物态方程都显含有温度T。 只有在压强趋于零时的气体才是理想气体,在理想气体条件下,一切不同化学组成的气体在热学性质上的差异趋于消失。 理想气体物态方程:R=8.31普适气体常量另一形式:p=nkT 能严格满足理想气体物态方程的气体才是理想气体,理想气体虽然是一种理想模型,但常温

02-热力学第二定律Word版

二、热力学第二定律(601题) 一、选择题 ( 共152题 ) 1. 1 分 (0624) 理想气体绝热向真空膨胀,则: ( ) (A) ΔS = 0,W = 0 (B) ΔH = 0,ΔU = 0 (C) ΔG = 0,ΔH = 0 (D) ΔU = 0,ΔG = 0 2. 1 分 (0671) 熵变S是: (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:( ) (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 2 分 (0675) 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中体系的熵变?S 体 及环境的熵 变?S 环 应为:() (A) ?S 体>0,?S 环 =0 (B)?S 体 <0,?S 环 =0 (C) ?S 体>0,?S 环 <0 (D)?S 体 <0,?S 环 >0 4. 2 分 (0693) 下列四种表述: (1) 等温等压下的可逆相变过程中,体系的熵变ΔS =ΔH相变/T相变 (2) 体系经历一自发过程总有 d S > 0 (3) 自发过程的方向就是混乱度增加的方向 (4) 在绝热可逆过程中,体系的熵变为零 两者都不正确者为: ( ) (A) (1),(2) (B) (3),(4) (C) (2),(3) (D) (1),(4) 5. 2 分 (0694) 有三个大热源,其温度T3>T2>T1,现有一热机在下面两种不同情况下工作: (1) 从T3热源吸取Q热量循环一周对外作功W1,放给T1热源热量为(Q-W1) (2) T3热源先将Q热量传给T2热源,热机从T2热源吸取Q热量循环一周, 对外作功 W2,放给T1热源 (Q-W2) 的热量 则上述两过程中功的大小为: ( ) (A) W1> W2 (B) W1= W2 (C) W1< W2 (D) W1≥W2 6. 1 分 (0695) 求任一不可逆绝热过程的熵变ΔS时,可以通过以下哪个途径求得? ( ) (A) 始终态相同的可逆绝热过程 (B) 始终态相同的可逆恒温过程 (C) 始终态相同的可逆非绝热过程 (D) (B) 和 (C) 均可 7. 2 分 (0696)

新概念物理教程热学答案 第一章 温度

第一章温度 1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 1)解:( 当,解得时,即可由 故在时 )又2 ( 则即时当 解得: 时,故在 3 () 则有若 的情况。显而易见此方程无解,因此不存在 1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少? 解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压 强与水的三相点时压强之比的极限值。 解:根据 冰点已知 。 1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压 ,;当测温泡浸入待测物质中时,测得的压强值为强当从 使,,200mmHg减为时,重新测得当再抽出一些测温泡中抽出一些气体 .试确定待测沸点的理想气体温度测得. 气体使减为100mmHg时,

解:根据 依以上两次所测数据,作从理想气体温标的定义:T-P图看趋势得出 400.5K. 亦即沸点为400.5K约为,T时. 题1-4图 1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。 解:依题给条件可得 则 故 做线性变化随温度t在历史上,对摄氏温标是这样规定的:假设测温属性X,1-6 。即,并规定冰点为,汽化点为 分别表示在冰点和汽化点时X的值,试求上式中的常数a和设和b。 解: 由题给条件可知 1)得(由(2)-

热力学温标(及答案)

