当前位置:文档之家› 高速电主轴原理与结构设计

高速电主轴原理与结构设计

高速电主轴原理与结构设计

电主轴综述

高速电主轴技术 乔志敏 S1203027 摘要:通过阐述了高速电主轴的发展历程、高速电主轴的结构以及高速电主轴设计制造过程中的关键技术,分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量,高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。 关键词:高速电主轴;高精度;数控机床 Abstract: Based on the development of high-speed motorized spindle and the main str ucture of the motorized and the key technologies in the manufacturing process of high -speed motorized spindle, it analyzes the high precision, high speed electric spindle of influence on the performance of the numerical control machine. Practice has proved t hat high-speed processing technology can solve many problems in the manufacturing of mechanical products, and it can obtain special machining accuracy and surface qual ity. High precision and high speed motorized spindle features have a great impact on t he performance of CNC machine tools . Keywords: high-speed motorized spindle, high precision, CNC machine

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

永磁同步电机在高速电主轴系统中的应用

永磁同步电主轴技术与应用 摘要: 伴随着高速高效高精加工技术的飞速发展,高端数控机床针对电主轴的技术需求深度和广度都不断拓展。特别是近几年来,基于永磁同步电机的电主轴技术与产品得到了快速的发展和广泛的应用。本文结合笔者在电主轴技术研究和产品开发过程中所涉及的关键技术问题,尤其是永磁同步电机在高速电主轴系统中的应用问题进行了广泛深入的探讨,希望以此对国内永磁同步电主轴产品技术开发与推广应用有所促进。 一、引言 高速高精高效加工,是数控机床永恒的追求目标和发展趋势。高效率需要高速度,在航空零件加工中尤为突出。飞机机身结构件的典型零件有梁、筋、肋板、框、壁板、接头、滑轨等类零件。且以扁平件、细长件、多腔件和超薄壁隔框结构件为主。毛坯为板材、锻件和铝合金挤压型材,90%以上为铝合金件。材料利用率仅为5%-10%左右,原材料去除量非常大大(1)。材料去除量大,在粗加工阶段,需要主轴具备足够的转矩输出能力,满足大吃刀切削。整理结构,多腔超博,又需要用小刀具清根,修光。小刀具则需要主轴有足够高的转速,以满足刀具的切削速度需求。因此,航空铝合金零件的加工就需要机床主轴不但具备低速大转矩输出,同时又能在小刀具加工时具备足够高(20000rpm以上)的工作转速。 在磨具加工行业,近年来大量使用的高速雕铣机,在高速电主轴的助推下,利用小刀具的微刀痕特点,大大提高了各种材质模具制造的精度和速度。随着雕铣机床的进一步发展,雕铣机也逐渐进入零件加工领域,因此对主轴的低速输出转矩也提出较高的要求。 平板电脑、苹果手机等高端电子消费品的快速发展,是当今时代最大的亮点之一。这类日用电子消费品,更新速度之快,不但让人眼花缭乱,而且使数控钻攻中心机得以急速发展。这类机床除了具备现代数控机床的基本特征外,必须具备在6000rpm以上高速刚性攻丝的能力。 综合上述三个典型的行业需求,需要数控机床电主轴同时具备三种特点,低速大转矩输出、20000rpm以上的工作转速、可以高速刚性攻丝。永磁同步电主轴则是同时具备这三个特征的最佳电主轴产品。本文就是通过对永磁同步电主轴基本结构,关键技术,以及在不同机床领域里的应用介绍,希望大家对永磁同步电主轴能有比较全面的认识和借鉴。 二、永磁同步电主轴的基本结构及其特点 永磁同步电主轴与传统电主轴的最大区别是采用了稀土永磁同步电机作为主轴的驱动动力源,除此之外,基本结构与异步电机驱动的电主轴结构基本相同。图1为典型的雕铣机用异步电主轴结构,图2为典型的雕铣机用永磁同步电主轴结构。两者结构上最大的区别是图1中的9为感应式鼠笼转子,图2中的16为稀土永磁转子。另外,图2中的20为编码器,是为了较高的速度控制精度而增加的速度和位置反馈元件。

烙铁测温工作原理

1.测量工具 ?被测物体--烙铁头 ?热电偶 ?电子测试仪(如:万用表、测温仪) 2.测温原理: ?热电偶与被测物体接触 ?热量从被测问题传导热电偶 ?热电偶产生一个微伏电压(电阻改变,导致微伏电压变化)?当该电压稳定后,电子测试仪测试该电压,并翻译为温度?该测试值将被测物体的测量值 1.主要影响因素 ?大的接触面积 ?在烙铁头表面有足够的焊锡 ?焊锡氧化程度 ?周围环境 2.误差 ?可能有+/-50℃ 3.烙铁头测量角度

结论: ?当测量角度不一样,测量值不一样 ?测量值实际是热电偶本身温度,不是被测物体的温度 焊台温度设定的基本原则: 在不影响焊接质量及焊接速度的前提下,焊接设定温度越低越好。主要考虑因素: 1.焊料的熔点 2.PCB板时间曲线图 3.元器件耐热温度时间曲线图 4.生产效率 5.焊盘与PCB连接的粘胶耐热温度曲线 设定方法:

