当前位置:文档之家› 电主轴的工作原理

电主轴的工作原理

电主轴的工作原理
电主轴的工作原理

电主轴的工作原理

目前,随着电气传动技术(变频调速技术、电动机矢量控制技术等)的迅速发展和日趋完善,高速数控机床主传动系统的机械结构已得到极大的简化,基本上取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主

轴”(E l e c t r i c S p i n d l e,M o t o r S p i n d l e)。由于当前电主轴主要采用的是交流高频电动机,故也称为“高频主轴”(H i g h F r e q u e n c y S p i n d l e)。由于没有中间传动环节,有时又称它为“直接传动主轴”(D i r e c t D r i v e S p i n d l e)。

电主轴的优点

电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。

电主轴轴承采用高速轴承技术,耐磨耐热,寿命是传统轴承的几倍。

产品特性

高转速、高精度、低噪音、内圈带锁口的结构更适合喷雾润滑。

主要用途

数控机床●机电设备

微型电机●压力转子

步进电机

电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,它与直线电机技术、高速刀具技术一起,将会把高速加工推向一个新时代。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置。

电主轴所融合的技术:

高速轴承技术:电主轴通常采用复合陶瓷轴承,耐磨耐热,寿命是传统轴承的几倍;有时也采用电磁悬浮轴承或静压轴承,内外圈不接触,理论上寿命无限;

高速电机技术:电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡;

润滑:电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因油的阻力而发热。

冷却装置:为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环冷却剂,冷却装置的作用是保持冷却剂的温度。

内置脉冲编码器:为了实现自动换刀以及刚性攻螺纹,电主轴内置一脉冲编码器,以实现准确的相角控制以及与进给的配合。

自动换刀装置:为了应用于加工中心,电主轴配备了自动换刀装置,包括碟形簧、拉刀油缸等;

高频变频装置:要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。

什么是电主轴电主轴有什么优点

电主轴概述

高速数控机床(C N C)是装备制造业的技术基础和发展方向之一,是

装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。

高速主轴单元的类型主要有电主轴、气动主轴、水动主轴等。不同类型的高速主轴单元输出功率相差较大。

目前,随着电气传动技术(变频调速技术、电动机矢量控制技术等)的迅速发展和日趋完善,高速数控机床主传动系统的机械结构已得到极大的简化,基本上取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的

传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”(E l e c t r i c S p i n d l e,M o t o r S p i n d l e)。由于当前电主轴主要采用的是交流高频电动机,故也称为“高频主轴”(H i g h F r e q u e n c y S p i n d l e)。由于没有中间传动环节,有时又称它为“直接传动主轴”(D i r e c t D r i v e

S p i n d l e)。

电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。

电主轴概述

主轴是直接体现机床性能的关键部件。目前,数控机床大量采用内装变频电动机的主轴部件。它是一种机电一体化的功能部件,其电动机转子与主轴是一体的,无需任何机械连接。改变供电的频率,就可以实现主轴调速。

这种模块化、系列化的功能部件称为电主轴。通常由具有设计和制造高速、高精度、变频调速电主轴丰富经验的专业公司提供,产品质量和供货容易获得保证。

变频电主轴制造商通常提供不同结构和用途的系列产品。变频电主轴按其轴承结构可分为滚动轴承电主轴、静压轴承电主轴和磁浮轴承电主轴;按其变频范围可分为高速(30~1500H z)和低速(10~40

Gs交流伺服驱动器

Gs系列交流伺服驱动器-让机床拥有非凡品质

G s交流伺服驱动器是北京超同步科技有限公司自主研发、生产的新一代交流伺服驱动器,它完全继承G a驱动器的优点,同时在驱动技术和控制精度上有大幅度提高。是目前国内具有领先水平的交流伺服产品。该产品设计超前,功能全面,应用广泛,是各种数控机床驱动(主轴)首选的驱动产品。

G s系列交流伺服驱动器采用双d s p技术完全实现伺服电机的全闭环控制,集速度控制、位置控制、转矩控制于一体。作为机床动力轴驱动系统,可以方便地实现高速、高精度铣削、车削、磨削等加工,在重切削方面比传统驱动更胜一筹;同时由于卓越的控制性能,完全有能力参与坐标轴的插补控制,完成刚性攻丝、螺纹切削、c轴控制等功能;还可以实现诸如多头铣床等设备的伺服同步驱动。

G s系列交流驱动器接口丰富,操作简便,标准应用可免调试,给机床设计工程师的选型、设计、调试等工作提供极大的便利。方便地与国内外各大知名品牌的数控系统接口,使您的机床设计更灵活,充分张显竞争优势。

G s系列驱动器作为大功率的伺服驱动单元,完全有能力和交流同步

驱动器在重型机床的坐标轴控制方面进行角逐,同时其良好的性价比

优势,更让我们相信她完全可以让您的立车卧镗、龙门设备等尽显非

凡优势。

发布日期:2011-4-7

[ 返回 ]

友情链接

伺服电机与步进电机区别

伺服电机(伺服系统)比步进电机精度高

步进电机属于伺服电机的一种,而伺服系统与步进电机才有区别。

伺服系统通常用在高精度微移动场合,以及高精度场合,而步进电机则使用

在要求并不太高的场合,其二者的造价目前伺服系统略高于步进电机,但已

经是越来越便宜了。伺服系统其优越性远高于步进电机,只是造价目前看来

还略高一些而已。

步进电机和交流伺服电机性能比较

步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。

在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交

流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为

了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

一、控制精度不同

两相混合式步进电机步距角一般为°、°,五相混合式步进电机步距角一般为°、°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为°;德国百格拉公司(B E R G E R L A H R)生产的三相混合式步进电机其步距角可通过拨码开关设置为°、°、°、°、°、°、°、°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=秒。是步距角为°的步进电机的脉冲当量的1/655。

二、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(F F T),可检测出机械的共振点,便于系统调整。

三、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600R P M。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000R P M或3000R P M)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

四、过载能力不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

六、速度响应性能不同

步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下M S M A400W交流伺服电机为例,从静

止加速到其额定转速3000R P M仅需几毫秒,可用于要求快速启停的控制场合。综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不

高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程

中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

FANUC的伺服驱动装置

(2007-06-23 14:08:37 阅读数:418 )

一、前言

伺服装置是数控系统的重要组成部分。伺服技术的发展建立在控制理论、电机驱动及电力电子等技术的基础上。上世纪50年代初,世界笫一台NC机床的进给驱动采用液压驱动。由于液压系统单位面积产生的力大于电气系统所产生的力(约为20:1),而且惯性低、反应快,因此初期的NC系统的进给伺服装置大多采用液压驱动装置。当时的日本富士通公司计算机控制部(以后发展为FANUC公司)从麻省理工学院学习了笫一台NC技术后,用电液脉冲电机作为数控机床进给驱动系统。70年代初期,由于石油危机,加上液压对环境的污染以及系统笨重、效率低等原因,美国GETTYS公司开发出直流大惯量伺服电机,这种伺服电机静力矩和起动力矩大,并在NC机床上得到了应用,性能良好。

另一方面,1974年FANUC公司在开发新的低噪声、大扭矩电液脉冲电机时,遇到了技术困难。而电液脉冲电机原先是使FANUC数控系统市场占有率高到几乎接近独占鳌头的主要原因;当时担任公司社长的稻叶先生反复思考,“我是技术人员,同时也是经营者。作为技术人员,我作为电液脉冲电机的发明者而感到自豪、自信;但是作为经营者,我必须反复自问:电液脉冲电机就这样原封不动地持续下去而没有危机吗通过调查,我确信有新的电机来取代电液脉冲电机。”于是当即做出了“割爱”的果断决择:废弃使用多年的电液脉冲电机驱动方案,同时转而从美国GETTYS公司引进大惯量直流伺服电机制造技术,并立即进行商品化。

从此,在世界最大的CNC公司,开环的系统由闭环的系统取代;液压的驱动系统由电气驱动系统取代。这件事,一直在NC业界传为美谈。在这之后,

FANUC又成功地把交流伺服电机应用在数控机床上,然后不断推出新的驱动装置:如直线电机、高速内装电机、直接驱动电机等,提高了数控机床的性能,简化了数控机床的机械结构。

二、数控机床对驱动装置的要求

数控机床主要有两种驱动装置:进给伺服驱动装置和主轴驱动装置。这两种驱动装置在很大程度上决定了数控机床的性能优劣。

数控机床对进给伺服装置的要求

机械特性的要求

要求伺服装置静态和动态的速降小、刚度大。伺服系统的刚度与机床机械构件的刚度有相同的意义,即在外部干扰力(切削力、重力等外力)作用下,这些力从工作部件传到电机轴上产生的转角位置变化。用C 表示单位外力矩作用下的位移:

(1)

=

T

式中,q为工作部件角位移量,T为外加扰动力矩。要求δ很小,甚至为零,即通电之后,伺服装置处于闭环状态,要求任何外力不使机床的工作部件发生位移(在限度以内)。数控机床加工中有时从插补运动过渡到某一轴的直线运动或旋转运动,如果待工作的轴伺服刚性不好,加工精度同样得不到保证,这是显然的。伺服刚性通常是以对扰动力矩的响应来综合调节系统。快速相应的要求

