当前位置:文档之家› 电主轴的基本参数与结构1

电主轴的基本参数与结构1

电主轴的基本参数与结构1
电主轴的基本参数与结构1

润滑刀具接口

HC120-42000/11120420001130000 3.5OL SK30

HC120-50000/11120500001130000 3.5OL HSK-E25

HC120-60000/5.512060000 5.5600000.9OL HSK-E25

HCS150g-18000/9150180009750011G HSK-A50

HCS170-24000/2717024000271800014OL HSK-A63

HC170-40000/6017040000604000014OL HSK-A50/E50 HCS170g-15000/151701500015600024G HSK-A63

HCS170g-20000/1817020000181200014G HSK-F63

HCS180-30000/1618030000161500010OL HSK-A50/E50 HCS185g-8000/11185800011213053G HSK-A63

HCS200-18000/152001800015180080OL HSK-A63

HCS200-30000/1520030000151200012OL HSK-A50”E50 HCS200-36000/162003600016600029OL HSK-A50”E50 HCS200-36000/7620036000762500029OL HSK-A50”E50 HCS200-182000/152001200015180080G SK40

HCS230-18000/152301800015180080OL HSK-A63

HCS230-18000/252301800025300080OL HSK-A63

HCS230-24000/182302400018315057OL HSK-A63

HCS230-24000/452302400045750058OL HSK-A63

HCS230-182000/222301200022240087G HSK-A63

HCS230-182000/252301200025300080G HSK-A63

HCS232-185000/9230150009122070G HSK-A63

HCS275-20000/6027520000601000057OL HSK-A63

HCS285-12000/3228512000321000306OL HSK-A100

HCS300-12000/3030012000301000286OL HSK-A100

HCS300-14000/2530014000251100217OL HSK-A63

HCS300-8000/303008000301000286G HSK-A100

注:HCS—矢量驱动;OL—油气润滑;G—永久油脂润滑;SK—ISO锥度。表中产品全部使用陶瓷球轴承。

电动机的转子用压配合的方法安装在机床主轴上,处于前后轴承之间,由压配合产生的摩擦力来实现大转矩的传递。由于转子内孔与主轴配合面之间有很大的过盈量,因此,在装配时必须在油浴中将转子加热到200℃左右,迅速进行热压装配。电动机的定子通过一个冷却套固装在电主轴的壳体中。这样,电动机的转子就是机床的主轴,电主轴的套筒就是电动机座,成为一种新型主轴系统。在主轴的后部安装有齿盘,作为电感式编码器,以实现电动机的全闭环控制。主轴前端外伸部分的内锥孔和端面,用于安装和固定可换的刀柄。

图3中:1为各种连接装置,用于连接电源、数据线、冷却水、润滑剂、压缩空气等,其安装和更换极为方便;2为滚珠套,它使得主轴可自由向后方膨胀;3为冷却水套,保证有限均匀的温升,线圈中的温度传感器进一步保证工作的安全可靠;4为矢量控制确保低速大转矩,使得刚性攻丝得以实现;5为μm 级位移传感器,可通过数控系统进行位移补偿;6为HSK -E 刀具接口,径向和轴向重复精度小于1μm 。BT 、SK 、CAT 、SKI 接口均为选件,冷却液从刀具中喷出也是选件;7为陶瓷球混合轴承,精度优于3μm ,大尺寸轴颈保证了径向和轴向刚度,最小量的润滑直接喷向轴承,延长了轴承的寿命。

3 滚动轴承的配置形式和预加载荷

根据切削负荷大小、形式和转速等,电主轴轴承一般采用如图4所示的配置形式。其中a 仅适用负荷较小的磨削用电主轴,f 的后轴承为陶瓷圆柱混合轴承,

可用于高速,既提高了刚度,又简化了结构。依靠内孔1:12

的锥度来消除间隙和施加预紧。

12p D 3b d m ω2

m (1)

式中 p ———滚珠材料的密度,kg /m 3

D b ———滚珠的直径,m

d m ———滚珠轴承的节圆直径,m

ωm ———滚珠的公转角速度,rad /s

由式(1)可见,滚珠的离心力与轴承转速的平方

成正比。当轴承的转速很高时,滚珠的离心力就很大,其值有时甚至超过切削力的负荷。

滚珠所受的陀螺力矩M g (N ?m )可用下式计算

M g =J ωm ωb sin β(2)

式中 J ———滚珠的转动惯量,kg ?m 2

ωb ———滚珠的自转速度,rad /s

β———滚珠自转轴与坐标平面之间的夹角,rad

同样,在轴承高速运转条件下,滚珠也将产生巨大

的陀螺力矩,造成对电主轴不可忽视的额外载荷,并可能产生滚珠与滚道之间的相对滑移。

这个巨大的离心力和陀螺力矩,会对轴承产生很

大的接触应力,加剧轴承的温升与磨损,降低轴承的使用寿命。

为了减小这个离心力和陀螺力矩,根据式1和式

2,可以采用以下两种方法:

(1)适当减小滚珠的直径。但是,滚珠直径的减小应以不过多削弱轴承的刚度为限。一般高速精密滚动轴承的滚珠直径约为标准系列滚珠轴承的70%,而且做成小直径密珠的结构形式,通过增加轴承的滚珠数和滚珠与内外套圈的接触点,提高滚珠轴承的刚度。