1.根据经验,设定一个起始焊接温度。有铅焊接350℃,无铅焊接:370℃ 2.向下或向上微调5℃,操作人员感觉其焊接速度。 3.反复重复第二部动作,将会找到一个工作点:在改点以后,调整温度,操作人员将不会 有任何感觉 4.该点就是最佳焊接温度 焊台温度的正确设定不仅对焊点的质量有很大的影响,而且对烙铁头的寿命也有重大的影响 1.防静电外壳:10的19次方欧姆 2.焊笔防静电方式:烙铁头与接地插座之间的电阻值小于或等于2欧姆 3.焊台防静电的两种模式 硬接地(所有焊台厂家都采用) 等电势位的方式(威乐独有,最安全的防静电模式) 对于烙铁头的接地阻抗测试,我们一种测试方法就是在烙铁焊接设备开启时(接通电源),测试烙铁头的对地电压,此电压会达到2V以上;另一种测试方式就是连接烙铁插头地线端与烙铁头,此阻抗有时候会超过10Ωm,此结果是判定为FAIL。

936型恒温电烙铁维修电路图

936型恒温电烙铁维修经验附电路图 936烙铁是一种可恒温、低电压、长寿命烙铁,具有可靠接地线,并与市电隔离,在修理各种含有贴片元件和集成电路的印制电路板时。尤为方便安全。 其控制电路由两部分组成(见附图所示).一路以IC2-3(运放)、VR、IC2-2(运放)组成的可调基准电压电路;另一路以与加热丝L2(图中的Heater)绕在一起的温度传感电阻丝RT、IC2-4、IC2-1组成的温控电路。这两部分控制信号.分别输入至ICl(C1701C)③脚和④脚,经比较处理后从⑥脚输出触发控制双向可控硅Q1的导通角,以调节L2(加热丝)的加热功率来调温/恒温。 故障1 LED1(加热指示灯)亮但烙铁不热 LEDl亮,则电源正常。测加热线圈阻值正常(为4Ω)。再检查烙铁至控制盒的5根(包括地线)连线无断线,插座接触良好,但双向可控硅Q1无输出电压。测ICl⑦脚输出电压正常(为14V),查ICl⑥脚有触发信号(直流电压为13.8V)。取下Q1测量已不能触发导通.将其更换后烙铁加热恒温正常。 故障2 LEDl不亮,烙铁也不发热 先测电源端有正常的14V,则ICl⑤脚电压为正常的5.4V;④脚为8.03V,调整VR时ICl ③脚电压能变化,但当ICl③脚电压高于④脚时,烙铁仍不能加热。查Q1未坏,判断为ICl 坏,将其更换后一切正常。字串9 故障3 LEDl亮的时间很短.烙铁温度低 经查是VR2失调.因烙铁使用一段时间后.VR2的参数有变动,调整后工作正常。 故障4烙铁温度和恒温点经常变化 此故障一般是VR接触不良,使ICl③脚电位不稳定.导致温度失控。若温度失控而高于310℃时.容易使细密的敷铜线烫脱。更换VR后调温、恒温正常。 注意:手柄型号要一致,因为各型号手柄里面的加热丝参数不一致。维修时根据以上参数来分析排查。 附:IC1(C1701C)引脚功能描述,IC2是一个普通的四运放 1—基准电压输出(3.7-4.2V);2—比较放大器的输出端;3—比较放大器的反相输入端;4—比较放大器的同向输入端;5—电源(-8V)输入端;6—脉冲输出端;7—GND;8—同步信号输入端,工作电流40mA,同步信号电流5mA(RMS)。

电主轴的工作原理、典型结构及优点

电主轴的工作原理、典型结构及优点 打印引用发布时间:2010-04-25 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势. 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的“心脏部件”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 2.1 电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。 1主轴箱体 2冷却套 3冷却水进口 4定子 5转子 6套筒 7冷却水出口 8转轴 9反馈装置 10主轴前轴承 11主轴后轴承 2.3电主轴的优点 电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。 3、电主轴的关键技术 “电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 3.1电主轴的高速轴承技术 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。