这在轮廓加工,特别对曲率大的加工对象进行高速加工时要求较严格。

调速范围的要求

这可以使数控机床适用于各种不同的刀具、加工材质;适应于各种不同的加工工艺。在机床加工时,当工作部件处于停止状态,也即进给电机的速度虽然为零,但要求伺服电机仍然具有转矩,这样才能“锁住”工作部件;因此,进给伺服装置仍然处于“伺服”状态。从理论上说,进给驱动的调速范围为无穷大。或者说,进给的调速范围越大越好。比如FANUC的15系统速度范围可达1,000,000,000:1。

输出转矩的要求

一定的输出转矩,并要求一定的过载转矩。机床进给机械负载的性质主要

是克服工作部件的摩擦力和切削阻力,因此主要是“恒转矩”的性质。

数控机床对主轴驱动装置的要求

足够的输出功率

数控机床的主轴负载性质近似于“恒功率”,也就是当机床的主轴转速高时,输出转矩较小;主轴转速低时,输出转矩大;即要求主轴驱动装置也要具有“恒功率”的性质。可是当主轴电机工作在额定功率、额定转速时,按照一般电机的原理,不可能在电机为额定功率下进行恒功率的宽范围调速。因此,往往在主轴的机械部分需增加一或二档机械变速档,以提高低速的转矩,扩大恒功率的调速范围;或者降低额定输出功率,扩大恒功率调速范围。

调速范围的要求

为保证数控机床适用于各种不同的刀具、加工材质,适应于各种不同的加工工艺,要求主轴驱动装置具有一定的调速范围。对主轴的驱动装置,一般较低的要求为1:100,高的要求为1:1,000以上。

速度精度的要求

一般要求静差度小于5%,更高的要求为小于1%。如果速降过大,则加工的质量就会受影响,比如光洁度就不好。

快速的要求

主轴驱动装置有时也用在定位功能上,这就要求它也具有一定的快速性。

二、驱动电机的发展

进给伺服用电机:从直流电机到交流电机,从旋转电机到直线电机对于电

动机,其输出转矩T的大小与激磁磁感应强度B

1和电枢磁感应强度B

2

的大小及

B 1、B

2

之间夹角q的正弦成比例。

即:T=k(B

1

×B

2

×sinθ)(2)

其中k为比例系数;直流电机由于电刷的位置在几何中心线上,所以

θ=90°;因此控制简单,可以输出较大的力矩,得到了广泛的应用。但是直流电机电刷容易磨损,需要经常更换,这就给维修造成困难。于是又开发了交流伺服电机。由于交流电机θ≠90°,为了提高性能,采用交流电机伺服控制理论和数字信号处理器可以对三相交流感应电机进行矢量控制以得到q=90°;对于交流同步机结构的伺服电机,同样也可以采用矢量控制的方法,并通过控制磁场夹角的方法得到θ=90°;由于它的特性可以与直流电机相当,因此,进给伺服应用的电机大多数采用这种电机。

图1 直线电机与直接驱动伺服电机

采用电伺服技术的初期阶段,指令的控制为模拟控制;这种控制方法漂移大、精度差,由于数字控制可以克服上述缺点,因此越来越多地得到应用。

当前,FANUC最大的伺服电机3000HVis规格如下:额定输出功率250kW,最大功率530kW,堵转转矩3000Nm,最大输出转矩为5300Nm,最高转速为2000r/min,目前,也是世界上最大的伺服电机。这种电机主要应用在数控注塑机和冲压机上,原先,这些机械主要采用液压驱动。

传统设计和制造的NC机床受制于标准驱动装置及控制器,使加工的精度和速度受到限制。在上世纪80年代末出现了直线伺服电机。它由两个元件组成,电磁力直接作用于移动元件而无需机械连接,没有螺距周期误差,精度完全依赖于反馈系统和分级的支承。由全数字伺服驱动器供电,刚性高,频响好,因而可获得高速度。

比如L17000C3/2is 的直线电机:最大推力可达17000N,连续推力3400N/4080N/6800N(分别对应自然冷/气冷/水冷),速度可达4m/s,加速度

30g,分辨率可达μm,甚至更高。直线电机与旋转电机相比,主要有如下几个特点:一是结构简单,由于直线电机不需要有旋转运动变成直线运动的附加装置,因而使得系统本身的结构大为简化,重量和体积大大地减少;二是定位精度高,在需要直线运动的地方,直线电机可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故定位精度高;三是反应速度快、灵敏度高,可做到滑块和定子之间始终保持一定的空气隙而不接触,这就消除了定子、滑块间的接触摩擦阻力,因而大大地提高了系统的灵敏度、快速性和随动性;四是工作安全可靠、寿命长。

在数控机床上把低速力矩电机直接作为旋转工作台是伺服技术的又一个

发展。传统的旋转工作台一般是通过高速伺服电机带动降速齿轮、蜗轮、蜗杆副进行降速。传动链长,噪声大,需要维修。在采用直接驱动的伺服电机后,由于加大了电机转子直径,采用稀土金属作为磁极材料,因此可以获得大转矩。并对磁路进行最佳设计,以减少低速的转矩脉动。表1是齿轮传动工作台和直接驱动工作台性能比较。

当前,FANUC工作台的内装式伺服电机D3000/150is具体规格如下:最大输出转矩可达3000Nm,连续额定转矩可达1200Nm,最大转速为150r/min,外形高度为160mm,外径为565mm。

主轴电机

由于交流异步电机变频调速容易实现恒转矩、恒功率的功能,又没有直流电机的炭刷,因此很快就被采用在数控机床的主轴上。随着数控机床速度的提高,为了简化传动链,甚至采用“零传动”的结构,因而出现了电主轴。把机床的主轴与主轴电动机集成在一起,它的机械结构虽然很简单,但精度和可靠性却要求很高。当前,一般内装主轴电机速度达到12000~15000r /min;电机采用三相异步电机的结构,并采用改变极对数的方法改变分级变速。最近,又出现同步电机的结构,采用稀土磁铁,提高输出转矩,设计最佳机床结构,还开发了宽范围恒功率的主轴电机。这有两种方法:降低原有电机的功率,扩大恒功率调速范围;利用变极对数,达到恒功率。采用FANUC主轴电机规格如表2。

i标准型

ip宽范围恒功率

电机与机床主轴

iT

高精度直连,油

iL

iB内装

iH高压供电

三、驱动装置的发展

FANUC的驱动装置主要由3部分组成:电源、放大器、控制。

电源主要把交流变为直流,把泵升电压送回电网或加以处理,在电源故障时进行保护等功能。

早期开发的晶闸管伺服系统控制简单,速度范围能满足一般数控机床的需要,由于晶闸管额定电流大,短时间过电流能力强,因此对大惯量直流伺服电机可以发挥过负荷、高速、高加减速的特点。控制一般采用移相控制的方法。晶闸管伺服系统的缺点是功率转换的频率较低,只能是电网的频率50Hz或者高达300Hz。因此,其伺服装置低速电流波动较大、调速范围不大、快速响应慢。

由于上述原因,从技术上FANUC又推出了PWM(脉冲宽度调制)控制的电路。比如,以固定的频率调制直流电源电压V0,当方波的占空比Dt/T

变化时,

输出平均电压V

1

为:

V1=[t/T

0]V

(3)

虽然这种电压的波形也是脉动的,但是由于调制的频率可以达到很高,因此波形仍然可以很好。从上述原理看出,PWM的特点可以使系统的快速性提得很高。如果采用晶体管,其动态调节时间比可控硅快,但允许的电流较小,因此比较适合中、小功率的驱动电路。

除了直流进给电机外,FANUC的交流电机也采用PWM控制。交流电机的控制,是通过交流、直流、交流的原理产生交流电压去控制交流电机。首先电网的交流电压经过整流变成直流电压,供电给逆变器,它把直流磁路,减小低速脉动。这种电机非常适合数控车床和数控齿轮机床的应用。除此以外,FANUC 还开发了与机床主轴直连的主轴电机,油冷主轴电机。为了简化变成交流;而逆变器是由PWM控制的,通过PWM电路,变化交流电压的幅值,频率低时,输出电压的幅值也低,频率高时,由于采用PWM的控制,输出电压的幅值也高。这样就达到变频的同时也改变了电压。不但进给驱动系统采用这个原理;而且交流主轴电机的调速也是如此。一般频率为3kHz~10kHz。

伺服技术的发展与电力电子技术的发展有关,上世纪50年代初使用的功率电子器件为电子管、闸流管,体积大、寿命短、效率低;60年代之后,又相继出现了晶闸管SCR(可控硅整流器)、功率晶体管GTR、功率场效应管MOSFET、绝缘栅三极管IGBT、智能功率模块IPM等。把功率放大、触发控制、驱动、保护电路集成在一起。这些器件的出现,大大提高了系统的控制性能及集成度、可靠性,从而缩小了尺寸,降低了成本。

四、控制技术的发展

FANUC为了提高伺服装置的性能和实现数控系统的功能,对控制技术不断进行改进。其中最重要的控制功能为HRV控制。如图2所示。FANUC的CNC采

用交流伺服电机,实际流过绕组的电流为交流电流。这有二种方法可以进行控制:(1)电流控制环和控制都为AC量;(2)通过坐标变换电流变量为DC量进行控制。现在一般采用后者进行控制。也称矢量变换控制。矢量控制原理为:交流电机中,转子由定子绕组感应的电流产生磁场;而定子电流含两个成份,一个影响激磁磁场,另一个影响电机输出转矩。