(2)采用轻质材料来制造滚珠。自从氮化硅(

Si 3N 4)陶瓷新材料被英国科学家于20世纪70年代

用人工合成的方法发明以来,由于这种材料优良的力学、物理和化学性能(见表2),引起了机械工程界的极大兴趣和高度重视。人们一直想用这种新材料来制造滚动轴承的滚动体,以解决高速运转中出现的上述问题。经过近20年的努力,氮化硅(Si 3N 4)陶瓷球终于研制成功并投入了工业生产。表2 氮化硅陶瓷与轴承钢的性能对比性 能Si 3N 4陶瓷轴承钢比率密度/(g /cm 3) 3.247.850.412线膨胀系数/(1/℃) 3.2×10-612.5×10-60.256弹性模量/GPa 314206 1.524硬度(HV10)1600700 2.286抗弯强度/MPa 70025000.28断裂韧度/(MN ?m )-3/27200.25泊松比0.260.300.876热导率/[W /(m ?K )]32400.80极限工作温度/℃10801209.00磁性不导磁导磁—绝缘性不导电导电—耐腐蚀性好差—当钢质的内外环配以氮化硅(Si 3N 4)陶瓷球时,这种角接触球轴承称为混合陶瓷轴承(Hybrid Ceramic Bearing )。国外一般简称为混合轴承(Hybrid Bear-ing ),而国内习称陶瓷球轴承,现已得到比较广泛的应用。与钢质球相比,陶瓷球有以下优点:(1)质量轻。材料密度仅为3.218g /cm 3,只相当于钢球的40%。在高速回转时,轻质球的离心力可显著减小。以内径为70mm ,外径为110mm 的滚珠轴承为例(见图6),普通钢质轴承的滚珠直径为12.7mm 。按式1计算,在转速为15000r /min 进行运转时,每一个钢球(用黑色表示)的离心力为174N ;如将钢球的直径减少至7.938mm ,则离心力可减至79N 。当用氮化硅陶瓷材料来制作滚珠(陶瓷球用白色表示)时,标准直径(12.7mm )陶瓷球的离心力为71N ;如果再把陶瓷球的直径减至7.938mm ,则离心力可进一步减至32N ,约为原来的1/6。陀螺力矩也有相类似的情况。由此可见,采用陶瓷球以后,离心力和陀螺力矩都得到大幅度的减小,从而接触应力减小,摩擦功耗下降,温升降低,轴承寿命延长。离心力减小后,还可使轴向位移减小(见图7),使预加载荷的变化小,更好地适应于转速范围大的应用场合。(2)弹性模量高。E =3.22×107MPa ,为钢球的1.5倍,提高了轴承和主轴系统的刚度,也提高了主轴

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

电主轴的介绍 090404041009

电主轴的介绍 1.概括:高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。高速主轴单元的类型主要有电主轴、气动主轴、水动主轴等。不同类型的高速主轴单元输出功率相差较大。 2.电主轴的结构:电动机的转子直接作为机床的主轴,主轴单元的壳体就是电动机机座,并且配合其他零部件,实现电动机与机床主轴的一体化。 3. 优点:电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。电主轴轴承采用高速轴承技术,耐磨耐热,寿命是传统轴承的几倍。 4.电主轴的融合技术: 高速轴承技术 电主轴通常采用动静压轴承、复合陶瓷轴承或电磁悬浮轴承。 动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长刀具寿命、降低加工成本,这种轴承寿命多半无限长。 复合陶瓷轴承目前在电主轴单元中应用较多,这种轴承滚动体使用热压Si3N4陶瓷球,轴承套圈仍为钢圈,标准化程度高,对机床结构改动小,易于维护。 电磁悬浮轴承高速性能好,精度高,容易实现诊断和在线监控,但是由于电磁测控系统复杂,这种轴承价格十分昂贵,而且长期居高不下,至今没有得到广泛应用。 高速电机技术 电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡; 润滑

电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因油的阻力而发热。 冷却装置 为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环,冷却装置的作用是保持冷却剂的温度。 高速刀具的装卡方式 广为熟悉的BT、ISO刀具,已被实践证明不适合于高速加工。这种情况下出现了HSK、SKI等高速刀具。 高频变频装置 要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。 电主轴的运动控制 在数控机床中,电主轴通常采用变频调速方法。目前主要有普通变频驱动和控制、矢量控制驱动器的驱动和控制以及直接转矩控制三种控制方式。 普通变频为标量驱动和控制,其驱动控制特性为恒转矩驱动,输出功率和转速成正比。普通变频控制的动态性能不够理想,在低速时控制性能不佳,输出功率不够稳定,也不具备C轴功能。但价格便宜、结构简单,一般用于磨床和普通的高速铣床等。 矢量控制技术模仿直流电动机的控制,以转子磁场定向,用矢量变换的方法来实现驱动和控制,具有良好的动态性能。矢量控制驱动器在刚启动时具有很大的转矩值,加之电主轴本身结构简单,惯性很小,故启动加速度大,可以实现启动后瞬时达到允许极限速度。这种驱动器又有开环和闭环两种,后者可以实现位置和速度的反馈,不仅具有更好的动态性能,还可以实现C轴功能;而前者动态性能稍差,也不具备C轴功能,但价格较为便宜。 直接转矩控制是继矢量控制技术之后发展起来的又一种新型的高性能交流调速技术,其控制思想新颖,系统结构简洁明了,更适合于高速电主轴的驱动,更能满足高速电主轴高转速、宽调速范围、高速瞬间准停的动态特性和静态特性的要求,已成为交流传动领域的一个热点技术。 5.电主轴的发展趋势:随着机床技术、高速切削技术的发展和实际应用的需要,对机床电主轴的性能也提出了越来越高的要求,