恒温电烙铁电路图

自制恒温电烙铁电路图(广广州黄花恒温电烙铁) 发布: | 作者: | 来源: xiexiaolao | 查看:2622次| 用户关注: 自制恒温电烙铁电路图(广广州黄花恒温电烙铁)简易恒温电烙铁,其恒温控制部分由市电直接供电去驱动双向可控硅的电路,一旦出问题往往使元器件烧黑或炸裂,损坏器件的颜色、标记就无法辨认,给维修带来困难。这里,我们以有代表性的广州黄花电子电器厂905C型恒温电烙铁为例,对恒温烙铁的工作原理加以介绍。该电烙铁控温范围是100℃~400℃,调温标志标明低、中、高位,控温精度标称±5%,采用了热电偶传感器。控制电路自制恒温电烙铁电路图(广广州黄花恒温电烙铁) 简易恒温电烙铁,其恒温控制部分由市电直接供电去驱动双向可控硅的电路,一旦出问题往往使元器件烧黑或炸裂,损坏器件的颜色、标记就无法辨认,给维修带来困难。这里,我们以有代表性的广州黄花电子电器厂905C型恒温电烙铁为例,对恒温烙铁的工作原理加以介绍。 该电烙铁控温范围是100℃~400℃,调温标志标明低、中、高位,控温精度标称±5%,采用了热电偶传感器。控制电路采用了交流市电直接降压、滤波、稳压供电方案。工作原理见下图。 市电AC220V经R1降压、D1半波整流、D2削波稳压、C1滤波后作为比较器件IC的电源电压及调温设定电压源。IC-A③脚为热电偶检测电压输入端(与温度值对应); ②脚为调温设定电压。在②、③脚两端电压比较后,由①脚输出。其中R5的作用是将输入的很少一部分反馈至同相输入端③脚,以使在小信号波动时输出锁定不变。当热电偶检到温度偏低时;③脚电平相对②脚低,使输出①脚也低。进而使IC-B放大器⑥脚相对于固定偏置的⑤脚偏低,使输出⑦脚为高。由于IC-B⑤脚电压是由AC220V经R6、R7分压而得,因而,频率、相位完全与AC220V相同。与⑥脚直流比较后在⑦脚输出交流电压。该交流电压经C2、D4、D3和D4反向并联(作用同双向二极管)触发双向可控硅,使相应的电压加到烙铁电热丝上,以达到恒温的目的。

高速电主轴的内部结构说明

高速电主轴的内部结构说明 高速主轴单元主要有高速电主轴,气动主轴和水动主轴。其中高速电主轴最为常见,高速电主轴单元是高速加工机场中最为关键的部件之一。目前大多数电主轴结构都是把加工主轴与电机转轴做成一体,以实现零传动。同时电机外壳带有冷却系统,高速电主轴主要有带冷却系统的壳体,定子、转子、轴承等部分组成,工作时通过改变电流的频率来实现增减速度。由于高速电主轴要实现高速运转,以下几个零部件质量直接影响着高速电主轴的性能。 (1)转轴是高速电主轴的主要回转体。他的制造精度直接影响电主轴的最终精度。成品转轴的形位公差尺寸精度要求很高,转轴高速运转时,由偏心质量引起震动,严重影响其动态性能,必须对转轴进行严格动平衡测试。部分安装在转轴上的零件也应随转轴一起进行动平衡测试。 (2)高速电主轴的核心支撑部件是高速精密轴承。因为电主轴的最高转速取决于轴承的功能、大小、布置和润滑方法,所以这种轴承必须具有高速性能好、动负荷承载能力高、润滑性能好、发热量小等优点。近年来,相继开发了动静压轴承、陶瓷轴承、磁浮轴承。动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长寿命,降低加工成本;而且这种寿命为半无限长。磁浮主轴的高速性能好、精度高、容易实现诊断和在线监控。但这种主轴由于电磁测控系统复杂,价格十分昂贵,而且长期居高不下,至今未能得到广泛应用。目前市场上应用最广泛的就是陶瓷轴承,一般的角接触陶瓷轴承内外圈都是钢圈,滚动体是陶瓷材料。陶瓷具有密度小,刚度好,热膨胀系数小等优点。而且在理论计算和接触疲劳试验和压碎试验表明,混合式陶瓷轴承首先失效的是钢圈而不是陶瓷球。由于前面三种轴承理论寿命均为无穷大,特别是磁悬浮轴承还具有自动调节偏心等优点,在未来超高速机床市场上,随着技术的发展,磁悬浮轴承应是发展方向。而在一般的高速加工机床中,混合式陶瓷轴承或纯陶瓷轴承也将具有广泛的使用场合。 (3)润滑系统 采用良好的润滑系统对高速电主轴性能有着重要的影响。典型的润滑方法是采用油雾润滑或气油混合物润滑。前者主是把润滑油雾化在对轴承进行润滑,润滑油不可再回收,对空污染较严重。后者是直接把润滑油利用高压空气吹进轴承,润滑作用的同时还起到散热的作用。(end) 文章内容仅供参考() ()(2010-7-1) 本文由无锡汽车租赁https://www.doczj.com/doc/8216519692.html, 奶茶店加盟https://www.doczj.com/doc/8216519692.html, 联合整理发布

国内外高速电主轴技术的现状与发展趋势

高速电主轴技术的现状与发展趋势高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。 1、高速电主轴对数控机床的发展以及金属切削技术的影响 对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用: (1)简化结构,促进机床结构模块化 电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化。 (2)降低机床成本,缩短机床研制周期 一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。 (3)改善机床性能,提高可靠性 采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高。 (4)实现某些高档数控机床的特殊要求 有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。 2、促进了高速切削技术在机械加工领域的广泛应用 电主轴系由内装式电机直接驱动,以满足高速切削对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电机变频、闭环矢量控制、交流伺服控制等技术相结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。采用高速加工技术可以解决机械产品制造中的诸多难题,取得特殊的加工精度和