图2 HRV控制框图

这两个电流成份在定子耦合在一起,为了使交流电机应用在既需要速度又需要转矩控制的场合,必须把影响转矩的电流成份解耦控制,采用磁通向量控制法就可以分离这两个成份,并进行独立控制。HRV就是基于后者的控制。由于采用DC控制,它的控制特性不取决于电机的速度(即电流的频率),从速度控制的观点出发,这意味着由转矩指令决定的实际的转矩与电机的速度无关。交流异步电机虽然价格便宜、结构简单,早期由于电力电子器件笨重、落后,控制理论陈旧,控制性能差,所以交流电机很长时间没有在NC系统上得到应用。

随着电力电子技术的发展,1971年,德国西门子的Blaschke发明了交流异步机的磁通矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微处理器的矢量控制的研究中取得进展,使矢量控制实用化。上世纪70年代末,NC机床逐渐采用异步电机为主轴的驱动电机。对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字控制取代模拟控制(或者把它称为软件控制取代硬件控制)。这两种突破的结果产生了交流数字驱动系统,特别是数字信号处理器DSP的应用,系统的计算速度大大提高,采样时间大大减少。使伺服系统性能改善、可靠性提高、调试方便、柔性增强。因而推动了数控机床高精高速加工技术的发展。

HRV是“高响应矢量”(High Respons Vector)的意义。所谓HRV控制是对交流电机矢量控制从硬件和软件方面进行优化,以实现伺服装置的高性能化,从而使数控机床的加工达到高速和高精;为了实现高速和高精,进给伺服装置的HRV主要控制:(1)对输入指令具有高精高速的响应;减少采样时间,对电流进行高精度检测;优化软件设计,对电流和速度进行控制,以加大速度增益和位置增益,从而提高改善系统的性能;(2)对外部的干扰具有良好的鲁棒性;(3)采用高精度编码器;(4) 设置HRV滤波器,减少机械谐振影响。通过以上措施可使系统的速度增益达到5000%,位置增益达到300/秒。而主轴伺服装置的HRV主要控制:(1)设置HRV滤波器,减少机械谐振影响,加大速度增益;提高系统稳定性;(2)精调加减速,提高同步性;(3)降低高速时绕组温升。

五、采用数字伺服的自调谐技术,方便于调试

为了使用户方便调试,对伺服装置,FANUC 还设计了

“Servo Guide”软件工具。它采用自调谐(self tuning)技术通过计算机可自动地把伺服参数进行设定,并显示运转的波形,使伺服系统方便、准确、快速地调试和进行维修。

电主轴应用特点介绍

随着电气传动技术(变频调速技术、电动机矢量控制技术等)的迅速发展和日趋完善,高速数控机床主传动系统的机械结构已得到极大的简化,基本上取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”(Electric Spindle, Motor Spindle)。由于没有中间传动环节,有时又称它为“直接传动主轴”(Direct Drive Spindle)。

电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。

Kollmorgen S700驱动器在电主轴控制上的应用介绍

S700系列驱动器是科尔摩根高性能、大功率范围的全数字化智能驱动器。S700驱动器支持Kollmorgen的永磁伺服旋转电机,直接驱动旋转电机,直接驱动直线电机等全系列电机产品,同时拥有卓越的第三方电机匹配驱动特性,能够方便地配置永磁伺服电机及交流变频电机参数,进行有位置反馈或无反馈控制

支持高转速应用

支持电机最高运行速度可以达到60,000RPM(二极电机),50%降容使用最高转速可达120,000RPM(二极电机

成功的应用案例

?铣削电主轴——该客户的电主轴产品采用Kollmorgen S700驱动器,SIEMENS内装主轴电机及Heidenhain ERM2400 模块式磁栅编码器形成系统。经过与上位机数控系统的联动,该电主轴产品很好地达到了设计要求。在与其他伺服驱动器的比较中,S700

驱动器的换相初始化性能及稳定性大大优于同类产品。

?电火花加工主轴——该客户采用Kollmorgen S700驱动器,瑞士主轴电机及卡具,Heidenhain ERN 1080编码器,该系统与客户自行研发的数控系统匹配良好,在电火花加工机床上的运行性能得到了客户的肯定

銆併?锛庯紱锛氾紵锛侊赴鈥︹?鈥测 Kollmorgen S700驱动器介绍

S700系列驱动器主要特性如下:

1.宽广的功率范围:供电电压110V-230VAC 单相或三相;230V-480VAC三相;连续输出电流1A-72A,峰值输出电流3A-140A;

2.紧凑的外形体积,且内置滤波器、制动电阻和电机抱闸控制电路;

3.高性能伺服控制环路:电流环更新率32KHz、速度环更新率16KHz,速度环更新率8KHz;

4.多种反馈接收能力,包括旋转变压器、正余弦编码器、AB正交增量编码器、Biss、,、Hiperface及Hall传感器及无传感器反馈;

5.强大的扩展能力:除标配的Ethercat总线和Canopen总线外,还可扩展Sercos III、Profibus、Synqnet、Dev 銆併?锛庯紱锛氾紵锛侊赴鈥︹?鈥测?鈥濄?銆炈嬎婏純锛狅紗锛娾?搂銆冣剸銆撯棆鈼忊柍鈻测棊鈽嗏槄鈼団梿鈻♀枲鈻銆併?锛

庯紱锛氾紵锛侊赴鈥︹?鈥测 S700驱动器介绍

S700系列驱动器主要特性如下:

1.宽广的功率范围:供电电压110V-230VAC 单相或三相;230V-480VAC三相;连续输出电流1A-72A,峰值输出电流3A-140A;

2.紧凑的外形体积,且内置滤波器、制动电阻和电机抱闸控制电路;

3.高性能伺服控制环路:电流环更新率32KHz、速度环更新率16KHz,速度环更新率8KHz;

4.多种反馈接收能力,包括旋转变压器、正余弦编码器、AB正交增量编码器、Biss、,、Hiperface及Hall传感器及无传感器反馈;

5强大的扩展能力:除标配的Ethercat总线和Canopen总线外,还可扩展Sercos III、Profibus、Synqnet、Devicenet等各种总线及数字IO和模拟IO;

6.功能丰富的操作软件,具备全面的驱动器操作设置和伺服性能调节功能,内置示波器、Bode图分析工具,可进行宏编程实现较复杂的单轴控制能力;

CE认证、TUV认证

总结

本文介绍了Kollmorgen S700驱动器匹配第三方主轴电机的优越性能,对多种反馈类型的支持,与主流数控系统的无缝配合,及丰富的运动控制性能调试工具。除了主轴电机,Kollmorgen驱动器拥有丰富的匹配第三方控制系统、电机、反馈器件的实例和经验,文中介绍的驱动器性能及成功案例可以作为Kollmorgen驱动器匹配其他第三方电机、系统的技术参考

电除雾器简介

电除雾器工作原理:通过静电控制装置和直流高压发生装置,将交流电变成直流电送至除雾装置中,在电晕线(阴极)和酸雾捕集极板(阳极)之间形成强大的电场,使空气分子被电离,瞬间产生大量的电子和正、负离子,这些电子及离子在电场力的作用下作定向运动,构成了捕集酸雾的媒介。同时使酸雾微粒荷电,这些荷电的酸雾粒子在电场力的作用下,作定向运动,抵达到捕集酸雾的阳极板上。之后,荷电粒子在极板上释放电子,于是酸雾被集聚,在重力作用下流到除酸雾器的储酸槽中,这样就达到了净化酸雾的目的。电除雾器有立式、卧式、多管式和线板式等多种型式。由于电除雾器一般处在酸性气氛中,所以必须使用防腐性能较好的材料制造。常用的材质有铅质、硬PVC和玻璃钢三种类型。其中铅制静电除雾器应用的历史最久。除雾器阴极电晕线的材质也有很多种,如镍铬钢丝外包铅、钛钯合金线、钛丝等。电除雾器工作时要在阴阳两极之间产生不均匀电场,所以需要两极都可以导电。一般玻璃钢或聚氯乙烯等非金属材料的静电除雾器采用借助液膜导电的方法;也有用玻璃钢和石墨混合压制而成的导电玻璃钢,或采用在玻璃钢阳极内层加一层碳纤维垫的方法来解决导电问题。电除雾器阳极管板目前主要有塑料制、铅制和导电玻璃钢制三种。由于塑料制电除雾器是靠液膜导电,有效沉淀面积改变较大,运行的电压和电流偏低,效果不如后两者;近年来,铅制阳极管板不断被导电玻璃钢所替代,具有质轻、价低,综合性能突出等优点。导电玻璃钢电除雾器主要有处理气量、总压力降和出口酸雾等指标。

(一) 沉淀极室电除雾器有室内型和室外型,沉淀极室的配备,一般出于对沉淀极室清扫以及修理的考虑必须有两个以上的系统。另外,为了得到高的除雾效率,也有作成一级、二级或三级串联,在其间设置中间塔或气体冷却器或喷雾增湿管等。气体流动方向,无论是板式或管式,大都是垂直向下或垂直向上流动的,水平流动的方式几乎不用。管式的气体分布容易均匀,可望获得较高的除雾效率,但建设费用高。构造材料应能耐热并耐一定程度的负压,为此板式的外壳用扁钢加强的铅板,管式的用厚3.0一5.0mm左右的铅制圆筒(用扁钢加强)。为了用高压水冲洗附在电极线和沉淀极上的粉尘(砷及硒泥等),往往在上部常备有水洗用配管。最近已经造出用合成树脂制的沉淀极室,并已在实际中使用。(二) 放电电极放电电极由于要耐硫酸而包铅,所以线径较大,使电晕放电困难。为了避免这种现象,添加几个棱边以减小曲率半径。形式大多数采用6—9mm直径做成星型(铜心直径1—2mm),也有用软钢心线,或用不锈钢心线或者无心线的。(三) 沉淀极沉淀极用铅板,板式、管式通常都用3mm厚的铅板。另外,作为特殊的例子也可以用钢板包铅。最近正在推广的塑料电除雾器的沉淀电极,是用聚氯乙烯板两面层压以聚氯乙烯和石墨粉混捏而赋予导电性的聚氯乙烯而成,或用增强聚氯乙烯电极板,或用石墨层压板。对电极的尺寸,板式多数用宽2—3mm、高3—4mm左右的,管式多数用直径200—250mm 左右、高4.0m左右的。(四) 气体分布装置电除雾器使用