电主轴综述

高速电主轴技术 乔志敏 S1203027 摘要:通过阐述了高速电主轴的发展历程、高速电主轴的结构以及高速电主轴设计制造过程中的关键技术,分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量,高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。 关键词:高速电主轴;高精度;数控机床 Abstract: Based on the development of high-speed motorized spindle and the main str ucture of the motorized and the key technologies in the manufacturing process of high -speed motorized spindle, it analyzes the high precision, high speed electric spindle of influence on the performance of the numerical control machine. Practice has proved t hat high-speed processing technology can solve many problems in the manufacturing of mechanical products, and it can obtain special machining accuracy and surface qual ity. High precision and high speed motorized spindle features have a great impact on t he performance of CNC machine tools . Keywords: high-speed motorized spindle, high precision, CNC machine

高速主轴单元(电主轴)的工作原理及国内外的发展状况

石油大学2012-2013学年第二学期《现代制造技术》考查 姓名 班级 学号

高速主轴单元(电主轴)的工作原理及国内外的发展状况摘要:本文介绍了有关高速电主轴的工作原理和基本结构,以及高速电主轴的关键技术,综述其应用及国内外发展状况。 关键词:主轴;润滑;轴承;机床;发展状况 1、概述 高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。高速电主轴是高速机床的核心部件 ,它将机床主轴与电机轴合二为一 ,即将主轴电机的定子、转子直接装入主轴组件的内 部 ,也被称为内装式电主轴 ,其间不再使用皮带或齿轮传动副 ,从而实现机床主轴系统的“零传动”。具有结构紧凑、重量轻、惯性小、动态特性好等优点 ,并改善了机床的动平衡 ,避免振动和噪声 ,在超高速机床中得到了广泛的应用。随着高速加工技术的迅猛发展和广泛应用 ,各工业部门特别是航天、航空、汽车、摩托车和模具加工等行业 ,对高速度、高精度数控机床的需求与日俱增。这迫切需要开发出更加优质的高速电主轴。高速电主轴是一套组件 ,它包括电主轴及其一些附件 :电主轴、高速变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置 ,因此它融合了高速轴承技术、冷却技术、润滑等技术。高速轴承技术是高速电主轴技术中很关键的技术。 2、电主轴的工作原理、典型结构及优点 2.1电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。

高速电主轴动力学特性分析综述

《机械模态分析与实验》结课论文高速电主轴模态分析综述 班级研1201 姓名赵川 学号2012020003

高速电主轴模态分析综述 前言 高速电主轴是高速机床的核心部件, 它将机床主轴与变频电机 轴合二为一, 即将主轴电机的定子、转子直接装入主轴组件内部, 也被称为内装式电主轴( Built- in Motor spindle) ,其间不再使用皮带或齿轮传动副。其具有结构紧凑、重量轻、惯性小、动态特性好等优点, 并改善了机床的动平衡, 避免振动和噪声, 在超高速机床中 得到广泛应用。随着科学技术的发展,高速精密加工技术已广泛应用于高端装备制造各个行业。高速精密数控机床目前成为现代化制造业的关键生产设备。提高高速精密数控机床在加工运行过程中精度的可靠性、稳定性和可维护性,对提升企业竞争力越来越重要。高速精密机床的工作性能,取决于机床的主轴系统。主轴也是最容易失效的部位之一,主轴系统在加工过程中由于各种原因会引起回转精度劣化和功能丧失,严重影响产品加工精度和质量。如精密车削的圆度误差30%-70%是主轴的回转误差引起。加工的精度越高,所占的比例越大。其动态性能的好坏对机床的切削抗振性、加工精度及表面粗糙度均有很大的影响,是制约数控机床加工精度和使用效率的关键因素。 正文 高速加工技术已广泛应用于航空航天、模具及汽车制造等行业。高速主轴在加工过程中, 由于离心力和陀螺力矩效应, 其动态特性相对静止状态发生很大改变。若仍然利用静态主轴的动态特性参数进

行高速切削稳定性分析, 会带来较大的误差。因此有必要对高速旋转状态下的主轴进行精确建模, 以达到优化切削参数的目的。 国内电主轴的研究始于20世纪60 年代, 主要用于零件内表面磨削, 这种电主轴的功率低, 刚度小。且采用无内圈式向心推力球轴承, 限制了高速电主轴的生产社会化和商品化。20世纪70年代后期至80年代, 随着高速主轴轴承的开发, 研制了高刚度、高速电主轴, 它被广泛应用于各种内圆磨床和各机械制造领域。在20世纪80 年代末以后, 由磨用电主轴转向铣用电主轴, 它不仅能加工各种形体复杂的模具, 还开发了用于木工机械用的风冷式高速铣用电主轴, 推动高速电主轴在铣削中的应用。此外, 食品工业的固体饮料; 染化工业的染料; 医药工业的药品等粉状和粒状物质均需用高速离心干燥技术来生产, 而高速离心干燥设备也需要高速电主轴技术。高速拉伸电主轴的应用促进了我国有色管材精密冷成型技术的发展。高精度硅片切割机用电主轴, 促进电子工业设备的更新和进步。利用高速电主轴的优良性能, 还可开发多种高性能试验机。 国外电主轴最早用于内圆磨床, 20世纪80年代, 随着数控机床和高速切削技术的发展和需要, 逐渐将电主轴技术应用于加工中心、数控铣床等高档数控机床, 成为近年来机床技术所取得的重大成就之一。目前, 采用电主轴技术的数控机床越来越多。电主轴已成为现代数控机床最热门的主要功能部件之一, 世界上形成许多著名机床电主轴功能部件专业制造商, 它们生产的电主轴功能部件已经系列化, 如瑞士的FIS2CHER, Step-Tec和IBAG, 德国的GMN和CYTEC, 意