认识电烙铁及使用方法

电烙铁的说明与使用方法 日期:编号: 1、焊接原理 目前电子元器件的焊接主要采用锡焊技术。锡焊技术采用以锡为主的锡合金材料作焊料,在一定温度下焊锡熔化,金属焊件与锡原子之间相互 吸引、扩散、结合,形成浸润的结合层。外表看来印刷板铜铂及元器件引线都是很光滑的,实际上它们的表面都有很多微小的凹凸间隙,熔流态的锡焊 料借助于毛细管吸力沿焊件表面扩散,形成焊料与焊件的浸润,把元器件与 印刷板牢固地粘合在一起,而且具有良好的导电性能。
锡焊接的条件是:焊件表面应是清洁的,油垢、锈斑都会影响焊接;能被锡焊料润湿的金属才具有可焊性,对黄铜等表面易于生成氧化膜的材料,可以借助于助焊剂,先对焊件表面进行镀锡浸润后,再行焊接;要有适当的加热温度,使焊锡料具有一定的流动性,才可以达到焊牢的目的,但温度也不可过高,过高时容易形成氧化膜而影响焊接质量。 1.1、电烙铁的种类: 1.1.1、外热式电烙铁 由烙铁头、烙铁芯、外壳、木柄、电源引线、插头等部分组成。由于烙铁头安装在烙铁芯里面,故称为外热式电烙铁。 烙铁芯是电烙铁的关键部件,它是将电热丝平行地绕制在一根空心瓷管 上构成,中间的云母片绝缘,并引出两根导线与220V 交流电源连接。 外热式电烙铁的规格很多,常用的有25W,45W,75W,100W 等,功率越 大烙铁头的温度也就越高。烙铁芯的功率规格不同,其内阻也不同。 25W 烙铁的阻值约为2k Ω,45W 烙铁的阻值约为1 k Ω,75W 烙 铁的阻值约为0.6 k Ω,100W 烙铁的阻值约为0.5 k Ω。烙铁头是用 紫铜材料制成的,它的作用是储存热量和传导热量,它的温度必须比被 焊接的温度高很多。烙铁的温度与烙铁头的体积、形状、长短等都有一 定的关系。当烙铁头的体积比较大时,则保持时间就长些。另外,为适 应不同焊接物的要求,烙铁头的形状有所不同,常见的有锥形、凿形、 圆斜面形等等。 1.1.2、内热式电烙铁 由手柄、连接杆、弹簧夹、烙铁芯、烙铁头组成。由于烙铁芯安装在烙 铁头里面,因而发热快,热利用率高,因此,称为内热式电烙铁。内热 式电烙铁的常用规格为20W,25W,35W,50W等几种。由于它的热 效率高,20W 内热式电烙铁就相当于40W 左右的外热式电烙铁。内 热式电烙铁的后端是空心的,用于套接在连接杆上,并且用弹簧夹固定,当需要更换烙铁头时,必须先将弹簧夹退出,同时用钳子夹住烙铁头的 前端,慢慢地拔出,切记不能用力过猛,以免损坏连接杆。内热式电烙 铁的烙铁芯是用比较细的镍铬电阻丝绕在瓷管上制成的,其电阻约为 2.5k Ω(20W ),烙铁的温度一般可达350OC 左右。由于内热式电

高速电主轴设计

高速电主轴设计 近10年随着高速加工技术的迅猛发展和日益广泛的应用,各工业部门,特别是航空航天、汽车工业、模具加工和摩托车工业等,对高速数控机床的需求量与日俱增。美、日、德、意和瑞士等工业发达国家已生产了多种商品化高速机床,下表列出了近几年在国际机床市场上出现的几种著名品牌的高速加工中 一般说来,高速机床都是数 控机床和精密机床,其传动 结构的最大特点是实现了机 床的“零传动”。从机床的主 传动系统来看,这种传动方 式取消了从主电动机到主轴 之间一切中间的机械传动环 节(如皮带、齿轮、离合器 等),实现了主电动机与机床 主轴的一体化。这种传动方式有以下优点:1、机械结构最为简单,传动惯量小,因而快速响应性好,能实现极高的速度、加(减)速度和定角度的快速准停(C轴控制)。 (a)无矢量控制(b)有矢量控制 图1 扭矩—功率特性