除尘器的工作原理

电除尘器的工作原理 2015-04-06 梦泽赤子阅 3246 转 44 转藏到我的图书馆 微信分享: 电除尘装置是含尘气体在通过高压电场进行电离的过程中,使尘粒荷电,并在电场力的作用下使尘粒沉积在集尘器上,将尘粒从含尘气体中分离出来的一种除尘设备。 电除尘装置是一种烟气净化设备,它的工作原理是:烟气中灰尘尘粒通过高压静电场时,与电极间的正负离子和电子发生碰撞而荷电(或在离子扩散运动中荷电),带上电子和离子的尘粒在电场力的作用下向异性电极运动并积附在异性电极上,通过振打等方式使电极上的灰尘落入收集灰斗中,使通过电除尘装置的烟气得到净化,达到保护大气,保护环境的目的。 工作原理 在直流电压为2s~120kV时,极间气体发生电晕放电而产生阴离子和阳离子。在电场作用下,阴离子向阳桩(即除尘电报)运动,阳离子向阴极(即放电电极)运动。由于电压高,不仅迁移率较大的阴离子能与中性分子发生碰撞电离,而且迁移率较小的阳离子也能与中性分子发生碰撞电离。因此在电场中连续不断地生成大量新离子。当含尘气流进入电场后,粉尘与离子碰撞而粘附带电,成为荷电尘粒。在电场作用下,荷正电尘粒向阴极运动并沉积其上;荷负电尘粒向阳极运动并沉积其上。在通常负电晕(即电晕放电为电源的阴极)的情况下,有少量带正电尘粒沉积在阴极上,而大量带负电的尘粒沉积在阳极上,于是气体得以净化。 静电除尘设备采用采用荷电电场和分离电场合一的方法,通俗讲:用强电场使灰尘颗粒带电,在其通过除尘电极时,带正/负电荷的

微粒分别被负/正电极板吸附,即达到除尘目的.电场作用下,空气中的自由离子向两极移动,电压越高电场越强。所以静电除尘设备也叫高压静电除尘设备。由于离子的运动,极间形成了电流。开始时,空气中的自由离子少,电流较少。电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。因此,这个放电的导线被称为电晕极。在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。如果进一步提高电压,空气电离(电晕)的范围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。电场击穿时,发生火花放电,电话短路,电除尘器停止工作。为了保证电除尘器的正常运动,电晕的范围不宜过大,一般应局限于电晕极附近。[2] 电除尘器的结构

工业除尘器工作原理

工业除尘器工作原理 1.布袋除尘 本除尘器主要由灰斗、过滤室、净气室、支架、提升阀、喷吹清灰装置等部分组成.工作时,含尘气体由风道进入灰斗.大颗粒的粉尘由于重力作用,直接落入灰斗底部,较小的粉尘随气流转折向上进入过滤室,并被阻留在滤袋外表面,净化了的烟气进入袋内,并经滤袋口和净气室进入,最后通过风机的作用把洁净的空气排放出去。 随着设备工作时间不断的增加,通过滤袋的粉尘越来越多,从而滤袋所受的阻力负荷也随之上升,此时,使用脉冲反吹出去附着在滤袋上的粉尘。 如此循环交替,使滤袋的工作效率一直保持不变,使通过除尘器的粉尘都能达到排放标准。 2.滤筒除尘器 从某种原理来说工业除尘器与布袋除尘器的工作原理是相同的。唯一的区别有2点。(1)过滤精度不一样,布袋的过滤精度一般在0.5~1um以内。滤筒的过滤精度最少能达到0.2um。(2)设备维护不一样,滤筒除尘器的维护比布袋的维护方便很多,一般若相同风量的除尘设备,滤筒维护需要1天,那布袋最少需要3天。 3.静电除尘 静电除尘器的工作原理是:含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积。在冶金、化学等工业中用以净化气体或回收有用尘粒.利用静电场使气体电离从而使尘粒带电吸附到电极上的收尘方法.在强电场中空气分子被电离为正离子和电子,电子奔向正极过程中遇到尘粒,使尘粒带负电吸附到正极被收集.常用于以煤为燃料的工厂、电站,收集烟气中的煤灰和粉尘.冶金中用于收集锡、锌、铅、铝等的氧化物。并且工业除尘器的最高过滤静电能达到0.02um,受温达400~500摄氏度。这2点一直是布袋与滤筒不可及的地方。

电收尘的工作原理及结构

电收尘的工作原理及结构 一、原理: 含尘气体通过高压直流电源所形成的非匀强电场中,电源的负极又称为阴极、放电极、电晕极,电源的正极又称为阳极、集电极、沉淀极,当电压升高到一定数值时,在阴极附近的电场强度迫使气体发生碰撞电离,形成大量正负离子。由于在电晕极附近的阳离子趋向电晕极的路程极短,速度低,碰上粉尘的机会很少,因此,绝大部分粉尘与路程长的负离子相撞而带上负电,飞向集尘极,只有极少数粉尘积于电晕极,定期振打集尘极及电晕极,两极吸附的粉尘落入集灰斗中,通过卸灰装置卸至输送机械运走。 二、结构 电收尘主要由电晕极、沉淀极、振打装置、气体均布装置、电收尘的壳体、保温箱、排灰装置和高压整流机组组成。电收尘的主要工作部件为电晕极和集尘极。(1)电晕极 电晕极系统主要包括电晕线、电晕极框架、框架悬吊杆、支撑绝缘套管、电晕极振打装置等;电晕极为电收尘的放电极。 (2)集尘极 集尘极可分为板式和管式两种类型。

板式集尘极通常由几块长条板安装在一下悬挂架上组成一排,一个电收尘可由多排集尘极板组合而成。相邻两排中心距为250-350mm。 管式集尘极的形状有圆形和六角形等。圆形集尘极内径一般为200-350mm,管长3-7m不等。 (3)振打装置 ①锤击振打装置由振打锤、承振砧铁和振打杆组成。 ②弹簧-凸轮振打装置既可用于电晕极振打又可用于集尘 极振打。主要由振打杆(或板)、弹簧、回转机构、振动 锤、凸轮等组成。 ③电磁脉冲振打装置主要由脉冲电流发生器和冲击振打 器两部分组成。 (4)气体分布装置 在电收尘的各个工作横断面上,气体流速应力求均匀。 (5)电收尘的壳体、保温箱、排灰装置 ①壳体 ②保温箱当绝缘套管周围温度过低时,其表面会产生冷凝 水。 ③排灰装置电收尘常用的排灰装置有闪动阀、叶轮下料器 (又称回转阀)和双级重锤阀。

烙铁测温工作原理

1.测量工具 ?被测物体--烙铁头 ?热电偶 ?电子测试仪(如:万用表、测温仪) 2.测温原理: ?热电偶与被测物体接触 ?热量从被测问题传导热电偶 ?热电偶产生一个微伏电压(电阻改变,导致微伏电压变化)?当该电压稳定后,电子测试仪测试该电压,并翻译为温度?该测试值将被测物体的测量值 1.主要影响因素 ?大的接触面积 ?在烙铁头表面有足够的焊锡 ?焊锡氧化程度 ?周围环境 2.误差 ?可能有+/-50℃ 3.烙铁头测量角度

结论: ?当测量角度不一样,测量值不一样 ?测量值实际是热电偶本身温度,不是被测物体的温度 焊台温度设定的基本原则: 在不影响焊接质量及焊接速度的前提下,焊接设定温度越低越好。主要考虑因素: 1.焊料的熔点 2.PCB板时间曲线图 3.元器件耐热温度时间曲线图 4.生产效率 5.焊盘与PCB连接的粘胶耐热温度曲线 设定方法:

1.根据经验,设定一个起始焊接温度。有铅焊接350℃,无铅焊接:370℃ 2.向下或向上微调5℃,操作人员感觉其焊接速度。 3.反复重复第二部动作,将会找到一个工作点:在改点以后,调整温度,操作人员将不会 有任何感觉 4.该点就是最佳焊接温度 焊台温度的正确设定不仅对焊点的质量有很大的影响,而且对烙铁头的寿命也有重大的影响 1.防静电外壳:10的19次方欧姆 2.焊笔防静电方式:烙铁头与接地插座之间的电阻值小于或等于2欧姆 3.焊台防静电的两种模式 硬接地(所有焊台厂家都采用) 等电势位的方式(威乐独有,最安全的防静电模式) 对于烙铁头的接地阻抗测试,我们一种测试方法就是在烙铁焊接设备开启时(接通电源),测试烙铁头的对地电压,此电压会达到2V以上;另一种测试方式就是连接烙铁插头地线端与烙铁头,此阻抗有时候会超过10Ωm,此结果是判定为FAIL。