第四节热学温标(及答案) 1、当气体温度升高30°时,用热力学温标表示升高() (A)303K (B)30K (C)243K (D)273K 2、关于热力学温标,下列说法正确的是() (A)热力学温度的零度是-273.15℃,叫绝对零度 (B)热力学温度的每一度的大小和摄氏温度是相同的 (C)绝对零度是低温的极限,永远达不到 (D)气体在趋近绝对零度时体积也为零 3、单位换算:(1)127℃=____K(2)200K=____℃(3)气体的温度升高了30℃,换成热力学温度,气体的温度升高了____K 4、气体的温度从80℃下降到-20℃,若用热力学温度表示,应是从 K下降到 K.其下降的温度差应是 K. 5、关于热力学温标的说法,哪些是正确的: (A)热力学温标的零度是-273℃,叫做绝对零度; (B)气体温度趋近绝对零度时其体积为零; (C)热力学温度的每1度大小跟摄氏温度的每1度大小相同; (D)热力学温度的每1度大于摄氏温度的每1度。( ) 6、为了使____和____之间具有正比关系,英国科学家开尔文创立了以____℃作为零点的温标,叫做____温标 7、对一定质量的理想气体,下列几种说法中正确的是() (A)在温度不变时,压强每增加一个标准大气压,体积的减小都相等 (B)在压强不变时,温度每升高1℃,体积的增量都相等 (C)在体积不变时,该气体的压强与摄氏温度成正比 (D)在温度不变时,压强和密度一定成正比 8、气体的温度升高了30℃,在热力学温标中,温度升高的是() (A)30K (B)303K (C)243K (D)60K 9、关于热力学温标,下列说法中正确的是() (A)热力学温度的零度是-273.15℃,叫绝对零度 (B)热力学温标的每一开的大小和摄氏温标的每一摄氏度的大小是相同的 (C)绝对零度是低温的极限,永远达不到 (D)气体在趋近绝对零度时,体积也为零 10、某同学自制了一只温度计,在温度计上均匀地刻了150格分度.当温度计插入冰水混合物中时,水银柱表面到第30格,当插入标准大气压下的沸水中,水银柱表面升高到第80格,此温度计的零刻度线处应标 K,在温度计的150刻度线处应标 K. 11、某种气体温度从0℃升高到27℃,若用热力学温度表示,气体温度升高了 .27℃用热力学温度来表示是 . 12、1848所英国科学家创立了热力学温标,其零度相当于摄氏温度的-____ ℃. 13、让太阳光垂直照射在一块遮光板上,板上有一个可自由收缩的三角形孔,当此三角形孔缓慢地收缩变小直到闭合时,在孔后的屏上将先后出现(遮住侧面光): (A)由大变小的三角形光斑,直至光斑消失; (B)由大变小的三角形光斑,明暗相间的彩色条纹,直至条纹消失; (C)由大变小的三角形光斑,明暗相间的条纹,直至黑白色条纹消失;

热力学四大定律

热力学四大定律: 第零定律——若A与B热平衡,B与C热平衡时,A与C也同时热平衡 第一定律——能量守恒定律(包含了热能) 第二定律——机械能可全部转换成热能,但是热能却不能以有限次的试验操作全部转换成功(热能不能完全转化为功) 第三定律——绝对零度不可达成性 热力学定律的发现及理论 化学反应不是一个孤立的变化过程,温度、压力、质量及催化剂都直接影响反应的方向和速度。 1901年,范霍夫因发现化学动力学定律和渗透压,提出了化学反应热力学动态平衡原理,获第一个化学奖。 1906年能斯特提出了热力学第三定律,认为通过任何有限个步骤都不可能达到绝对零度。这个理论在生产实践中得到广泛应用,因此获1920年化学奖。 1931年翁萨格发表论文“不可逆过程的倒数关系”,阐明了关于不可逆反应过程中电压与热量之间的关系。对热力学理论作出了突破性贡献。这一重要发现放置了20年,后又重新被认识。1968年获化学奖。 1950年代,普利戈金提出了著名的耗散结构理论。1977年,他因此获化学奖。这一理论是当代热力学理论发展上具有重要意义的大事。它的影响涉及化学、物理、生物学等广泛领域,为我们理解生命过程等复杂现象提供了新的启示。 热力学第零定律 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。

热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。 定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。 热力学中以热平衡概念为基础对温度作出定义的定律。通常表述为:与第三个系统处于热平衡状态的两个 系统之间,必定处于热平衡状态。 热力学第一定律 基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。 表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-A或Q=ΔU+A 这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-A+Z。当然,上述ΔU、A、Q、Z均可正可负。对于无限小过程,热力学第一定律的微分表达式为dQ=dU+dA因U是态函数,dU是全微分;Q、A是过程量,dQ和dA只表示微小量并非全微分,用符号d以示区别。又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。 热力学第二定律 1、克劳修斯说法:不可能把热从低温物体传到高温物体,而不引起其他变化。 2、开尔文说法:不可能从单一热源吸取热使之完全变成功,而不发生其他变化。从单一热源吸热作功的循环热机称为第二类永动机,所以开尔文说法的意思是“第二类永动机无法实现”。

大气热力学温度(1)