采用交流变频调速和矢量控制的电气驱动技术,输出功率大,调速范围宽。有比较理想的扭矩——功率特性(图1b),一次装夹既可实现粗加工又可进行高速精加工。实现了主轴部件的单元化,可独立做成标准化的功能部件,并由专业厂进行系列化生产。机床主机厂只需根据用户的不同要求进行选用,可很方便地组成各种性能的高速机床,符合现代机床设计模块化的发展方向。电主轴的机械结构虽然比较简单,但制造工艺的要求却非常严格。这种结构还带来一系列新的技术难题,诸如内置电动机的散热、高速主轴的动平衡、主轴支承及其润滑方式的合理设计等问题,必须妥善地得到解决,才能确保主轴稳定可靠的高速运转,实现高效精密加工。本文结合我校高速电主轴的研制实践,探讨铣镗类高速大功率电主轴设计与制造中的有关问题。1 电主轴的基本参数与结构布局电主轴的主要参数有:(1)主轴最高转速和恒功率转速范围:(2)主轴的额定功率和最大扭矩:(3)主轴前轴颈直径和前后轴承的跨距等。其中主轴最高转速、前轴颈直径和额定功率是基本参数。电主轴通常装备在高速加工中心上,在设计电主轴时要根据用户的工艺要求,采用典型零件统计分析的方法来确定这些参数。机床厂对同一尺寸规格的高速机床,一般会分两大类型,即“高速型”和“高刚度型”分别进行设计。前者主要用于航空、航天等工业加工轻合金、复合材料和铸铁等零件:后者主要用于模具制造、汽车工业中高强度钢或耐热合金等难加工材料和钢件的高效加工。在设计电主轴时,还要注意选择有较好扭矩———功率特性和有足够宽调速范围的变频电动机及 其控制模块。根据主 电动机和主轴轴承 相对位置的不同,高 速电主轴有两种布 局方式: 1.编码盘 2.电主轴壳体 3.冷却水套 4.电动机定子 5.油气喷嘴 6. 电动机转子7.阶梯过盈套8.平衡盘9.角接触陶瓷球轴承 图2 GD-2型电主轴

高速加工电主轴设计

高速加工电主轴设计 摘要:本文拟设计一种铰接式电主轴高速平面移动机构,它可以在相同机械参数的条件下大幅度降低运动部件的质量,提高移动速度和加速度。为配合这种机床的研究而设计与其相配套的电主轴系统。本文重点研究了电主轴用高速精密轴承的选用,支撑跨距的计算,主轴部件的校核,以及润滑冷却系统的设计。 关键词:电主轴高速加工高速轴承支撑跨距 Abstract Now intends to design a kind of articulated motorized spindle high-speed planar moving mechanism,which can be in the same conditions of mechanical parameters reduce the quality of the moving parts and increase the speed of movement and acceleration. To cope with this kind of machine tool research and design and matching of the motorized spindle system. This paper mainly studies on the selection of motorized spindle with high speed precision bearings, The calculation of support span, Spindle assembly check and Lubrication and cooling system design. Key Words:Motorized spindle High-speed machining High-speed bearing supported span 1.课题研究背景 以高切削速度、高进给速度、高加工精度为主要特征的高速加工技术是当代四大先进制造技术之一。高速加工不仅意味着切削速度要快,而且移动部件的速度和加速度也要快。要提高移动部件的速度和加速度,必须提高驱动系统的驱动力或减小移动部件质量。提高驱动力得到的效果并不明显而且费用很高,减小移动部件的质量是一个新的研究方向。 现在拟设计一种铰接式电主轴高速平面移动机构,它可以在相同机械参数的条件下大幅度降低运动部件的质量提高移动速度和加速度。而电主轴的结构紧凑、重量轻、惯性小、振动小、噪声低及响应迅速等优点正好符合高速加工的特点。但是,现有的电主轴系统都是建立在十字滑台的基础上的,它无法与铰接式的高速移动机构正确安装,故为配合这种铰接式的高速移动机床设计,在借鉴已有电主轴技术的基础上重新设计一种可以与铰接式移动机构配合安装的高速电主轴系统。 2.电主轴结构方案设计 本课题做设计的电主轴是用于铰接式高速移动机床上的,要尽量减轻电主轴的质量,且主轴所要求的输出功率和扭矩较大,故选用电机置于前、后轴承之间的结构形式。 电主轴的结构示意图如图2.1所示。

电主轴系统

电主轴系统 Renaud(赫诺)——来自瑞士的优质电主轴 一、加工中心用(镗铣、雕铣、车铣)电主轴 本体直径:80-350mm 额定功率:2-120kW 最高转速:8000-50000rpm 额定扭矩:1.0N.m—800N.m 换刀方式:手动、气动、液压/BT、ISO、HSK、CAT、SK、 ER等 轴承润滑:油脂润滑、油气润滑 其他配置:法兰、编码器、中心出水、端面环喷、温度传 感器、位移传感器 振动传感器、在线动平衡系统……(部分为可 选配置) 二、内、外径高速研磨电主轴 本体直径:50-170mm 额定功率:0.8-40kW 最高转速:7000-150000rpm 额定扭矩:0.05-50N.m 换刀方式:手动、气动、液压/内螺纹、外锥面、BT、ISO、 HSK、CAT、SK等 轴承润滑:油脂润滑、油气润滑 其他配置:法兰、编码器、中心出水、端面环喷、温度传 感器、位移传感器 振动传感器、在线动平衡系统……(部分为可选 配置)

三、雕刻机、雕铣机高速电主轴 本体直径: 38-120mm 额定功率:0.8-12kW 最高转速:5000-70000rpm 额定扭矩:0.5-5N.m 换刀方式:手动、气动/ER、SK、BT、ISO、HSK 等 润滑方式:油脂润滑 连接方式:夹持式 其他配置:温度传感器、位移传感器、振动传 感器…… 四、砂轮修整电主轴 本体直径: 72mm 额定功率:0.7kW 最高转速:15200rpm 额定扭矩:0.5N.m 换刀方式:手动/DIA40 润滑方式:油脂润滑 连接方式:夹持式 其他配置:温度传感器、位移传感器、振动传 感器…… 五、部分特有电主轴