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

脉冲除尘器的原理

脉冲布袋除尘器的工作原理:除尘器由灰斗、上箱体、中箱体、下箱体等部分组成,上、中、下箱体为分室结构。工作时,含尘气体由进风道进入灰斗,粗尘粒直接落入灰斗底部,细尘粒随气流转折向上进入中、下箱体,粉尘积附在滤袋外表面,过滤后的气体进入上箱体至净气集合管-排风道,经排风机排至大气。脉冲布袋除尘器设备正常工作时,含尘气体由进风口进入灰斗,由于气体体积的急速膨胀,一部分较粗的尘粒受惯性或自然沉降等原因落入灰斗,其余大部分尘粒随气流上升进入袋室,经滤袋过滤后,尘粒被滞留在滤袋的外侧,净化后的气体由滤袋内部进入上箱体,再由阀板孔、排风口排入大气,从而达到除尘的目的。除尘器的气流分布很重要,必须考虑如何避免设备进口处由于风速较高造成对滤料的高磨损区域。气流分布板用于滤筒式除尘器有独特要求,气流分布必须十分稳定和均匀。才有利于气流的上升和粉尘的下降,气流分布板开孔率35%。根据计算,阻力系数<2,由此可见在气流速度<0.8m/s的情况下,多孔气流分布板可以满足滤筒式除尘器的要求。清灰过程是先切断该室的净气出口风道,使该室的布袋处于无气流通过的状态(分室停风清灰)。然后开启脉冲阀用压缩空气进行脉冲喷吹清灰,切断阀关闭时间足以保证在喷吹后从滤袋上剥离的粉尘沉降至灰斗,避免了粉尘在脱离滤袋表面后又随气流附集到相邻滤袋表面的现象,使滤袋清灰彻底,并由可编程序控制仪对排气阀、脉冲阀及卸灰阀等进行全自动控制。传统的滤筒除尘器有两种清灰方式,一种是高压气流反吹,一种是脉冲气流喷吹,实践表明前者的优点是气流均匀,缺点是耗毛量大;后者的优点

是耗气量小,缺点是气流弱小。为此可作两个方面改进:一方面在脉冲喷吹管上增加导流装置,加强气流诱导作用,另一方面把滤筒上部导流风管取消,使脉冲气流和诱导气流同时充分进入滤筒。这样改进后耗气量少,气流均匀,清灰效果好,根据计算,技术改进后的清灰气流流量是脉冲气量的3-5倍。 1.清灰装置 随着过滤的不断进行,除尘器阻力也随之上升,当阻力达到一定值时,清灰控制器发出清灰命令,首先将提升阀板关闭,切断过滤气流;然后,清灰控制器向脉冲电磁阀发出信号,随着脉冲阀把用作清灰的高压逆向气流送入袋内,滤袋迅速鼓胀,并产生强烈抖动,导致滤袋外侧的粉尘抖落,达到清灰的目的。由于设备分为若干个箱区,所以上述过程是逐箱进行的,一个箱区在清灰时,其余箱区仍在正常工作,保证了设备的连续正常运转。之所以能处理高浓度粉尘,关键在于这种强清灰所需清灰时间极短(喷吹一次只需0.1~0.2s)。 脉冲布袋除尘器的特点: 1、箱体采用气密性设计,密封性好,检查门用优良的密封材料,制作过程中以煤油检漏,漏风率很低。 2、本除尘器采用分室停风脉冲喷吹清灰技术,克服了常规脉冲除尘器和分室反吹除尘器的缺点,清灰能力强,除尘效率高,排放浓度低,漏风率小,能耗少,钢耗少,占地面积少,运行稳定可靠,经济效益

936型恒温电烙铁维修电路图

936型恒温电烙铁维修经验附电路图 936烙铁是一种可恒温、低电压、长寿命烙铁,具有可靠接地线,并与市电隔离,在修理各种含有贴片元件和集成电路的印制电路板时。尤为方便安全。 其控制电路由两部分组成(见附图所示).一路以IC2-3(运放)、VR、IC2-2(运放)组成的可调基准电压电路;另一路以与加热丝L2(图中的Heater)绕在一起的温度传感电阻丝RT、IC2-4、IC2-1组成的温控电路。这两部分控制信号.分别输入至ICl(C1701C)③脚和④脚,经比较处理后从⑥脚输出触发控制双向可控硅Q1的导通角,以调节L2(加热丝)的加热功率来调温/恒温。 故障1 LED1(加热指示灯)亮但烙铁不热 LEDl亮,则电源正常。测加热线圈阻值正常(为4Ω)。再检查烙铁至控制盒的5根(包括地线)连线无断线,插座接触良好,但双向可控硅Q1无输出电压。测ICl⑦脚输出电压正常(为14V),查ICl⑥脚有触发信号(直流电压为13.8V)。取下Q1测量已不能触发导通.将其更换后烙铁加热恒温正常。 故障2 LEDl不亮,烙铁也不发热 先测电源端有正常的14V,则ICl⑤脚电压为正常的5.4V;④脚为8.03V,调整VR时ICl ③脚电压能变化,但当ICl③脚电压高于④脚时,烙铁仍不能加热。查Q1未坏,判断为ICl 坏,将其更换后一切正常。字串9 故障3 LEDl亮的时间很短.烙铁温度低 经查是VR2失调.因烙铁使用一段时间后.VR2的参数有变动,调整后工作正常。 故障4烙铁温度和恒温点经常变化 此故障一般是VR接触不良,使ICl③脚电位不稳定.导致温度失控。若温度失控而高于310℃时.容易使细密的敷铜线烫脱。更换VR后调温、恒温正常。 注意:手柄型号要一致,因为各型号手柄里面的加热丝参数不一致。维修时根据以上参数来分析排查。 附:IC1(C1701C)引脚功能描述,IC2是一个普通的四运放 1—基准电压输出(3.7-4.2V);2—比较放大器的输出端;3—比较放大器的反相输入端;4—比较放大器的同向输入端;5—电源(-8V)输入端;6—脉冲输出端;7—GND;8—同步信号输入端,工作电流40mA,同步信号电流5mA(RMS)。

脉冲除尘器的工作原理及其特点

脉冲除尘器的工作原理及其特点一、脉冲除尘器的简述 脉冲除尘器是在袋式除尘器的基础上改进的新型高效脉冲除尘器,综合了分室反吹各种脉冲喷吹除尘器的优点,克服了分室清灰强度不够,进出风分布不均等缺点,扩大了应用范围。 二、脉冲除尘器的工作原理 脉冲除尘器是当含尘气体由进风口进入除尘器,首先碰到进出风口中间的斜板及挡板,气流便转向流入灰斗,同时气流速度放慢,由于惯性作用,使气体中粗颗粒粉尘直接流入灰斗。起预收尘的作用,进入灰斗的气流随后折而向,上通过内部装有金属骨架的滤袋粉尘被捕集在滤袋的外表面,净化后的气体进入滤袋室上部清洁室,汇集到出风口排出,含尘气体通过滤袋净化的过程中,随着时间的增加而积附在滤袋上的粉尘越来越多,增加滤袋阻力,致使处理风量逐渐减少,为正常工作,要控制阻力在一定范围内( 140--170毫米水柱),一旦超过范围必须对滤袋进行清灰,清灰时由脉冲控制仪顺序触发各控制阀开启 脉冲阀,气包内的压缩空气由喷吹管各孔经文氏管喷射到各相应的滤袋内,滤袋瞬间急剧膨胀,使积附在滤袋表面的粉尘脱落,滤袋恢复初 始状态。清下粉尘落入灰斗,经排灰系统排出机体。由此使积附在滤袋上的粉尘周期地脉冲喷吹清灰,使净化气体正常通过,保证除尘系统运行。 脉冲除尘器是指通过喷吹压缩空气的方法除掉过滤介质(布袋或滤筒).根据除尘器的大小可能有几组脉冲阀,由脉冲控制仪;上附着的粉尘.

或PLC控制,每次开-组脉冲阀来除去它所控制的那部分布袋或滤筒的灰尘,而其他的布袋或滤筒正常工作,隔一段时间后下一组脉冲阀打开,清理下一部分除尘器由灰斗..上箱体中箱体、下箱体等部分组成,上中、下箱体为分室结构。工作时,含尘气体由进风道进入灰斗,粗尘粒直接落入灰斗底部,细尘粒随流转折向上进入中、下箱体,粉尘积附在滤袋外表面,过滤后的气体进入上箱体至净气集合管排风道,经排风机排至大气。清灰过程是先切断该室的净气出口风道,使该室的布袋处于无气流通过的状态(分室停风清灰)。然后开启脉冲阀用压缩空气进行脉冲喷吹清灰,切断阀关闭时间足以保证在喷吹后从滤袋上剥离的粉尘沉降至灰斗,避免了粉尘在脱离滤袋表面后又随气流附集到相邻滤袋表面的现象,使滤袋清灰彻底,并由可编程序控制仪对排气阀、脉冲阀及卸灰阀等进行全自动控制。含尘气体由进风口进入,经过灰斗时,气体中部分大颗粒粉尘受惯性力和重力作用被分离出来,直接落入灰斗底部。含尘气体通过灰斗后进入中箱体的滤袋过滤区,气体穿过滤袋,粉尘被阻留在滤袋外表面,净化后的体经滤袋口进入上箱体后,再由出风口排出。 三、脉冲除尘器的特点 1.除尘率高 2.处理量大 3.高效便捷,节约时间 4.节省人力物力