大气热力学温度 thermodynamic temperatures of atmosphere 表征干空气和湿空气热力性质的重要变量。常用的有虚温、露点、湿球温度、位温和相当位温等。虚温在气压相等的条件下,使干空气的密度和湿空气的密度相等时,干空气应具有的温度。这是一种虚拟的温度,称为虚温(T V )。它表示湿空气的一种属性:TV≈T(1+0.61W ) 式中W =ρ V /ρ d 为混合比,ρ d 、ρ V 分别为干空气和水汽的密度(见气象要素)。 空气的水汽含量愈大,W 也愈大。在一般情况下,虚温仅略高于实测温度,即使在非常暖湿的空气中,也只有几摄氏度的差异。引入虚温后,比较复杂的湿空气 状态方程,就可以用比较简单的、类似于干空气的状态方程来代替,即P = ρR d T V 。 其中ρ是湿空气的密度,R d 为干空气气体常数。 露点在气压和水汽含量不变的情况下,降低空气温度使其达到饱和状态 时的温度,称为露点,常用T d 表示。在温度一定的情况下,空气中的水汽含量愈少,露点愈低,只有在饱和的湿空气中,露点才等于气温,故可利用气温和露点的差值来近似地表示大气中的水汽含量。 湿球温度在系统(空气加水)的气压保持不变并和外界没有热量交换的情况下,纯净的水蒸发到空气中去,使其达到饱和状态时,系统因蒸发冷却而到 达的温度,称为湿球温度,通常用T w 表示。在实际工作中,用湿球温度表上的读数代表湿球温度。该温度表的球部,包着保持浸透了水的纱布,在通风良好的情况下,湿球附近的水分在不断蒸发的过程中吸收周围空气的热量,使周围的气温下降,当湿球附近的空气达到饱和时,湿球温度表的指示剂稳定而不再下降,此时的读数便表示湿球温度。实际上,这种读数和通风情况有关,所以它只是一种近似于理论上的湿球温度。空气中的水汽含量愈小,为使空气达到饱和所需蒸发的水分就愈多,所吸收的热量愈大,湿球温度就愈低。故湿球温度的高低,能反映大气中水汽含量的多寡(湿度的大小)。气块由某高度干绝热上升,达到饱和之后,再湿绝热下降到原来高度时所具有的温度,称为假湿球温度,通常用 T sw 表示。 位温将一块干空气绝热地压缩或膨胀到气压等于1000百帕时所具有的温度,称为位温,常用θ表示。当气块绝热膨胀时,它对外界作功,内能减小,温度下降;反之,气块作绝热压缩时,内能增大,温度升高。但是气块的位温在干绝热过程中却是守恒的。对湿空气,气块干绝热上升,达到饱和之后,再湿绝热下降到1000 百帕高度时的温度,称为假湿球位温,通常用θsw表示。它在等压蒸发和凝结过程中是守恒的。 相当温度在等压情况下,湿空气的水汽全部凝结时,若所释放的潜热全 部用于加热空气,气块所达到的温度,称为相当温度,通常用T e 表示。如果未饱和的气块通过干绝热过程移到1000百帕高度,则其相当温度称为相当位温, 通常用θ e 表示。如果气块先作干绝热变化,达到饱和之后,再依湿绝热过程上升,直到所有的水汽全部凝结为水而脱离该气块为止,然后将这种已无水汽的干空气干绝热地下降至原来的气压处,气块在这种虚拟的过程中所能达到的温度, 称为假相当温度,用T se 表示。若将它用干绝热地移到1000百帕时,其温度称为

第二章热力学第二定律

第二章热力学第二定律 ;选择题 1 . Δ G=O 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程 (B) 等 温等压且非体积功为零的过程 (C)等温 等容且非体积功为零的过程 (D) 可 逆 绝 热 过 程 答案:A 2 .在一定温度下,发生变化的孤立体系,其总熵 (A) 不变(B)可能增大或减小(C)总是减小(D)总是增大答案:D 。因孤立系发生的变化必 为自发过程,根据熵增原理其熵必增加。 3 .对任一过程,与反应途径无关的是 (A)体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 执 八、、 答案:A 。只有内能为状态函数与途径无关,仅取决于始态和终态。 4 .下列各式哪个表示了偏摩尔量: 答案:A 。首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。只有 和D 符合此条件。但 D 中的^i 不是容量函数,故只有 A 是偏摩尔量。 5.氮气进行绝热可逆膨胀 Δ U=O (B) Δ S=O (C) Δ A =O (D) Δ G=O 答 案:B 。绝热系统的可逆过程熵变为零。 6 .关于吉布斯函数 G,下面的说法中不正确的是 (A) Δ G ≤ W 在做非体积功的各种热力学过程中都成立 (B) 在等温等压且不做非体积功的条件下,对于各种可能的变动,系统在平衡态的吉氏函数 最小 (C) 在等温等压且不做非体积功时,吉氏函数增加的过程不可能发生 (D) 在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A O 因只有在恒温恒压过程中 Δ G ≤ W'才成立。 7 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动 机是造不成的(D 热不可能全部转化为功 答案:D 。正确的说法应该是,热不可能全部转化为功而不引起其它变化 &关于克劳修斯-克拉佩龙方程下列说法错误的是 (A)该方程仅适用于液-气平衡(B)该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D)该方程假定与固相或液相平衡的 气体为理想气体 答案:A 9 .关于熵的说法正确的是 (A)每单位温度的改变所交换的热为熵 (B)可逆过程熵变为零(C)不可逆过程熵将增加 (D) 熵与系统的微观状态数有关 答案:DO (A)熵变的定义dS = Q r /T 其中的热应为可逆热;(B)与(C)均在绝热 体系吸收的 (A) .-n i τ, p 』j (B) .?σ,V,n (C) (D) .' n i T, p,n j