电主轴的工作原理、典型结构及优点

电主轴的工作原理、典型结构及优点 打印引用发布时间:2010-04-25 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势. 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的“心脏部件”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 2.1 电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。 1主轴箱体 2冷却套 3冷却水进口 4定子 5转子 6套筒 7冷却水出口 8转轴 9反馈装置 10主轴前轴承 11主轴后轴承 2.3电主轴的优点 电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。 3、电主轴的关键技术 “电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 3.1电主轴的高速轴承技术 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。

高速电主轴热态特性与动力学特性耦合分析模型_杨佐卫

第41卷 第1期吉林大学学报(工学版)  V ol.41 No.12011年1月 Journal of Jilin University(Engineering and Technology  Edition) J an.2011收稿日期:2009-10- 19.基金项目:“十一五”国家重大科技专项项目(2009ZX04001-023);四川省科技支撑计划项目(07GG008-023).作者简介:杨佐卫(1980-),男,博士研究生.研究方向:机床性能优化及误差补偿.E-mail:super_yzw@sina.com.cn通信作者:殷国富(1956-),男,教授,博士生导师.研究方向:现代集成制造系统.E-mail:gfy in@scu.edu.cn高速电主轴热态特性与动力学特性耦合分析模型 杨佐卫1,殷国富1,尚 欣1,姜 华2,钟开英2 (1.四川大学制造科学与工程学院,成都610065;2.四川普什宁江机床有限公司,四川都江堰611830 )摘 要:针对高速电主轴的耦合分析,考虑到结合面接触热阻和润滑剂黏温变化对其热态特性影响的同时, 以轴承拟静力学模型描述了径向刚度函数,建立了一种高速电主轴热态特性与动力学特性耦合分析模型。分析了轴承离心力软化效应和热诱导预紧力硬化效应联合作用下的支撑刚度变化规律及其对主轴系统动力学性能的影响。仿真分析与实验结果验证了本文模型的有效性。 关键词:机床;耦合分析模型;接触热阻;热诱导预紧力 中图分类号:TG502.1 文献标志码:A 文章编号:1671-5497(2011)01-0100- 06Coupling  analysis model of thermal and dynamic characteristicsfor high-speed motorized sp indleYANG Zuo-wei1,YIN Guo-fu1,SHANG Xin1,JIANG Hua2,ZHONG Kai-ying 2(1.School of Manufacturing Science and Engineering,Sichuan University,Cheng du610065,China;2.Sichuan PushNingjiang Machine Tool Group Co.,Ltd,Dujiangy an611830,China)Abstract:A coupling  analysis model of thermal and dynamic characteristics was built for the high-speedmotorized spindle.In the model,the thermal contact resistance of joints and the effect of the lubricantviscosity variation with temperature were considered,the radial stiffness function of the bearing wasdescribed by aquasi-static model of bearing.The variation of the supporting stiffness under thecombined action of the softening effect of bearing centrifugal force and the hardening effect ofthermally induced preload and its effect on the dynamic characteristics of spindle system wereanalyzed.Simulation and experiment results proved the established model satisfied the need ofcoupling  analysis for the high-speed motorized spindle.Key words:machine tool;coupling analysis model;thermal contact resistance;thermally inducedp reload0 引 言 高速电主轴内置电机大量的热生成以及附加的转子质量增加了热态特性、 动力学性能及其耦合行为的复杂性,因此,国内外学者对其进行了深 入的研究。T.A.Harris[1] 提出了解析轴承系统温度分布的热网络法。B.Bossmanns等[2]提出 了基于有限差分法的高速电主轴热分析模型。

高速电主轴的内部结构说明

高速电主轴的内部结构说明 高速主轴单元主要有高速电主轴,气动主轴和水动主轴。其中高速电主轴最为常见,高速电主轴单元是高速加工机场中最为关键的部件之一。目前大多数电主轴结构都是把加工主轴与电机转轴做成一体,以实现零传动。同时电机外壳带有冷却系统,高速电主轴主要有带冷却系统的壳体,定子、转子、轴承等部分组成,工作时通过改变电流的频率来实现增减速度。由于高速电主轴要实现高速运转,以下几个零部件质量直接影响着高速电主轴的性能。 (1)转轴是高速电主轴的主要回转体。他的制造精度直接影响电主轴的最终精度。成品转轴的形位公差尺寸精度要求很高,转轴高速运转时,由偏心质量引起震动,严重影响其动态性能,必须对转轴进行严格动平衡测试。部分安装在转轴上的零件也应随转轴一起进行动平衡测试。 (2)高速电主轴的核心支撑部件是高速精密轴承。因为电主轴的最高转速取决于轴承的功能、大小、布置和润滑方法,所以这种轴承必须具有高速性能好、动负荷承载能力高、润滑性能好、发热量小等优点。近年来,相继开发了动静压轴承、陶瓷轴承、磁浮轴承。动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长寿命,降低加工成本;而且这种寿命为半无限长。磁浮主轴的高速性能好、精度高、容易实现诊断和在线监控。但这种主轴由于电磁测控系统复杂,价格十分昂贵,而且长期居高不下,至今未能得到广泛应用。目前市场上应用最广泛的就是陶瓷轴承,一般的角接触陶瓷轴承内外圈都是钢圈,滚动体是陶瓷材料。陶瓷具有密度小,刚度好,热膨胀系数小等优点。而且在理论计算和接触疲劳试验和压碎试验表明,混合式陶瓷轴承首先失效的是钢圈而不是陶瓷球。由于前面三种轴承理论寿命均为无穷大,特别是磁悬浮轴承还具有自动调节偏心等优点,在未来超高速机床市场上,随着技术的发展,磁悬浮轴承应是发展方向。而在一般的高速加工机床中,混合式陶瓷轴承或纯陶瓷轴承也将具有广泛的使用场合。 (3)润滑系统 采用良好的润滑系统对高速电主轴性能有着重要的影响。典型的润滑方法是采用油雾润滑或气油混合物润滑。前者主是把润滑油雾化在对轴承进行润滑,润滑油不可再回收,对空污染较严重。后者是直接把润滑油利用高压空气吹进轴承,润滑作用的同时还起到散热的作用。(end) 文章内容仅供参考() ()(2010-7-1) 本文由无锡汽车租赁https://www.doczj.com/doc/9d16213507.html, 奶茶店加盟https://www.doczj.com/doc/9d16213507.html, 联合整理发布