恒温电烙铁电路图

自制恒温电烙铁电路图(广广州黄花恒温电烙铁) 发布: | 作者: | 来源: xiexiaolao | 查看:2622次| 用户关注: 自制恒温电烙铁电路图(广广州黄花恒温电烙铁)简易恒温电烙铁,其恒温控制部分由市电直接供电去驱动双向可控硅的电路,一旦出问题往往使元器件烧黑或炸裂,损坏器件的颜色、标记就无法辨认,给维修带来困难。这里,我们以有代表性的广州黄花电子电器厂905C型恒温电烙铁为例,对恒温烙铁的工作原理加以介绍。该电烙铁控温范围是100℃~400℃,调温标志标明低、中、高位,控温精度标称±5%,采用了热电偶传感器。控制电路自制恒温电烙铁电路图(广广州黄花恒温电烙铁) 简易恒温电烙铁,其恒温控制部分由市电直接供电去驱动双向可控硅的电路,一旦出问题往往使元器件烧黑或炸裂,损坏器件的颜色、标记就无法辨认,给维修带来困难。这里,我们以有代表性的广州黄花电子电器厂905C型恒温电烙铁为例,对恒温烙铁的工作原理加以介绍。 该电烙铁控温范围是100℃~400℃,调温标志标明低、中、高位,控温精度标称±5%,采用了热电偶传感器。控制电路采用了交流市电直接降压、滤波、稳压供电方案。工作原理见下图。 市电AC220V经R1降压、D1半波整流、D2削波稳压、C1滤波后作为比较器件IC的电源电压及调温设定电压源。IC-A③脚为热电偶检测电压输入端(与温度值对应); ②脚为调温设定电压。在②、③脚两端电压比较后,由①脚输出。其中R5的作用是将输入的很少一部分反馈至同相输入端③脚,以使在小信号波动时输出锁定不变。当热电偶检到温度偏低时;③脚电平相对②脚低,使输出①脚也低。进而使IC-B放大器⑥脚相对于固定偏置的⑤脚偏低,使输出⑦脚为高。由于IC-B⑤脚电压是由AC220V经R6、R7分压而得,因而,频率、相位完全与AC220V相同。与⑥脚直流比较后在⑦脚输出交流电压。该交流电压经C2、D4、D3和D4反向并联(作用同双向二极管)触发双向可控硅,使相应的电压加到烙铁电热丝上,以达到恒温的目的。

湿式除尘器工作原理

湿式除尘器工作原理 所有湿式除尘器的基本原理都是让液滴和相对较小的尘粒相接触/结合产生容易捕集的较大颗粒。在这个过程中,尘粒通过几种方法长成大的颗粒。这些方法包括较大的液滴把尘粒结合起来,尘粒吸收水分从而质量(或密度)增加,或者除尘器中较低温度下可凝结性粒子的形成和增大。 在所有上述微粒成长方法中,第一种方法是目前为止最具意义的一种捕集方法,实际应用于大多数湿式除尘器中。 1惯性撞击() 如果微粒分散于流动气体中,当流动气体遇到障碍物,惯性将使微粒突破绕障碍流动的气体流,其中一部分微粒将撞击到障碍物上。这种事件发生的可能性依赖于几个变数,尤其是微粒具有的惯性大小和障碍物的尺寸大小(在湿式除尘器中,障碍物就是液滴)。在除尘器中,惯性撞击发生在粉尘颗粒和相对较大的液滴之间。最常用的产生惯性撞击的机械设备如图1所示。图1中尘粒和水滴存在于移动的气体流中。混合物进入收缩段,横断面积减小从而气体的流动速度增加。相对较大的液滴需要一些时间加速,而小的颗粒不需要(根据物质的相对惯性)。因此在这一阶段,粉尘颗粒将由于惯性冲撞与移动较慢的水滴发生撞击。混合物接着经过喉道进入扩散段。和在收缩段的过程相反,随着横断面积的增加,气体流速减慢小颗粒运动速度也随之减慢。液滴则由于较大的质量和惯性会保持较高的速度并且赶上并撞击粉尘颗粒。这种收缩喉管和发散段的设计通常称为除尘器的文丘里管段或者接触器段。 虽然使用文丘里管是最通常的惯性撞击湿法除尘,也可以使用其它的方法。其中的一种方法是使用各种不同设计(如并流(同向流),逆流(逆向流),错流等)的喷雾塔。这些除尘器有效应用于各种能在较低能耗下获得所需的捕集效率的场合,通常是粉尘颗粒较大或者除尘效率要求较低的情况下。1 2拦截 如果小颗粒在流体中围绕障碍物移动,它将可能由于颗粒的相对大的物理尺寸与障碍物接触。这也会发生在粉尘颗粒和液滴的相对运动中。 3扩散 空气动力学粒径小于0.3μm(比重为1)的小颗粒主要通过扩散捕集,因为它们质量小不大可能发生惯性撞击,且物理尺寸小不容易被拦截。微小颗粒从高浓度区域向低浓度区域移动的过程称为扩散。扩散主要是布朗运动的结果,布朗运动即微小颗粒在周围气体分子和其他微粒碰撞下的无规则自由运动。当这些微粒被捕集到一个液滴里面,液滴邻近区域的微粒浓度降低,其他微粒又一次从高浓度区域向液滴邻近区域低浓度区域移动。 4冷凝

十种常见除尘器工作原理

一、布袋除尘器 除尘器的工作原理如下:含尘气体由下部敞开式法兰进入过滤室,较粗颗粒直接落入灰仓,含尘气体经滤袋过滤,粉尘阻留于袋表,净气经袋口到净气室,由风机排入大气。当滤袋表面的粉尘不断增加,程控仪开始工作,逐个开启脉冲阀,使压缩空气通过喷口对滤袋进行喷吹清灰,使滤袋突然膨胀,在反向气流的作用下,赋予袋表的粉尘迅速脱离滤袋落入灰仓,粉尘由卸灰阀排出。 二、脉冲除尘器 除尘器主要由上箱体、中箱体、灰斗、进风均流管、支架滤袋及喷吹装置、卸灰装置等组成。含尘气体从除尘器的进风均流管进入各分室灰斗,并在灰斗导流装置的导流下,大颗粒的粉尘被分离,直接落入灰斗,而较细粉尘均匀地进入中部箱体而吸附在滤袋的外表面上,干净气体透过滤袋进入上箱体,并经各离线阀和排风管排入大气。随着过滤工况的进行,滤袋上的粉尘越积越多,当设备阻力达到限定的阻力值(一般设定为1500Pa )时,由清灰控制装置按差压设定值或清灰时间设定值自动关闭一室离线阀后,按设定程序打开电控脉冲阀,进行停风喷吹,利用压缩空气瞬间喷吹使滤袋内压力聚增,将滤袋上的粉尘进行抖落(即使粘细粉尘亦能较彻底地清灰)至灰斗中,由排灰机构排出。 三、旋风除尘器 旋风除尘器加设旁路后其工作原理是含尘气体从进口处切向进入,气流在获得旋转运动的同时,气流上、下分开形成双旋蜗运动,粉尘在双旋蜗分界处产生强烈的分离作用,较粗的粉尘颗粒随下旋蜗气流分离至外壁,其中部分粉尘由旁路分离室中部洞口引出,余下的粉尘由向下气流带人灰斗。上旋蜗气流对细颗粒粉尘有聚集作用,从而提高除尘效率。这部分较细的粉尘颗粒,由上旋蜗气流带向上部,在顶盖下形成强烈旋转的上粉尘环,并与上旋蜗气流一起进入旁路分离室上部洞口,经回风口引入锥体内与内部气流汇合,净化后的气体由排气管排出,分离出的粉尘进入料斗。 四、静电除尘器 含尘气体从设备顶部进风口进入设备后,以高速经过旋风分离器,使含尘气体沿轴线调整螺旋向下旋转,利用离心力,除掉较粗颗粒的粉尘,有效地控制了进入电场的初始含尘浓度。然后,气体经下灰斗进入电场工作,由于下灰斗截面积大于内管截积数倍,根据旋转矩不变原理,径向风速和轴向风速急剧降低产生零速界面而使内管中的重颗粒粉尘沉降于下灰斗内,降低了进入电场的粉尘浓度,低浓度含尘气体经电收尘而凝聚在阴阳极板上,经清灰振打而将收集的粉尘由锁风排灰装置输送走。为了防止内管旋风和电场极板振打后在下灰斗内形成的二次扬尘,特在下灰斗中设置了隔离锥。 使用范围水泥、化肥、等行业各种磨机,破碎点下料口,包装机及烘干机和各种相类似的分散源处理。 五、滤筒除尘器 设备在系统主风机的作用下,含尘气体从除尘器下部的进风口进入除尘器底部的气箱内进行含尘气体的预处理,然后从底部进入到上箱体的各除尘室内;粉尘吸附在滤筒的外表面上,过滤后的干净气体透过滤筒进入上箱体的净气腔并汇集至出风口排出。 随着过滤工况持续,积聚在滤筒外表面上的粉尘将越积越多,相应就会增加设备的运行阻力,为了保证系统的正常运行,除尘器阻力的上限应维持在1400~1600Pa范围内,当超