电烙铁分析及改进

电烙铁的人机工程分析与改进 电烙铁是用于电器维修,生产,烫画的工具。 电烙铁分类 按原理主要分为内热式电烙铁和外热式电烙铁2种。 外热式电烙铁

由烙铁头、烙铁芯、外壳、木柄、电源引线、插头等部分组成。由于烙 铁头安装在烙铁芯里面,故称为外热式电烙铁。烙铁芯是电烙铁的关键部件,它是 将电热丝平行地绕制在一根空心瓷管上构成,中间的云母片绝缘,并引出两根导线与 220V 交流电源连接。外热式电烙铁的规格很多,常用的有 25W、45W、75W、100W 等, 功率越大烙铁头的温度也就越高。 内热式电烙铁 由手柄、连接杆、弹簧夹、烙铁芯、烙铁头组成。由于烙铁芯安装在烙铁头里面,因 而发热快,热利用率高,因此,称为内热式电烙铁。内热式电烙铁的常用规格为20W、 50W 几种。由于它的热效率高,20W 内热式电烙铁就相当于 40W 左右的外热式电烙铁。 内热式电烙铁的后端是空心的,用于套接在连接杆上,并且用弹簧夹固定,当需要更 换烙 铁头时,必须先将弹簧夹退出,同时用钳子夹住烙铁头的前端,慢慢地拔出,切记不 能用 力过猛,以免损坏连接杆。 2种电烙铁相比,虽然外热式比较耐用,但是存在控温难,升温慢,电耗高,漏电相 对严重的问题 内热式电烙铁,节能,可改进成恒温电烙铁有效的控温,加热快等优点。唯一不足是 无法达到太大功率,但是考虑到日常使用,内热式样电烙铁温度是足够的。 功率:70W 220v 烙铁的长度约:233mm 电源电压:220v~450℃ 绝缘电阻:100M 欧姆以上

电气强度:3750v 1分钟丌击穿 温度范围:200℃~450摄氏度 最大功率:70w 控温温度:正负 5℃ 以上为某内热式恒温电烙铁的属性。 我们对市场上电烙铁进行了充分的调查和分析,对使用人员进行了采访。从而进行一些人机工程学的评估。 在使用时,左臂弯曲为a=150度右臂 b=80度 使用时电烙铁基本处于竖直状态。 坐姿由于工作间条件,未做调查。 颈椎没有录制进去(实际弯曲为30度前倾) 如果长期使用,会照成颈椎的劳损,和肘关节的劳损。

高速电主轴

机械制造技术基础课题论文 论文题目:高速电主轴及结构

摘要 高速加工技术,作为现代制造加工技术的重要组成部分,由于其具有非常高的加工效率,同时更能保证加工零件的加工精度与加工质量,必然会成为未来金属切削加工的发展方向。而要实现高速加工,高速加工中心则是其必备的基础装备。高速电主轴作为高速加工中心的核心功能部件,其结构与性能的好坏直接决定了高速加工中心的整体工作性能。虽然高速电主轴的结构较为简单,但其制造所需要的要求极高。 本文先介绍高速电主轴的技术难点,就高速电主轴的主轴电机、动平衡、轴承、冷却方式和夹持方式进行了分析。重点分析了高速轴承在高速电主轴中的重要作用,然后对比了各种轴承和轴承的润滑和冷却方式。然后对高速电主轴在国内外现状进行分析,最后根据自己的理解,分析高速电主轴的发展方向。 关键词:高速电主轴,轴承,润滑,冷却,夹持机构

目录 1高速切削加工技术的应用及发展 (1) 2高速电主轴及其结构 (1) 3高速电主轴的关键技术 (2) 3.1.1主轴电机 (2) 3.2高速轴承 (3) 3.2.1轴承类型 (3) 3.2.2轴承整体布局 (3) 3.2.3轴承的布置 (4) 3.2.4轴承的预紧 (4) 3.2.5润滑方式 (5) 3.3电主轴动平衡技术 (5) 3.4冷却方式 (6) 3.5夹持系统 (6) 3.5.1HSK刀具夹持系统 (6) 3.5.2KM 刀具夹持系统 (7) 4高速电主轴的现状及展望 (8) 4.1高速电主轴现状 (8) 4.1.1国外高速电主轴现状 (8) 4.1.2国内高速电主轴现状 (8) 4.1.3国内外高速电主轴对比 (9) 4.2高速电主轴发展趋势 (9)