电主轴详细参数及安装

电主轴参数详解 1、主轴产品名称由组成为:安装尺寸-类别代号-主参数-设计序列号安装尺寸:指主轴与机床或主机的配合尺寸,一般指外径。 类别代号反映产品的用途和特点,由2?4位英文字母组成,从前往后分别代表主轴驱动方 式、应用领域、外形代号等含义。 2、应用方式说明: E——内装电机驱动主轴,即电主轴 M――皮带或连轴器驱动主轴,即机械主轴 3、应用领域说明 C――车床用主轴 X――铳床用主轴 Z――钻床用主轴 N——拉辗用主轴 M——磨床用主轴 S――试验机用驱动主轴 L 离心机用主轴 T――特殊用图主轴 4、外形代号说明 F――外形带法兰的主轴 H――电机后置式主轴 Y――其它异形主轴 5、主参数说明 主参数段由数字和一小写英文字母组成,总位数为3?4位,表示电主轴额定转速和润滑方 式,转速以kr/min表示;字母有g、m、a等,分别代表油脂、油雾、油气等润滑方式。 6、设计序列号说明 主轴代号最后一段为设计序号(可以没有),设计序号有1个英文字母或字母+数字组成, 以A、B、C…(后述特殊字母除外)顺序英文字母表示。 举例说明: 180MCF05g-A 安装尺寸一一0 180 MCF ――车削机械主轴,带法兰结构 最高转速一一5000 r/min 润滑一一油脂A――批量衍生产品 电主轴刀具的常见问题 7( 1、刀具无法夹紧

(1)碟形弹簧位移量太小,使主轴抓刀、夹紧装置无法到达正确位置,刀具无法夹紧。通过调整碟形弹簧行程长度加以排除。 (2)弹簧夹头损坏,使主轴夹紧装置无法夹紧刀具。通过更换新弹簧夹头加以排除 (3)碟形弹簧失效,使主轴抓刀、夹紧装置无法运动到达正确位置,刀具无法夹紧。通过更换新碟形弹簧加以排除。 (4)刀柄上拉钉过长,顶撞到主轴抓刀、夹紧装置,使其无法运动到达正确位置,刀具无法夹紧。通过调整或更换拉钉,并正确安装加以排除。 2、刀具夹紧后不能松开 (1)松刀液压缸压力和行程不够。通过调整液压力和行程开关位置加以排除。(2)碟形弹簧压合过紧,使主轴夹紧装置无法完全运动到达正确位置,刀具无 法松开。通过调整碟形弹簧上的螺母,减小弹簧压合量加以排除。 为什么电主轴强力切削时会停转? (1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,强力切削时主轴转矩不足,产生报警,数控机床自动停机。(通过重新调整主轴传动带的张紧力,加以排除。) (2)主轴电动机与主轴连接的传动带表面有油,造成主轴传动时传动带打滑, 强力切削时主轴转矩不足,产生报警,数控机床自动停机。(通过用汽油或酒精清洗后擦干净加以排除。) (3)主轴电动机与主轴连接的传动带使用过久而失效,造成主轴电动机转矩无法传动,强力切削时主轴转矩不足,产生报警,数控机床自动停机。(通过更换新的主轴传动带加以排除。) (4)主轴传动机构中的离合器、联轴器连接、调整过松或磨损,造成主轴电动机转矩传动误差过大,强力切削时主轴振动强烈。产生报警,数控机床自动停机。(通过调整、更换离合器或联轴器加以排除。) 高速电主轴 3 种常见故障 故障一、主轴发热 1、主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高,可以通过重新调整主轴轴承预紧力加以排除; 2、主轴轴承研伤或损坏,造成主轴回转时摩擦过大,引起主轴温度急剧升高,可以通过更换新轴承加以排除; 3、主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高,可以通过清洗主轴箱,重新换油加以排除; 4、主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高,可以通过重新涂抹润滑脂加以排除;故障二、主轴强力切削时停转 1、主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,强力切削时

国内外高速电主轴技术的现状与发展趋势

高速电主轴技术的现状与发展趋势高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。 1、高速电主轴对数控机床的发展以及金属切削技术的影响 对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用: (1)简化结构,促进机床结构模块化 电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化。 (2)降低机床成本,缩短机床研制周期 一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。 (3)改善机床性能,提高可靠性 采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高。 (4)实现某些高档数控机床的特殊要求 有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。 2、促进了高速切削技术在机械加工领域的广泛应用 电主轴系由内装式电机直接驱动,以满足高速切削对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电机变频、闭环矢量控制、交流伺服控制等技术相结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。采用高速加工技术可以解决机械产品制造中的诸多难题,取得特殊的加工精度和