电除尘的基本原理

第二节电除尘的基本原理 一、基本原理 电除尘器是利用直流高压电源产生的强电场使气体电离,产生电晕放电,进而使悬浮尘粒荷电,并在电场力的作用下,将悬浮尘粒从气体中分离出来井加以捕集的除尘装置。电除尘器有许多类型和结构,但它们都是由机械本体和供电电源两大部分组成的,都是按照同样的基本原理设汁的。如图2-1所示。为管式电除尘器工作原理示意图。 实现电除尘的基本条件是: (1)由电晕极和收尘极组成的电场应是极不均匀的电场,以实现气体的局部电离。 (2)具有在两电极之间施加足够高的电压,能提供足够大电流的直流高压电源,为电晕放电、尘粒荷电和捕集提供充足的 动力。 (3)电除尘器应具备密闭的 外壳,保证含尘气流从电场部通 过。 (4)气体中应含有电负性气 体,以便在电场中产生足够多的 负离子,来满足尘粒荷电的需 要。 (5)气体流速不能过高或电 场长度不能太短,以保证荷电尘 粒向电极驱进所需的时间。 (6)具备保证电极清洁和防 止二次扬尘的清灰和卸灰装置。 二、电除尘器分类

由于各行业工艺过程不同,烟 气性质各异,粉尘特性有别,对电 除尘器提出的要求不同。因此,出 现了不同类型的电除尘器,现将各 种类型的电除尘器按以下分类方式 介绍其各自的特点。1、按电极清灰 方式不同分为干式、湿式、雾状粒 子捕集器和半湿式电除尘器 (1)干式电除尘器。在干燥状态 下捕集烟气中的粉尘,沉积 在收尘极上的粉尘借助机械 振打清灰的称为干式电除尘器。这种电除尘器振打时,容易使粉尘产生二次扬尘, 对于高比电阻粉尘,还容易 产生反电晕,所以设计干式 电除尘器时,应充分考虑这 两个问题。大、中型电除尘 器多采用干式,干式电除尘 器捕集的粉尘便于处置和利 用。干式电除尘器的结构示 意图如图2-2所示。 (2)湿式电除尘器。收尘极捕集 的粉尘,采用水喷淋或适当的方法在收尘极表面形成一层水膜,使沉积在收尘极上 的粉尘和水一起流到除尘器的下部而排出,采用这种清灰方法的称为湿式电除尘器。 这种电除尘器不存在粉尘二次飞扬的问题,除尘效率高,但电极易腐蚀,需采用防 腐材料,且清灰排出的浆液会造成二次污染。 (3)雾状粒子电捕集器。这种电除尘器主要用干捕集硫酸雾、焦油雾那样的液滴,捕集后液态流下并除去,实质上也是属于湿式电除尘器。 (4)半湿式电除尘器。吸取干式和湿式电尘器的优点,出现了干、湿混合式电除尘器,也称半湿式电除尘器,其构造系统如图2-3所示。高温烟气先经两个干式收尘室,

认识电烙铁及使用方法

电烙铁的说明与使用方法 日期:编号: 1、焊接原理 目前电子元器件的焊接主要采用锡焊技术。锡焊技术采用以锡为主的锡合金材料作焊料,在一定温度下焊锡熔化,金属焊件与锡原子之间相互 吸引、扩散、结合,形成浸润的结合层。外表看来印刷板铜铂及元器件引线都是很光滑的,实际上它们的表面都有很多微小的凹凸间隙,熔流态的锡焊 料借助于毛细管吸力沿焊件表面扩散,形成焊料与焊件的浸润,把元器件与 印刷板牢固地粘合在一起,而且具有良好的导电性能。
锡焊接的条件是:焊件表面应是清洁的,油垢、锈斑都会影响焊接;能被锡焊料润湿的金属才具有可焊性,对黄铜等表面易于生成氧化膜的材料,可以借助于助焊剂,先对焊件表面进行镀锡浸润后,再行焊接;要有适当的加热温度,使焊锡料具有一定的流动性,才可以达到焊牢的目的,但温度也不可过高,过高时容易形成氧化膜而影响焊接质量。 1.1、电烙铁的种类: 1.1.1、外热式电烙铁 由烙铁头、烙铁芯、外壳、木柄、电源引线、插头等部分组成。由于烙铁头安装在烙铁芯里面,故称为外热式电烙铁。 烙铁芯是电烙铁的关键部件,它是将电热丝平行地绕制在一根空心瓷管 上构成,中间的云母片绝缘,并引出两根导线与220V 交流电源连接。 外热式电烙铁的规格很多,常用的有25W,45W,75W,100W 等,功率越 大烙铁头的温度也就越高。烙铁芯的功率规格不同,其内阻也不同。 25W 烙铁的阻值约为2k Ω,45W 烙铁的阻值约为1 k Ω,75W 烙 铁的阻值约为0.6 k Ω,100W 烙铁的阻值约为0.5 k Ω。烙铁头是用 紫铜材料制成的,它的作用是储存热量和传导热量,它的温度必须比被 焊接的温度高很多。烙铁的温度与烙铁头的体积、形状、长短等都有一 定的关系。当烙铁头的体积比较大时,则保持时间就长些。另外,为适 应不同焊接物的要求,烙铁头的形状有所不同,常见的有锥形、凿形、 圆斜面形等等。 1.1.2、内热式电烙铁 由手柄、连接杆、弹簧夹、烙铁芯、烙铁头组成。由于烙铁芯安装在烙 铁头里面,因而发热快,热利用率高,因此,称为内热式电烙铁。内热 式电烙铁的常用规格为20W,25W,35W,50W等几种。由于它的热 效率高,20W 内热式电烙铁就相当于40W 左右的外热式电烙铁。内 热式电烙铁的后端是空心的,用于套接在连接杆上,并且用弹簧夹固定,当需要更换烙铁头时,必须先将弹簧夹退出,同时用钳子夹住烙铁头的 前端,慢慢地拔出,切记不能用力过猛,以免损坏连接杆。内热式电烙 铁的烙铁芯是用比较细的镍铬电阻丝绕在瓷管上制成的,其电阻约为 2.5k Ω(20W ),烙铁的温度一般可达350OC 左右。由于内热式电

布袋除尘器的组成及工作原理

布袋除尘器的组成及工作原理 布袋除尘器结构组成由:除尘器出灰斗、进排风道、过滤室(中、下箱体)、清洁室、滤袋及(袋笼骨)、手动进风阀,气动蝶阀、脉冲清灰机构等。 布袋除尘器工作原理:布袋除尘器是基于过滤原理的过滤式除尘设备,利用有机纤维或无机纤维过滤布将气体中的粉尘过滤出来。 除尘过程:含尘气体由进气口进入中部箱体,从滤袋外进入布袋内,粉尘被阻挡在滤袋外的表面,净化的空气进入袋内,再由布袋上部进入上箱体,最后由排气管排出。 大型脉冲长布袋除尘器借鉴国内外先进技术,研制成功的新型高效长布袋除尘器是在常规短袋脉冲除尘器的基础上发展起来的一种新型、高效的,它不仅综合了分室反吹和脉冲清灰的特点,克服了普通分室反吹强度不足和一般脉冲清灰粉尘再附的缺点,而且加长了滤袋,充分发挥压缩空气强力清灰的作用。是一种除尘效率高,占地面积小,运行稳定、性能可靠,维修方便的大型除尘设备,可广泛应用于冶金、铸造、建材、矿山、化工等行业。 性能特点 进、出口风道布置紧凑,气流阻力小。 采用脉冲喷吹清灰技术,清灰能力强,除尘效率高,排放浓度低,漏风率小,能耗少,钢耗少,占地面积少,运行稳定可靠,经济效益好。适用于冶金、建材、机械、化工、电力轻工行业的烟气除尘。 箱体采用气密性设计,密封性好,检查门用优良的密封材料,制作过程中以煤油检漏,漏风率很低。 布袋除尘器的工作机理是含尘烟气通过过滤材料,尘粒被过滤下来,过滤材料捕集粗粒粉尘主要靠惯性碰撞作用,捕集细粒粉尘主要靠扩散和筛分作用。 滤料的粉尘层也有一定的过滤作用。布袋除尘器除尘效果的优劣与多种因素有关,但主要取决于滤料 脉冲布袋除尘器的几种分类 脉冲除尘器按滤袋不同直径、每室滤袋的不同布置、过滤面积的不同,分成三种不同的系列,以室为单位组合成排,分成单排列和双排列。 只有双排布置,滤袋尺寸为130X6000。脉冲喷吹压力一般设计为低压(0.2-0.3Mpa)。 只有双排布置,滤袋尺寸为160X6000。脉冲喷吹压力为高压(0.4-0.5Mpa)。

布袋除尘器工作原理

布袋除尘器 一、工作原理 含尘气体由灰斗上部进风口进入后,在挡风板的作用下,气流向上流动,流速降低,部分大颗粒粉尘由于惯性力的作用被分离出来落入灰斗。含尘气体进入中箱体经滤袋的过滤 净化,粉尘被阻留在滤袋的外表面, 净化后的气体经滤袋口进入上箱 体,由出风口排出。 随着滤袋表面粉尘不断增加,除 尘器进出口压差也随之上升。当除 尘器阻力达到设定值时,控制系统 发出清灰指令,清灰系统开始工作。 首先电磁阀接到信号后立即开启, 使小膜片上部气室的压缩空气被排 放,由于小膜片两端受力的改变, 使被小膜片关闭的排气通道开启, 大膜片上部气室的压缩空气由此通 道排出,大膜片两端受力改变,使 大膜片动作,将关闭的输出口打开,气包内的压缩空气经由输出管和喷吹管喷入袋内,实现清灰。当控制信号停止后,电磁阀关闭,小膜片、大膜片相继复位,喷吹停止。 脉冲阀是脉冲袋式除尘器关键 部件,其使用寿命是用户最为关 心的问题。公司可根据用户的需 求提供进口滤袋和脉冲阀。脉冲 阀的主要品牌为MECAIR 、 ASCO 、GOYEN 。 二、清灰比较 清灰方式是决定袋式除尘器性 能的一个重要因素。以清灰方式 对袋式除尘器进行分类,基本型 式主要有:机械振打清灰方式、 反吹清灰方式反吹、振打联合清 灰方式、脉动反吹清灰方式、脉 冲喷吹清灰方式。低压脉冲袋式 除尘器属于脉冲喷吹清灰方式。