热学第一章作业(新)

第一章作业 1、恒定温度00C下,测得三甲胺((CH3)3N)的密度随压强的变化数据如下表所示,试根据这些数 据求三甲胺的摩尔质量。 2、一抽气机转速为每分钟400转,抽气机每分钟能抽出气体20升。设容器的体积为2.0升,问经 过多少时间后才能使容器的压强由0.101 MPa 降为133 Pa。设抽气过程中气体的温度始终不变。 3、两个储着空气的容器A和B以备有活塞之细管连接,它们分别浸入温度为1000C 和-200C的水 槽中。开始时,两容器被细管中的活塞分开,参量为A:压强0.0533 MPa,体积0.25升;B:压强0.0200 MPa,体积0.40升。将活塞打开后气体的压强是多少? 4、在一个密闭容器内盛有少量的水,处于平衡态。已知水在140C时饱和气压为12.0mmHg,水蒸 汽分子碰到水面后都能进入水内,饱和水蒸汽可看作理想气体,气体分子的平均速率与气体的热力学温度T的平方根成正比。试问在1000C和140C单位时间内通过单位面积水面蒸发为水蒸汽的分子数之比为多少?

5、 某热电偶的测温计的一个触点始终保持在00C ,另一个触点与待测物体接触。当待测物 体温度为t 0C 时,测温计中的热电动势为 2t t βαε+=,其中 20410100.5,20.0---??-=?=C mV C mV βα 若以热电偶的电动势为测温属性,规定下述线性关系来定义温标 b a t +='ε,并规定冰点的 00='t ,气点的 0100='t ,试画出 t t -' 曲线。 6、如图一根均匀玻璃管长96cm ,一端封闭,一端开口,开口端向上,管内有一段长为20cm 的水 银柱,当温度为270C 时水银下方被封闭的空气柱长度为60cm ,外界的大气压强为 76cmHg 。试问当温度升高到多少时水银柱刚好从管中溢出? 7、一个球形容器的半径为R ,内盛有理想气体,分子数密度为n ,分子质量为m 。(1)若某分子的 速率为v ,与器壁法向成a 角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间经过的路程是多少?该分子每秒撞击容器器壁多少次?每次撞击给予器壁的冲量多大?(2)导出理想气体压强公式。在推导中必须做些什么简化的假设?

热学第一章习题解答

第一章导论 1.3.1 设一定容气体温度计是按摄氏温标刻度的,它在0.1013MPa下的冰点及0.1013MPa下水的沸点时的压强分别为0.0405MPa和0.0553MPa,试问(1)当气体的压强为0.0101MPa时的待测温度是多少?(2)当温度计在沸腾的硫中时(0.1013MPa下的硫的沸点为444.5),气体的压强是多少? 解: (1),; , ,, (2)由 1.3.2 有一支液体温度计,在0.1013MPa下,把它放在冰水混合物中的示数t0=-0.3℃;在沸腾的水中的示数t0= 101.4℃。试问放在真实温度为66.9℃的沸腾的甲醇中的示数是多少?若用这支温度计测得乙醚沸点时的示数是为34. 7℃,则乙醚沸点的真实温度是多少?在多大一个测量范围内,这支温度计的读数可认为是准确的(估读到0.1℃)

分析:此题为温度计的校正问题。依题意:大气压为0.1013Mpa为标准大气压。冰点,汽点,题设温度计为未经校证的温度计,,,题设的温度计在(1)标准温度为,求示数温度 (2)当示数为,求标准温度 解:x为测温物质的测温属性量 设是等分的,故(是线性的), 对标准温度计 (1) 非标准温度计 (2) (1)、(2)两式得: (3) 1、示数温度: (答案) 2、真实温度 (答案) 3、(1)两曲线交汇处可认为,代入(3) , ,