电主轴轴承的装配方法

电主轴轴承的装配方法 1.专业装配的工装 轴承间隙测量,调整工具(很正规专业那种). 精密的标准平台,V型支撑,还有测量内外圆标高的仪器(全是瑞士产的), 还有一些手动工具. 动平衡测量,试验台. 最终的跑合试验台(自带润滑系统,动力系统的). 要求太高了相关的图纸,啊啊, 一套液压安装工具和一套感应加热工具.FAG和NSK都有商品供应. 角接触球轴承一般是成对使用的,有面对面,背对背、同向三种装配的方法,主要是看设计者的思路了,不同的装配方法做预加负载的方法也是不同的。作预加负载是使轴承的内圈与钢球、外圈之间产生一定的弹性变形,来适合你所需要的转速。预加负载的大小不但影响精度,而且影响它的使用寿命。比如背对背使用时,一般采取垫外圈或者磨内圈的方法来实现消除间隙,因为背对背使用时一般是用轴来限制轴承的位置,而外圈一般没有限制的。 2. 轴承安装,不同的人有不同的安装方法:过度配合(0.04mm以内)--开水烫或煮;过盈(0.04mm以上)---油煮等。 1、检查配合要求是否与负载和转速要求相同。 2、测量配合是否超标。 3、根据测量计算决定加热方式。保证轴承油隙。温度不宜超过300--400度。注意防风。不宜用明火加热。条件不许可非用明火时注意温度变化及温度的均匀性。 4、调整轴承的轴向间隙。外圈加垫。

5、用塞尺实测轴承油隙。对特大轴承的油隙最好在实际最大负载(偏载)下调整,要考虑现场温度对轴承的影响。 6、检查转动部份与不动部分是否干涉。 7、加油。注意污染。 8、现场运行监测。 轴承加热温度记得好像应该是小于120度吧 说得对~曾遇到过超过120C后轴承不能回复到原状,报废. 还有的轴承带润滑脂,也不能用热套. 热塑模芯杆, 为了节约材料, 准备用局部镶嵌式联接(相配直径φ30,长度30,用热套方式), 不转递扭矩: 请大家推荐过盈量是多少最合适, 热套零件会变形,二只零件热套后不再加工直接使用,行得通, 热套工艺适合热塑模具, 过盈量在:0---0.03以内。加热温度70度以内。国外轴承装配过盈量一般为0。我这装过几百支辊道辊,过盈量0.03--0.05,加热温度70--90。轴承是国外的。加热设备是自己做的。很土但很实用 对于精度要求较高的主轴组件,为了提高主轴的回转精度,除了要保证主轴及相关零件高的加工精度及采用精密的主轴轴承以外,轴承内圈与主轴装配需采用定向装配法或角度选配法,也就是人为地控制各装配件的径向跳动误差的方向,使误差相互抵消而不是误差累积. 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势。 关键词:电主轴陶瓷球混合轴承油气润滑 1、概述

高速电主轴设计

高速电主轴设计 近10年随着高速加工技术的迅猛发展和日益广泛的应用,各工业部门,特别是航空航天、汽车工业、模具加工和摩托车工业等,对高速数控机床的需求量与日俱增。美、日、德、意和瑞士等工业发达国家已生产了多种商品化高速机床,下表列出了近几年在国际机床市场上出现的几种著名品牌的高速加工中 一般说来,高速机床都是数 控机床和精密机床,其传动 结构的最大特点是实现了机 床的“零传动”。从机床的主 传动系统来看,这种传动方 式取消了从主电动机到主轴 之间一切中间的机械传动环 节(如皮带、齿轮、离合器 等),实现了主电动机与机床 主轴的一体化。这种传动方式有以下优点:1、机械结构最为简单,传动惯量小,因而快速响应性好,能实现极高的速度、加(减)速度和定角度的快速准停(C轴控制)。 (a)无矢量控制(b)有矢量控制 图1 扭矩—功率特性

采用交流变频调速和矢量控制的电气驱动技术,输出功率大,调速范围宽。有比较理想的扭矩——功率特性(图1b),一次装夹既可实现粗加工又可进行高速精加工。实现了主轴部件的单元化,可独立做成标准化的功能部件,并由专业厂进行系列化生产。机床主机厂只需根据用户的不同要求进行选用,可很方便地组成各种性能的高速机床,符合现代机床设计模块化的发展方向。电主轴的机械结构虽然比较简单,但制造工艺的要求却非常严格。这种结构还带来一系列新的技术难题,诸如内置电动机的散热、高速主轴的动平衡、主轴支承及其润滑方式的合理设计等问题,必须妥善地得到解决,才能确保主轴稳定可靠的高速运转,实现高效精密加工。本文结合我校高速电主轴的研制实践,探讨铣镗类高速大功率电主轴设计与制造中的有关问题。1 电主轴的基本参数与结构布局电主轴的主要参数有:(1)主轴最高转速和恒功率转速范围:(2)主轴的额定功率和最大扭矩:(3)主轴前轴颈直径和前后轴承的跨距等。其中主轴最高转速、前轴颈直径和额定功率是基本参数。电主轴通常装备在高速加工中心上,在设计电主轴时要根据用户的工艺要求,采用典型零件统计分析的方法来确定这些参数。机床厂对同一尺寸规格的高速机床,一般会分两大类型,即“高速型”和“高刚度型”分别进行设计。前者主要用于航空、航天等工业加工轻合金、复合材料和铸铁等零件:后者主要用于模具制造、汽车工业中高强度钢或耐热合金等难加工材料和钢件的高效加工。在设计电主轴时,还要注意选择有较好扭矩———功率特性和有足够宽调速范围的变频电动机及 其控制模块。根据主 电动机和主轴轴承 相对位置的不同,高 速电主轴有两种布 局方式: 1.编码盘 2.电主轴壳体 3.冷却水套 4.电动机定子 5.油气喷嘴 6. 电动机转子7.阶梯过盈套8.平衡盘9.角接触陶瓷球轴承 图2 GD-2型电主轴