以下是几种清灰方式的对比: 三、技术特点 ⑴采用淹没式脉冲阀,启闭迅速,自身阻力小,对于 6 米~8 米长的滤袋,喷吹压力仅0.15 ~0.3MPa ,就能获得良好的清灰效果。 ⑵清灰能力强。清灰时滤袋表面获得的加速度远远大于其它类型的袋式除尘器,清灰均匀,效果好。 ⑶过滤负荷高。因有强力清灰的保障,即使除尘器在较高的过滤风速下运行,其阻力也不会过高,一般为1200 ~1500Pa ,与反吹风除尘器相比,同等过滤面积,脉冲袋式除尘器有更大的处理风量。 ⑷检查和更换滤袋方便。滤袋的安装和换袋方便,无需绑扎。操作人员无需进入箱体内部,操作环境好。 ⑸设备造价低。由于过滤负荷高,处理相同烟气量所需过滤面积小于反吹风袋式除尘器,因而设备紧凑,占地面积小。 ⑹先进的控制技术。以PLC 可编程控制器为主机的控制系统对除尘器清灰、进口烟气温度、清灰压力等运行参数进行实时控制,功能齐全,稳定可靠。 四、技术性能 低压脉冲袋式除尘器技术性能主要体现在处理风量、出口含尘浓度、设备阻力及滤袋的使用寿命等几个方面。 ⑴处理风量 低压脉冲袋式除尘器能处理较大风量的粉尘从而减少过滤面积,使设备小型化,节省投资。在满足除尘对象的情况下,可根据清灰方式、粉尘性质、滤袋材质等确定适宜的过滤风速。 ⑵出口含尘浓度 低压脉冲袋式除尘器具有较高的除尘效率,出口含尘浓度完全能满足国家规定的排放标准,甚至可达到10mg/m 3 以下。 ⑶设备阻力 除尘器的阻力ΔP 是与风机的功率成正比,这是与风机能耗有直接关系的指标,涉及除尘系统的运行费用问题。除尘器的阻力与装置结构、滤料种类、粉尘性质、清灰方式、过滤风速、气体温度、湿度等诸多因素有关。 低压脉冲袋式除尘器将除尘器阻力控制在1200 ~1500 Pa 范围之内。保证从滤布上迅速、均匀地清掉沉积的粉尘,并且不损伤滤袋和消耗较少的动力。 除尘器阻力由三部份组成:ΔP=ΔP 1 +ΔP 2 +ΔP 3 其中:ΔP 1 ——机械阻力

除雾器工作原理

除雾器工作原理 更新时间:4-29 15:13 在工业生产过程及工业废气的排放过程中,将气--液进行分离是一项重要的工艺过程。在很多产品工艺生产操作中要将夹带在气相中的雾沫或粉尘加以分离,才能使生产正常顺利地进行。而雾沫或粉尘颗粒直径很小,如机械性生成的雾沫颗粒直径在1.0~150μm 之间,而凝聚性产生的雾沫颗粒直径在0.10~30μm 之间,分离这些雾沫或粉尘,既要分离效率高,阻力小,不易阻塞,还要安装面积小,运行经 济,安全可靠,操作方便。 为了清除气体中的雾沫和夹带的液相,工业生产 中一般采用除雾器。除雾器是一种在工业生产和环 保产业中广泛使用的气--液分离必不可少的装置。早 在上世纪三十年代,人们为了工业生产的需要就发 明了除雾器。根据除雾器的用途或结构可以分为许 多种类,如百叶窗式分离器、重力沉降型分离器和 旋流板分离器,但这些分离器分离效率不高,而且 不易分离较小粒径的雾沫;丝网除雾器虽然能分离 一般的雾沫,但要求雾沫清洁,气流流速较小,且 阻力降大,使用周期短,设备投资大。因此,研究和生产分离效率高、阻力降小、允许气流速度大、防堵功能强的新型高效除雾器成为工业生产中迫切需要解决的问题。 当含有雾沫的气体以一定速度流经除雾器时,由于气体的惯性撞击作用,雾沫与波形板相碰撞而被附着在波形板表面上。波形板表面上雾沫的扩散、雾沫的重力沉降使雾沫形成较大的液滴并随气流向前运动至波形板转弯处,由于转向离心力及其与波形板的摩擦作用、吸附作用和液体的表面张力使得液滴越来越大,直到集聚的液滴大到其自身产生的重力超过气体的上升力与液体表面张力的合力时,液滴就从波形板表面上被分离下来。除雾器波形板的多折向结构增加了雾沫被捕集的机会,未被除去的雾沫在下一个转弯处经过相同的作用而被捕集,这样反复作用,从而大大提高了除雾效率。气体通过波形板除雾器后,基本上不含雾沫。 除雾器工作原理示意图

各类除尘器工作原理介绍

各类除尘器工作原理介绍 1、布袋除尘器 布袋除尘器的工作原理如下:含尘气体由下部敞开式法兰进入过滤室,较粗颗粒直接落入灰仓,含尘气体经滤袋过滤,粉尘阻留于袋表,净气经袋口到净气室,由风机排入大气。当滤袋外表的粉尘不时增加,程控仪开端工作,逐一开启脉冲阀,使紧缩空气经过喷口对滤袋停止喷吹清灰,使滤袋忽然收缩,在反向气流的作用下,赋予袋表的粉尘疾速脱离滤袋落入灰仓,粉尘由卸灰阀排出。 2、脉冲除尘器 脉冲除尘器主要由上箱体、中箱体、灰斗、进风均流管、支架滤袋及喷吹安装、卸灰安装等组成。含尘气体从除尘器的进风均流管进入各分室灰斗,并在灰斗导流安装的导流下,大颗粒的粉尘被别离,直接落入灰斗,而较细粉尘平均地进入中部箱体而吸附在滤袋的表面面上,洁净气体透过滤袋进入上箱体,并经各离线阀和排风管排入大气。随着过滤工况的停止,滤袋上的粉尘越积越多,当设备阻力到达限定的阻力值(普通设定为1500Pa)时,由清灰控制安装按差压设定值或清灰时间设定值自动关闭一室离线阀后,按设定程序翻开电控脉冲阀,停止停风喷吹,应用紧缩空气霎时喷吹使滤袋内压力聚增,将滤袋上的粉尘停止抖落(即便粘细粉尘亦能较彻底地清灰)至灰斗中,由排灰机构排出。 3、旋风除尘器 旋风除尘器加设旁路后其工作原理是含尘气体从进口处切向进入,气流在取得旋转运动的同时,气流上、下分开构成双旋蜗运动,粉尘在双旋蜗分界处产生激烈的别离作用,较粗的粉尘颗粒随下旋蜗气流别离至外壁,其中局部粉尘由旁路别离室中部洞口引出,余下的粉尘由向下气流带人灰斗。上旋蜗气流对细颗粒粉尘有汇集作用,从而进步除尘效率。这局部较细的粉尘颗粒,由上旋蜗气流带向上部,在顶盖下构成激烈旋转的上粉尘环,并与上旋蜗气流一同进入旁路别离室上部洞口,经回风口引入锥体内与内部气流集合,净化后的气体由排气管排出,别离出的粉尘进入料斗。 4、静电除尘器 含尘气体从静电除尘器顶部进风口进入设备后,以高速经过旋风别离器,使含尘气体沿轴线调整螺旋向下旋转,应用向心力,除掉较粗颗粒的粉尘,有效地控制了进入电场的初始含尘浓度。然后,气体经下灰斗进入电场工作,由于下灰斗截面积大于内管截积数倍,依据旋转矩不变原理,径向风速和轴向风速急剧降低产生零速界面而使内管中的重颗粒粉尘沉降于下灰斗内,降低了进入电场的粉尘浓度,低浓度含尘气体经电收尘而凝聚在阴阳极板上,经清灰振打而将搜集的粉尘由锁风排灰安装保送走。为了避免内管旋风和电场极板振打后在下灰斗内构成的二次扬尘,特在下灰斗中设置了隔离锥。 运用范围水泥、化肥、等行业各种磨机,破碎点下料口,包装机及烘干机和各种相相似的分散源处置。 5、滤筒除尘器 设备在系统主风机的作用下,含尘气体从除尘器下部的进风口进入除尘器底部的气箱内停止含尘气体的预处置,然后从底部进入到上箱体的各除尘室内;粉尘吸附在滤筒的表面面上,过滤后的洁净气体透过滤筒进入上箱体的净气腔并聚集至出风口排出。 随着过滤工况持续,积聚在滤筒表面面上的粉尘将越积越多,相应就会增加设备

相关主题
文本预览
相关文档 最新文档