(2)两曲线对相同的点距离为可视为准确 B上靠0.1 ,, B下靠0.1 , 故 1.3.3 对铂电阻温度计,依题意:在温区内,与的关系是不变的即: (1) ,,;, 代入(1)式 冰融熔点 (2) 水沸点 (3) 解(2) (4) 解(3) (5) (5)—(4)

19.热力学第二定律演示

实验十九热力学第二定律演示仪 ——家用冰箱空调制冷系统原理 【仪器介绍】 如图19-1所示,即为热力学第二定律演示仪。 【操作与现象】 实验开始,接通电源,打开电源开关,全封闭压缩机工作,活塞上下推动,高温热源内部压力增加,开始产生高温高压气体,由于存在节压阀,高温高压气体在通过节压阀之前,开始凝解,变成高压液体,内部温度上升,高温热源开始向外界放出热量。用手触摸散热器明显发热,温度可达40~50℃,又由于节压阀的存在,使低温热源内部压力很低,由节压阀过来的工质在其附近变成低压液体,在低温热源处开始蒸发,温度下降,于是低温热源开始从外界吸收热量,蒸发器表面结霜。这以后,卡诺管中的工质又循环流到全封闭压缩机处,再通过压缩机推动活塞,开始下一次循环。至此就完成一个完整的卡诺循环,实验演示也就完成。 【原理解析】 热力学第二定律的克劳修斯表述指出,热量能够自动地从高温物体向低温物体传递,但不会自发地从低温物体向高温物体传递,只有在外界帮助才能进行。 我们平常所说的高温、低温是人们约定的,而热力学第二定律所说的高温热源或低温热原是以热力学温标为标准来定义的。而热力学温标又是建立于卡诺定理基础上。实验时压缩机工作。活寒上下推动使卡诺管内工质(理想气体)循环流动,于是在高温热源处内部压力增加,温度升高,高温热源对外放热,内部工质经节压阀流向低温热源。而低温热源内部压力低,于是从外界吸收热量,最后工质又流向压缩机,经压缩机开始新的循环。整个工作过程就是个卡诺循环过程,主要是由于压缩机功使内部工质的物态发生变化来完成的,从而能很好地说明热力学第二定律的内容。 1.冰箱制冷原理

电冰箱就是利用了液体汽化吸热来制冷的,该种电冰箱由电动机提供机械能,通过压缩机对制冷系统作功,制冷系统利用低沸点的制冷剂,蒸发时,吸收汽化热的原理制成的。 电冰箱的喉管内,装有一种称为氟利昂,俗称雪种的致冷剂,这是一种无色无臭无毒的气体,沸点为29℃。氟利昂在气体状态时,被压缩器加压,加压后,经喉管流到电冰箱背部的冷凝器,借散热片散热(物质被压缩后,温度就会升高)后,冷凝而成液体。液体的氟里昂进入蒸发器的活门之后,由于脱离了压缩器的压力,就立即化为蒸汽,同时向电冰箱内的空气和食物等吸取汽化潜热,引致冰箱内部冷却。汽化后的氟里昂又被压缩器压回箱外的冷凝器散热,再变为液体,如此循环不息,把冰箱内的热能泵到冰箱外。 图19-2电冰箱制冷系统循环原理图 2.家用空调制冷系统原理: 基本原理与上述冰箱制冷原理相同。 制冷时致冷剂在冷凝器中释放热量冷却,热量被空气吸收,并由风机排出室外,在蒸发器中制冷剂吸收空气热量,冷空气被风扇吹入室内。 制热时由电磁换向阀迫使致冷机流动方向发生变化,蒸发器变成冷凝器,制冷器在冷凝器中放出热量,由风扇吹入室内,室内达到采暖目的。 【实验拓展】 1、自然界的过程都遵守能量守恒定律,那么,作为它的逆定理:“遵守能量守恒定律的过程都可以在自然界中出现”,能否成立? 2、冰箱制冷过程是卡诺循环吗?

化工热力学标准答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m3/1km ol =124.6 c m3/m ol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MP a V c=99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V =8.314×323.15/124.6×10-6=21.56M Pa (2) R-K方程 2 2.52 2.5 60.5268.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P -?===???? 53168.314190.60.086640.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b =--+ ()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---?=--???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 65 4.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MP a 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P =19.22MPa 2-2.分别使用理想气体方程和Pi tzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/m ol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

相关主题
文本预览
相关文档 最新文档