主轴的形式及结构

关于主轴结构 何謂直結式主軸? 直結式主軸即類似三軸馬達與滾珠螺桿之接合方式,主軸馬達置於主軸上方,馬達與主軸以高剛性無間隙連軸器相連,馬達端之轉動經由連軸器傳於主軸,此即直結式主軸 直結式主軸比起皮帶式,齒輪式與內藏式有什麼特色? 內藏式主軸: 內藏式主軸即將馬達與主軸合而為一,將馬達轉子安裝於主軸軸心,定子在外,運轉原理和一般主軸馬達相同,其具有低振動特性,動態迴轉精度亦較好,但因主軸內必須置放馬達轉子造成軸承跨距較大,剛性較弱的情形發生 內藏式主軸因剛性之故並不適合重切削 直結式主軸: 直結式主軸即類似三軸馬達與滾珠螺桿之接合方式,主軸馬達置於主軸上方,馬達與主軸以高剛性無間隙連軸器相連,馬達端之轉動經由連軸器傳於主軸,此即直結式主軸 直結式主軸屬於剛性連結,對於馬達輸出之POWER較能完全表達於主軸特性,機械效率較高,於主軸運動時,連軸器扮演著不可或缺的角色,連軸器校正好或壞足以影響主軸運動精度,若連軸器校正不良對主軸產生下列影響,主軸溫昇急劇昇高、主軸震動過大、主軸偏擺過大、加工精度不良、甚至主軸燒毀 皮帶式主軸: 皮帶式主軸以皮帶傳遞主軸馬達之運動至主軸,其優點為,振動較齒輪式主軸小,易組裝,缺點為高速時噪音大,皮帶張力不易控制等 齒輪式主軸: 齒輪式主軸最大之優點為可傳遞高扭力,重切削能力優良,其缺點為轉速受限於齒輪設計不易提昇等 电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,将会把高速加工推向一个新时代。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置。 电主轴所融合的技术: 高速轴承技术:电主轴通常采用复合陶瓷轴承,耐磨耐热,寿命是传统轴承的几倍;有时也采用电磁悬浮轴承或静压轴承,内外圈不接触,理论上寿命无限; 高速电机技术:电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡; 润滑:电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因

第二章 电主轴典型结构分析

第二章电主轴典型结构分析 要想做好电主轴的应用选型,首先,必须知道电主轴的类型和功能,其次,才是如何为机床选用电主轴。 1.1 电主轴的分类 电主轴是现代大多数高速机床必不可少的动力源之一,电主轴的运动速度和精度是直接决定加工质量和生产效率的重要因素。 一般来说,不同的依据,就有不同的分类方法。比如说,根据轴承类型,可分为滚动轴承电主轴(角接触球轴承电主轴)、液体轴承电主轴(动静压电主轴)、气体轴承电主轴和磁悬浮轴承电主轴;根据电机类型,可分为异步型电主轴和永磁同步型电主轴。 还有许多分类方法,我们就不一一叙述。本文只介绍按照应用来进行分类,这种分类方法也是现在很多厂家正在生产和使用的一种方法,主要分为磨削用电主轴、钻铣用电主轴、车削用电主轴、加工中心用电主轴、木工用电主轴、特殊加工电主轴和试验机用电主轴等等。常见的电主轴如图2-1所示。 1

电主轴 磨削用电主轴 钻铣用电主轴 车削用电主轴 加工中心用电主轴 木工用电主轴 特殊加工电主轴 试验机用电主轴 当然,还有一些特殊的电主轴,并非在此分类之中,但依然值得我们去好好去探究。 图2.1 各种类型的电主轴 1.1.1磨削用电主轴 磨削用电主轴,是电主轴中转速、精度相对较高、振动相对较小的电主轴,是磨床上的重要部件,可分为内圆磨削、外圆磨削、平面磨削和专用磨削,广泛应用于内圆、外圆、拉力、螺纹、小孔、端面等磨削加工。早期的磨削用电主轴因为性能的限制只能用于轴承行业,随着国内机械行业的发展,加工难度也在不 1

断地提高,对电主轴性能的要求也越来越严格。为了满足工业性需求,磨削用电主轴的应用范围在不断的拓宽,从早期的轴承磨削加工到汽车零件磨削加工、机床导轨的磨削加工、丝杠磨削加工、玻璃透镜磨削加工等,随着加工行业的持续发展,磨削加工正向着高速、强力磨削方向发展,将会对磨削用电主轴提出更高、更苛刻的要求。 虽然我国电主轴行业的发展很迅速,但是与国外的磨削用电主轴相比还是存在很大差距的。下表是国内外低速、中速、高速磨削用电主轴部分参数的对比,其中国外电主轴以NSK为代表,国内则选择某些电主轴生产厂家为代表。 表2-1国内外磨削用电主轴参数比较[1] 电主轴型 号国外NSK 80GHP18 国内 某厂家 国外NSK 100GNS6 国内 某厂家 国外NSK 120GPH3 国内 某厂家 转速rpm 180 000 150 000 60 000 60 000 30 000 24 000 功率KW 0.6 0.5 6 4 18 12 润滑方式油雾油气油雾油雾油雾油雾轴承内径 mm 8 8 25 17 55 45 d m n值 mm/min- 1 6 2.4310 ?6 2.0210 ?6 2.1610 ?6 1.5610 ?6 1.9510 ?6 1.8010 ? 1.1.2钻铣用电主轴[2] 钻削用电主轴,主要用于印刷电路板(PCB)、油泵油嘴等行业的小孔钻削、钻铣削加工,以满足小孔和微孔的加工需要。常规速度等级分6级,按轴承类型 1