烙铁及电路知识

如何正确使用电烙铁(转载) 焊接技术是一项无线电爱好者必须掌握的基本技术,需要多多练习才能熟练掌握。 1、选用合适的焊锡,应选用焊接电子元件用的低熔点焊锡丝。 2、助焊剂,用25%的松香溶解在75%的酒精(重量比)中作为助焊剂。 3、电烙铁使用前要上锡,具体方法是:将电烙铁烧热,待刚刚能熔化焊锡时,涂上助焊剂,再用焊锡均匀地涂在烙铁头上,使烙铁头均匀的吃上一层锡。 4、焊接方法,把焊盘和元件的引脚用细砂纸打磨干净,涂上助焊剂。用烙铁头沾取适量焊锡,接触焊点,待焊点上的焊锡全部熔化并浸没元件引线头后,电烙铁头沿着元器件的引脚轻轻往上一提离开焊点。 5、焊接时间不宜过长,否则容易烫坏元件,必要时可用镊子夹住管脚帮助散热。 6、焊点应呈正弦波峰形状,表面应光亮圆滑,无锡刺,锡量适中。 7、焊接完成后,要用酒精把线路板上残余的助焊剂清洗干净,以防炭化后的助焊剂影响电路正常工作。 8、集成电路应最后焊接,电烙铁要可能接地,或断电后利用余热焊接。或者使用集成电路专用插座,焊好插座后再把集成电路插上去。 9、电烙铁应放在烙铁架上。 10、焊接完毕,烙铁头应从新挂上锡,然后在放到烙铁架上。避免烙铁头接触空气产生氧化现象。 初学电子知识,请先把“电”当做“水”,“电路”就等于“水路”;接着了解一些常用名词术语,对照实物认识几种常用的电子元件及其功能;最后动手做一些实验。 任何电子产品都是电子元件组成的,学习电子技术就要先学电子元件。 电子元件的组合就成了电子电路,这也是基础知识。有了电子元件、电子电路的知识,电子工具也会用了,你就应该多动手进行产品实战了。 学电子最能尽快受益的莫过于自装音响和功放了。欣赏音乐本身是一种美的享受,可是能用自己的成果来享受则更是达到一种新的境界。 懂电子的朋友学电脑比不懂电子朋友学电脑要快要容易。懂电子的朋友用电脑是由电脑内部学到外部,不懂电子的朋友则是从电脑外部学到电脑内部。 什么是“场”?运动场常指大家可以做运动的一个范围,电场是指电产生作用力的一个范围,磁场是指磁产生作用力的一个范围,其它类同。 导体,电比较容易通过的物体。绝缘体,电比较难通过的物体。导体和绝缘体并没有明显的介限,导

高速电主轴

高速电主轴- 介绍 高速电主轴是高速加工中心的核心部件。在模具自由曲面和复杂轮廓的加工中,常常采用2~12mm较小直径的立铣刀,而在加工铜或石墨材料的电火花加工用的电极时,要求很高的切削速度,因此,电主轴必须具有很高的转速。目前,加工中心的主轴转速大多在18000~42000r/min,瑞士Mikro的高速加工中心XSM400U/XSM600U其主轴转速已达54000r/min。而对于模具的微细铣削(铣刀直径一般采用0.1~2mm),则需要更高的转速。 横林精工-高速电主轴 如德国Kugler公司的五轴高精度铣床,其最高主轴转速达160000r/min(采用空气轴承),这样的高转速,当采用0.3mm直径的铣刀加工钢模时,就可达到150m/min的切削速度。目前,德国Fraunhofer生产技术研究所正在开发转速为300000r/min的空气轴承支撑的主轴。 加工模具时,总是采用很高的转速,而高转速产生的发热,以及切削时可能产生的振动是影响模具加工精度的重要因素。为保证高速电主轴工作的稳定性,在主轴上装有用来测量温度、位移和振动的传感器,以便对电机、轴承和主轴的温升、轴向位移和振动进行监控。由此为高速加工中心的数控系统提供修正数据,以修改主轴转速和进给速度,对加工参数进行优化。当主轴产生轴向位移,则可通过零点修正或轨迹修正来进行补偿。 高速电主轴- 高速电主轴购买需知 关于高速电主轴高速电主轴运转速度是通过变频器的驱动来实现的。您可以自己选用变频器,当然也可以将这项工作交由我们来为您代劳,我们将为您匹配好变频器的参数和主轴参数,减少您的麻烦。关于选型选购主轴时,请告知我们:你在我们网上所选用的主轴型号;或者告诉我们主轴的相关参数,比如:主轴工作电压、主轴的外径、主轴的功率、主轴的转速、主轴的轴端连接、主轴的冷却方式(水冷/自冷/风冷)等,我们将为您推荐最合适的产品。关于包装及运输方式您所选购的主轴将用高密度的泡沫箱及纸箱包装。主轴将在您款到的当日通过快递公司发出,(定制的主轴除外);快递不能到达地区,另行商议运输方式。关于保期新购主轴,轴承保半年,其余保一年。需要注意的是:人为因素(比如进粉、进液)不在保修范围。 高速电主轴- 高速电主轴常见故障的分析与排除 高速电主轴故障分析与排除 故障现象检查、调整与判断方法故障排除方法 主轴发热1)主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过重新调整主轴轴承预紧力加以排除。 (2)主轴轴承研伤或损坏,也会造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过更换新轴承加以排除。 (3)主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高。通过清洗主轴箱,重新换油加以排除。 (4)主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高。通过重新涂抹润滑脂加以排除。 主轴强力切削时停转(1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,