高速电主轴

机械制造技术基础课题论文 论文题目:高速电主轴及结构

摘要 高速加工技术,作为现代制造加工技术的重要组成部分,由于其具有非常高的加工效率,同时更能保证加工零件的加工精度与加工质量,必然会成为未来金属切削加工的发展方向。而要实现高速加工,高速加工中心则是其必备的基础装备。高速电主轴作为高速加工中心的核心功能部件,其结构与性能的好坏直接决定了高速加工中心的整体工作性能。虽然高速电主轴的结构较为简单,但其制造所需要的要求极高。 本文先介绍高速电主轴的技术难点,就高速电主轴的主轴电机、动平衡、轴承、冷却方式和夹持方式进行了分析。重点分析了高速轴承在高速电主轴中的重要作用,然后对比了各种轴承和轴承的润滑和冷却方式。然后对高速电主轴在国内外现状进行分析,最后根据自己的理解,分析高速电主轴的发展方向。 关键词:高速电主轴,轴承,润滑,冷却,夹持机构

目录 1高速切削加工技术的应用及发展 (1) 2高速电主轴及其结构 (1) 3高速电主轴的关键技术 (2) 3.1.1主轴电机 (2) 3.2高速轴承 (3) 3.2.1轴承类型 (3) 3.2.2轴承整体布局 (3) 3.2.3轴承的布置 (4) 3.2.4轴承的预紧 (4) 3.2.5润滑方式 (5) 3.3电主轴动平衡技术 (5) 3.4冷却方式 (6) 3.5夹持系统 (6) 3.5.1HSK刀具夹持系统 (6) 3.5.2KM 刀具夹持系统 (7) 4高速电主轴的现状及展望 (8) 4.1高速电主轴现状 (8) 4.1.1国外高速电主轴现状 (8) 4.1.2国内高速电主轴现状 (8) 4.1.3国内外高速电主轴对比 (9) 4.2高速电主轴发展趋势 (9)

高速电主轴

高速电主轴- 介绍 高速电主轴是高速加工中心的核心部件。在模具自由曲面和复杂轮廓的加工中,常常采用2~12mm较小直径的立铣刀,而在加工铜或石墨材料的电火花加工用的电极时,要求很高的切削速度,因此,电主轴必须具有很高的转速。目前,加工中心的主轴转速大多在18000~42000r/min,瑞士Mikro的高速加工中心XSM400U/XSM600U其主轴转速已达54000r/min。而对于模具的微细铣削(铣刀直径一般采用0.1~2mm),则需要更高的转速。 横林精工-高速电主轴 如德国Kugler公司的五轴高精度铣床,其最高主轴转速达160000r/min(采用空气轴承),这样的高转速,当采用0.3mm直径的铣刀加工钢模时,就可达到150m/min的切削速度。目前,德国Fraunhofer生产技术研究所正在开发转速为300000r/min的空气轴承支撑的主轴。 加工模具时,总是采用很高的转速,而高转速产生的发热,以及切削时可能产生的振动是影响模具加工精度的重要因素。为保证高速电主轴工作的稳定性,在主轴上装有用来测量温度、位移和振动的传感器,以便对电机、轴承和主轴的温升、轴向位移和振动进行监控。由此为高速加工中心的数控系统提供修正数据,以修改主轴转速和进给速度,对加工参数进行优化。当主轴产生轴向位移,则可通过零点修正或轨迹修正来进行补偿。 高速电主轴- 高速电主轴购买需知 关于高速电主轴高速电主轴运转速度是通过变频器的驱动来实现的。您可以自己选用变频器,当然也可以将这项工作交由我们来为您代劳,我们将为您匹配好变频器的参数和主轴参数,减少您的麻烦。关于选型选购主轴时,请告知我们:你在我们网上所选用的主轴型号;或者告诉我们主轴的相关参数,比如:主轴工作电压、主轴的外径、主轴的功率、主轴的转速、主轴的轴端连接、主轴的冷却方式(水冷/自冷/风冷)等,我们将为您推荐最合适的产品。关于包装及运输方式您所选购的主轴将用高密度的泡沫箱及纸箱包装。主轴将在您款到的当日通过快递公司发出,(定制的主轴除外);快递不能到达地区,另行商议运输方式。关于保期新购主轴,轴承保半年,其余保一年。需要注意的是:人为因素(比如进粉、进液)不在保修范围。 高速电主轴- 高速电主轴常见故障的分析与排除 高速电主轴故障分析与排除 故障现象检查、调整与判断方法故障排除方法 主轴发热1)主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过重新调整主轴轴承预紧力加以排除。 (2)主轴轴承研伤或损坏,也会造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过更换新轴承加以排除。 (3)主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高。通过清洗主轴箱,重新换油加以排除。 (4)主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高。通过重新涂抹润滑脂加以排除。 主轴强力切削时停转(1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,

相关主题
文本预览
相关文档 最新文档