焊接电路板的一点经验

焊接电路板的一点经验 一:正确使用电烙铁 1、电烙铁使用前要上锡,具体方法是:将电烙铁烧热,待刚刚能熔化焊锡时,涂上助焊剂(松香),再用焊锡均匀地涂在烙铁头上,使烙铁头均匀的吃上一层锡(亮亮的薄薄的就可以)。 2、在进行普通焊接的时候(比如在万能板上焊接直插式元件),一手烙铁,一手焊锡丝,靠近根部,两头轻轻一碰,一个焊点就形成了。焊点理想的形状是一坨屎那种。 3、在万能板上焊接直插元件时,要将引脚尽量插到底。 4、焊接时间不宜过长,否则容易烫坏元件,必要时可用镊子夹住管脚帮助散热。 5、焊接完成后,要用酒精把线路板上残余的助焊剂清洗干净,以防炭化后的助焊剂影响电路正常工作。 4、电烙铁应放在烙铁架上。 二:元件焊接顺序 先难后易,先低后高,先贴片后插装。 宗旨:焊接方便,节省时间。 先焊接难度大的,这主要是指管脚密集的贴片式集成芯片。如果把这些难度大的放于最后焊接,一旦焊接失败把焊盘搞坏,那就会前功尽弃。 先低后高,先贴片后插装。这样焊接起来方便。如先把高的元件焊接了,有可能妨碍其他元件的焊接,尤其是高大的元件密集众多的时候。如果先焊接插装的元件,电路板就会在焊台上放不平,影响焊接心情。 三:手工焊接贴片元件方法经验 首先在干净的焊盘上涂上一层助焊剂,再用干净的恒温电烙铁往焊盘上薄薄一层焊锡(一般电路板制作的时候都已上好锡,不过有时手工上锡还是非常必要的),把元件放置上去对准,上锡固定好对角,然后随意挑一边用烙铁垂直引脚出线方向较缓滑过,同时稍用力下压元件这条边;然后就同样方法焊对边;然后就另外两边。最后检查,不好的地方重新焊过。焊接时电烙铁温度要适中,一般400度左右为好。 检查方法:首先目测,然后用尖细的东西检查每个引脚是否松动,最后可用万用表测量。如果两管脚之间短路可涂上些助焊剂,趁酒精尚未挥发之际拿烙铁再烫一次就搞定了(烙铁头一定得弄干净了)。

烙铁焊台原理与维修

烙铁焊台原理与维修 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

T O P-936A型焊台原理与维修TOP-936A 型焊台系以低电压工作的手工焊接工具。它具有可调温、恒温及防静电的功能。烙铁精致、小巧,头部尖细,特别适合手工焊接微小型电子元器件。因此在手机等数码产品维修业中有着广泛的应用。社会保有量大。借维修之际。本人剖析了该焊台的电路如附图所示。 一、电路工作原理经变压器 T 变压后的AC24V 电压经D3、D1 半波整流、C4 滤波后;在C4 两端形成18V 左右的直流工作电压。该电压正端加在运放U1 LM358N 的⑧脚;负端经R1限流后加在U1 的④脚,供运放U1 作电源工作电压。该18V 电压经R10、R1 限流,Z2、Z1 稳压;并在Z2、Z1 的中点向U1 的反相输入端②脚及烙铁电源输出插接件CZ 的⑤脚提供一个“基准”工作电压。又通过R10、R4 在CZ④、⑤两脚间向烙铁内的热电偶提供一个工作电流回路。当烙铁温度变化时烙铁内的热电偶电动势发生变化,经 Ri5 在U1A 的②、③间形成一个随温度变化而变化的电压差。在R10、R13//RW1、Z4、Z1、R1 回路中,稳压二极管Z2 与Z4 形成的压差加在R13//RW1 两端,通过调节RW1 改变U1B 反相输入端⑥脚的电压值。也即调节了烙铁的设定温度,实测RW1 上端的电

压为15.3V;下端的电压是10.8V(以U1 的④脚为参考零电位。下同)。R6 和微调可变电阻WT 构成负反馈回路,用以调节运放U1A 的放大增益,从而调节烙铁的温度跟踪性能。CZ J/K5P 中的④、⑤连接端子接TOP-936A 电烙铁内的热电偶。从图中给定的元件参数可以算出,流过CZ④⑤两端的电流约为0.17mA,在其两端形成的电压差为9.35mV~27.3mV(视烙铁温度不同而异,温度低,电压差小;反之,压差大),经U1A 线性、比例放大后从U1A 的①脚输出,经R7 加至U1B 的同相输入端⑤脚,经与U1B 的反相输入端⑥脚的电压比较后输出相应的“高、低”控制电压,去控制Q1 的截止、导通;从而控制双向可控硅Q2 的开或关,也即控制了烙铁的加热与否。调节温度调节电位器RW1 的阻值大小,就改变了U1B⑥的电压设定值, 也即改变了设定烙铁的加热温度。U1B、R15、Z3、Q1、R16、R17、D1 构成双向可控硅Q2 的驱动触发电路。当烙铁的温度低于设定温度时,由R4、Rj5 加于U1A 同相输入端③脚的电压与其反相输入端②脚的电压的差值最小,经U1A 放大后输出的电压也相对最低,此电压加在U1B 的同相输入端⑤脚上,由于此

相关主题
文本预览
相关文档 最新文档